

Advanced Redox Technology (ART) Lab 고도산화환원 환경공학 연구실

http://artlab.re.kr

Environmental Chemistry-4 -Organic and Nuclear Chemistry

Changha Lee

School of Chemical and Biological Engineering Seoul National University

✓ Carbon: Versatile atom capable of 4 covalent bonds

- Why 4 bonds?
- To achieve a stable configuration with $\underline{\mathbf{8}}$ outmost electrons

Image courtesy of http://newenergyandfuel.com

- Organic compounds generally carbon-containing compounds
- Hydrocarbons compounds containing H and C only

- Naming convention uses Greek prefixes:
 - Methane CH_4
 - Ethane C_2H_6
 - Propane C_3H_8
 - Butane C_4H_{10}
 - Octane C_8H_{18}

- Alkane hydrocarbon where each carbon has four single bonds, saturated hydrocarbons
- In general, alkane formula:

 $C_n H_{2n+2}$

- Isomers
 - Same molecular formula but different structure
 - Structural differences result in very different chemical, physical & toxic properties

Alkenes

- There is a double bond between carbons
- Same name as alkanes, but with -ene

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} butene$$

Aromatics

- Another large group of hydrocarbons with benzene rings

Organics of Environmental Concern

$\sqrt{\mathbf{A}}$ wide spectrum of organics are of environmental concern!

- TCE (trichloroethylene)
 - Widely used solvent
 - Carcinogenic
- DDT (dichlorodiphenyltrichloroethane)
 - Onerous insecticide
- PCBs (polychlorinated biphenyls)
 - Previously used in transformers as dielectric and coolant fluids (207 congeners)
- BTEX (benzene, toluene, ethylene, xylenes)
 - Common groundwater contaminants

And so many more....

Fate and Transport of Organics

- Organic compounds go through physical, chemical, biological transformations and transports in natural environment and environmental engineering processes.
 - Partitioning (gas/liquid/solid)
 - Chemical transformation
- Transformations
 - Hydrolysis
 - Redox reactions
 - Photolysis
 - Biodegradation

Hydrolysis

• Nucleophiles: nucleus-liking species attracted by the electron-deficient atoms in molecules

- Electrophiles: electron-liking species attracted by the electron-rich atoms in molecules
- Hydrolysis (of organic compounds): a type of nucleophilic substitution or elimination

Table 13.1 Examples of ImportantEnvironmenal Nucleophiles

Hydrolysis

Source: Environmental Organic Chemistry

Redox Reactions

Source: Environmental Organic Chemistry

- Definition of reduction & oxidation reactions (i.e., redox reactions)
 - Oxidation: loss of e⁻ or H, gain of O, increase of oxidation number
 - Reduction: gain of e⁻ or H, loss of O, decrease of oxidation number

e.g.,
$$C + H_2 \rightarrow CH_4$$

 $C + O_2 \rightarrow CO_2$
 $Fe^0 \rightarrow Fe^{2+} + 2e^{-1}$

Redox Relationship between O_2 and H_2O

Reduction

Redox Reactions

Source: Environmental Organic Chemistry

Table 14.1 Examples of Some Simple Redox Reactions That May Occur Chemically in the Environment^{*a*}

Redox Reactions

Source: Environmental Organic Chemistry

Change in Oxidation State of Nitrogen Atom(s) b

Change in Oxidation State of Sulfur Atom(s) °

 $R-S-S-R + 2H^{+} + 2e^{-} = 2R-SH$ O $R-S-R' + 2H^{+} + 2e^{-} = R-S-R' + H_{0}O$ $R-S-R' + 2H^{+} + 2e^{-} = R-S-R' + H_{0}O$

Photolysis

Source: Environmental Organic Chemistry

- Direct photolysis vs. Indirect photolysis
- Primary photo-processes

 $A + hv \rightarrow A^*$ (photo-excitation)

- $A^* \rightarrow A$ + heat (thermal decay)
- $A^* \rightarrow A + h\nu'$ (fluorescence)
- $A^* \rightarrow A + hv''$ (phosphorescence)
- $A^* \rightarrow B$ (photolysis)
- Quantum yield

$$A + h\nu \rightarrow B$$

Molecules (mole) of A decomposed per unit volume per unit time Quanta of light (Einstein) absorbed by A per unit volume per unit time

 $\phi_A =$

Photolysis

 Reactive oxygen species (ROS) produced by sunlight-induced photochemical reactions

Figure 16.1 Ranges of steady-state concentrations of reactive oxygen species in sunlit surface waters (sw), sunlit cloud waters (cw), drinking-water treatment (dw), and the troposphere (trop(g)). Data from Sulzberger et al. (1997) and Atkinson et al. (1999).

Biodegradation

Source: Environmental Organic Chemistry

Figure 17.1 Sequence of events in the overall process of biotransformations: (1) bacterial cell containing enzymes takes up organic chemical, i, (2) i binds to suitable enzyme, (3) enzyme: *i* complex reacts, producing the transformation product(s) of i, and (4) the product(s) is(are) released from the enzyme. Several additional processes may influence the overall rate such as: (5) transport of *i* from forms that are unavailable (e.g., sorbed) to the microorganisms, (6) production of new or additional enzyme capacity [e.g., due to turning on genes (induction), due to removing materials which prevent enzyme operation (activation), or due to acquisition of new genetic capabilities via mutation or plasmid transfer], and (7) growth of the total microbial population carrying out the biotransformation of i.

Nuclear Chemistry

- Some atomic nuclei are unstable or radioactive
 - Spontaneously change form and emit radiation

- Radioactivity can be damaging to organisms
- Also can be a useful tracer

Radiation

$\sqrt{}$ Types of radiation emitted by radioactive decay:

- Alpha
 - Massive particles (helium atoms: 2 protons + 2 neutrons)
 - Skin protects us, but can be breathed into lungs
- Beta
 - Electrons
 - Can penetrate skin a few cm
 - Shield with a cm of aluminum
- Gamma
 - No mass; very damaging short wavelength radiation
 - Causes ionization, makes biological molecules unstable
 - Need a few cm of Pb for protection

Radiation

$\sqrt{\mathbf{Radioactive environmental problems:}}$

- Radon inhalation (a particle) when gas leaks into house
- Plutonium waste product of nuclear reactors
- Uranium and decay products (Cs, I)
- Radioactive heavy metals excavated in mines

Radiation Units

- There are several units of radiation.
- Curie (Ci)
 - Used to measure emission at source
 - -1 Ci = disintegration of 3.7 x 10¹⁰ atoms/s (Ra)

(the disintegration rate for 1 g of Radium)

- Becquerel (Bq)
 - Same purpose, 1 Ci = 3.7 x 10¹⁰ Bq

(Bq = 1 radioactive disintegration per second)

Radiation Units (continued)

- Roentgen (R), measures source strength
 - Gives ionizations produced in a given amount of air by X or γ rays
 - $-1 R = 2.58 \times 10^{-4} C/kg$
- Rad (radiation absorbed dose), measures exposure
 - Used for exposure
 - Note, 1 Gray (Gy) = 100 rads = 1 J/kg
- Rem (roentgen equivalent man), measures effect
 - Accounts for differences in effect of radiation type
 - e.g. 10 rads of β has same rem of 1 rad of α
 - Note, 1 Sievert (Sv) = 100 rem
 - 1 Banana Equivalent Dose (BED) = 0.1 mSv (from Potassium 40)

Radiation and Decay

- Radiation and ionization are dangerous to organisms:
 - Somatic effects: cancer, sterility, cataracts
 - Genetic effects: mutation of chromosomes
- Half-Life (t_{1/2})
 - Important parameter in nuclear chemistry
 - Related to decay rate.
 - 1 half-life, half of atoms decays into other elements
- $t_{1/2}$ ranges from 3.8 days (Rn) to 24,390 years (Pu)

Radiation and Decay (continued)

• The decay (dC/dt) follows first-order kinetics.

