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11.1  Basic Assumption

Basic assumptions of the kinetic theory

1) Large number of molecules (Avogadro’s number)

𝑁𝐴 = 6.02 × 1026 molecules per kilomole

2) Identical molecules which behave like hard spheres

3) No intermolecular forces except when in collision

4) Collisions are perfectly elastic

5) Uniform distribution throughout the container

n =
N

V
d𝑁 = ndV

n: The average number of molecules per unit volume
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11.1  Basic Assumption

6) Equal probability on the direction of molecular velocity average number of 

intersections of velocity vectors per unit area;

θ

ϕ

r d θ
r sin θd𝜙

r

N

4πr2

Where dA = r2 sin θ dθdϕd2Nθϕ =
N

4πr2
d𝐴 =

N sin θ dθdϕ

4π

d2nθϕ =
nsin θ dθdϕ

4𝜋

the number of intersections in dA

Nθϕ: The number of molecules having velocities 

in a direction (θ ~ θ + dθ)  and (ϕ ~ ϕ + dϕ)
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11.1  Basic Assumption

7) Magnitude of molecular velocity : 0 ~ ∞

c (speed of light)

dN𝑣 : The number of molecules with specified speed (v<    <v+dv)
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11.1  Basic Assumption

• Let dN𝑣 as the number of molecules with specified speed (v ~ v+dv)

• 0
∞
dN𝑣 = N

• Mean speed is ҧ𝑣 =
1

N
0
∞
𝑣dN𝑣

• Mean square speed is 𝑣2 =
1

N
0
∞
𝑣2dN𝑣

• Square root of 𝑣2 is called the root mean square or rms speed:

𝑣𝑟𝑚𝑠 = 𝑣2 =
1

N
0
∞
𝑣2dN𝑣

• The n-th moment of distribution is defined as 

𝑣𝑛 =
1

N
0
∞
𝑣𝑛dN𝑣
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11.2  Molecular Flux

• The number of gas molecules that strike a surface per unit area and unit time

• Molecules coming from particular direction θ, ϕ with specified speed v in time dt

→ θϕ𝑣 collision   θ ~ θ + dθ
ϕ ~ ϕ + dϕ
v ~ v+dv

• The number of θϕ𝑣 collisions with dA dt

= θϕ𝑣 molecules in 

= θϕ molecules with speed v

Fig. Slant cylinder geometry used to calculate 

the number of molecules that strike the area dA in time dt.
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11.2  Molecular Flux

• How many molecules in unit volume 

• The number of θϕ𝑣 molecules in the cylinder toward dA

dn𝑣 : Density between speed (v ~ v+dv)

dA : Surface of spherical shell of radius v and thickness dv (i.e., θ, ϕ molecules)

Volume of cylinder: dV = dA (vdt cosθ )

d3nθϕ𝑣𝑑𝑉 = (𝑑𝐴𝑣dt cosθ )dn𝑣
sin θ dθdϕ

4𝜋

d3nθϕ𝑣 = dn𝑣 ∙
𝑑𝐴

𝐴
= dn𝑣

𝑣2 sin θ dθdϕ

4𝜋𝑣2
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11.2  Molecular Flux

• The number of collisions per unit area and time (i.e., particle flux)

• Total number of collisions per unit area and time by molecules having all speed


d3nθϕ𝑣dV

dA dt
= 0

2𝜋
dϕ0

𝜋/2
sinθcosθdθ ∙

1

4π
0
∞
𝑣dn𝑣 =

𝟏

𝟒
𝒏ഥ𝒗

Cf. average speed ҧ𝑣 =
σ ത𝑣

𝑁
=

σ𝑁𝑖𝑣𝑖

𝑁
=
σ 𝑛𝑖𝑣𝑖
σ 𝑛𝑖

=
 𝑣d𝑛𝑣

𝑛

0)
∞
𝑣dn𝑣 = 𝑛 ҧ𝑣)

d3nθϕ𝑣dV

dA dt
=

1

4π
𝑣dn𝑣sinθcosθdθdϕ
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11.3  Gas Pressure and Ideal Gas Law

• Gas pressure in Kinetic theory

Gas pressure is interpreted as impulse flux of particles striking a surface

𝜃 𝜃

𝑚𝑣1 𝑚𝑣2



10/17  

11.3  Gas Pressure and Ideal Gas Law

• Perfect elastic 𝑣 = 𝑣′

• Average force exerted by molecules

• Momentum change of one molecule (normal component only)

𝑚𝑣cos𝜃 − −𝑚𝑣cos𝜃 = 2𝑚𝑣cos𝜃

• The number of θϕ𝑣 collisions for dA, dt

𝑣 sinθ

𝑣 cos θ

θ θ

ϕ
dA

𝑣

d3nθϕ𝑣dV

dA dt
=

1

4π
𝑣dn𝑣sinθcosθdθdϕ

F =
d(𝑚 Ԧ𝑣)

dt
= 𝑚 Ԧ𝑎 + ሶ𝑚 Ԧ𝑣
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11.3  Gas Pressure and Ideal Gas Law

• Change in momentum due to θϕ𝑣 collisions in time dt

• Change in momentum p in all v collisions 0 < θ ≤
𝜋

2
, 0 < ϕ ≤ 2𝜋 at all speed

• Change in momentum from collisions of molecules with unit time

• Average pressure ത𝑃 =
𝑑 Ԧ𝐹

𝑑𝐴

dp = න
0

∞

න
0

π/2

න
0

2π 1

2π
mv2dnvsinθcos

2θdθdϕ ∙ dAdt =
1

3
𝑚𝑛𝑣2dAdt

2𝑚𝑣cos𝜃 ×
1

4π
𝑣dn𝑣sinθcosθdθdϕ =

1

2π
𝑚𝑣2dn𝑣sinθcos

2θdθdϕdAdt

dp

dt
= dF =

1

3
𝑚𝑛𝑣2dA

ത𝑃 =
1

3
𝑚𝑛𝑣2

cf. 𝑣2 =
σ 𝑣2

𝑁
=

 𝑣2d𝑛𝑣

𝑛
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11.3  Gas Pressure and Ideal Gas Law

Since 𝑛 =
𝑁

𝑉
then pressure 𝑃 =

1

3

𝑁

𝑉
𝑚𝑣2 ∴ 𝑃𝑉 =

1

3
𝑁𝑚𝑣2

EOS of an ideal gas:  PV = n ത𝑅𝑇 = mRT =
N

𝑁𝐴

ത𝑅𝑇 = 𝑁𝑘𝑇

𝑁𝐴 : Avogadro’s number  : 6.02 × 1026 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠/𝑘𝑚𝑜𝑙𝑒

𝑘𝐵 : Boltzmann constant : 𝑘𝐵 =
ത𝑅

𝑁𝐴
= 1.38 × 10−23𝐽/𝐾

𝑃𝑉 =
1

3
𝑁𝑚𝑣2 = 𝑁𝑘𝑇

∴
𝟏

𝟐
𝒎𝒗𝟐 =

𝟑

𝟐
𝒌𝑻

The temperature is proportional to the average kinetic energy of molecule
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11.4  Equipartition of Energy

• Equipartition of energy

Because of even distribution of velocity of particles,

By assumption, no preferred direction

It can be interpreted that a degree of freedom allocate energy of  
1

2
𝑘𝑇

𝑣2 = 𝑣𝑥
2 + 𝑣𝑦

2 + 𝑣𝑧
2,

𝑣𝑥
2 = 𝑣𝑦

2 = 𝑣𝑧
2 =

1

3
𝑣2 →

1

2
𝑚𝑣𝑥

2 =
1

6
𝑚𝑣2 =

1

2
𝑘𝑇
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11.5  Specific Heat

Total energy of a molecule in Cartesian coordinate

General expression of total energy of molecules for f –DOF (Degree of Freedom)

𝑐𝑣 = ቁ
𝜕𝑢

𝜕𝑇 𝑣
=

f

2
𝑅 from the above equation

𝑐𝑃 =
𝜕ℎ

𝜕𝑇 𝑝
=

𝑓

2
𝑅 + 𝑅 =

(𝑓+2)

2
𝑅 cf) cp = cv + R

The ratio of specific heat: γ =
cp

cv
=

f+2

f

തε = തεx + തεy + തεz =
1

2
𝑚𝑣𝑥

2 +
1

2
𝑚𝑣𝑦

2 +
1

2
𝑚𝑣z

2 =
𝑘𝑇

2
+

𝑘𝑇

2
+

𝑘𝑇

2
=

3

2
𝑘𝑇

U = Nതε =
f

2
NkT =

f

2
nRT ↔ u =

U

𝑛
=
𝑓

2
𝑅𝑇
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Monatomic 

gas 

Diatomic

gas 

11.5  Specific Heat

negligible

3

5

Near room temperature, rotational or vibrational DOF are excited, 

but not both. DOF: 7 → 5

1

2
𝑚𝑣𝑥

2, 
1

2
𝑚𝑣𝑦

2, 
1

2
𝑚𝑣𝑧

2

1

2
𝑚𝑣𝑥

2, 
1

2
𝑚𝑣𝑦

2, 
1

2
𝑚𝑣𝑧

2

1

2
𝐼𝑤𝑥

2, 
1

2
𝐼𝑤𝑦

2, 
1

2
𝐼𝑤𝑧

2

1

2
𝑘𝑥2, 

1

2
𝑚 ሶ𝑥2 no y,z vibration

𝑐𝑝

𝑐𝑣
=
5 + 2

5
= 1.4

𝑐𝑝
𝑐𝑣

=
3 + 2

3
= 1.67

Translational

Rotational

Vibrational

DOF

DOF
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Triatomic

gas

11.5  Specific Heat

9
CO2 translational 3

rotational 2

vibrational 4

𝑐𝑝
𝑐𝑣

=
7 + 2

7
= 1.28

• Vibration modes of CO2

Bending

Stretch

DOF

http://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwj89czt46vTAhWCHZQKHXm_CZcQjRwIBw&url=http://www.wag.caltech.edu/home/jang/genchem/infrared.htm&psig=AFQjCNGzTo3nItvIH9oOUlsaeBdp9Nf4oA&ust=1492528393836803
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Solid

11.5  Specific Heat

x,y,z direction𝑘𝑇

2
(kinetic)

𝑘𝑇

2
(potential)

U =
3𝑘𝑇

2
+
3𝑘𝑇

2
= 3𝑁𝑘𝑇

cv = 3𝑅(Dulong-Petit Law)


