3.4 THE BUTLER-VOLMER MODEL

= A plot of log ivs. n

- known as a Tafel plot > At large negative overpotentials
- can obtain the values of a and i 23RT  23RT
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The plots deviate sharply from
linear behavior as n approaches
zero, because the back reactions
can no longer be regarded as
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Figure 3.4.4 Tafel plots for anodic and cathodic branches of the current-overpotential curve for
O+ e=2Rwitha = 0.5,7 = 298 K, and jo = 107° A/em?.
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. | | = Real Tafel plots for the Mn(IV)/Mn(IIl) system
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Figure 3.4.5 Tafel plots for the reduction of Mn(IV) to Mn(III) at Pt in 7.5 M H,S0, at 298 K. The
dashed line corresponds to & = 0.24. [From K. J. Vetter and G. Manecke, Z. Physik. Chem.
(Leipzig), 195, 337 (1950), with permission.]
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Figure 3.4.1 Current-overpotential curves for the system O + e 2 R witha = 0.5, 7 = 298 K,
ite = —ij, = iyand ip/iy = 0.2. The dashed lines show the component currents i, and i,.
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Figure 3.4.4 Tafel plots for anodic and cathodic branches of the current-overpotential curve for
O+e=Rwitha =0.5,7 =298 K, and j; = 107° A/em?.
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= At large overpotential of Tafel region
(red box),

- Irreversible reaction

= At very small overpotential (blue box),

- Reversible reaction

= At moderate overpotential (green box),

- Quasireversible reaction

- Between reversible and irreversible
reactions

- Both anodic and cathode processes

contribute significantly to the currents
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= Let us reconsider the Butler-Volmer equation for quasi-reversible cases as follows

| = :‘0|:e"“f”—e(1 _“)f":|

- Can be rewritten as

i = ige~f (1 — /M) » n . = ige M
—e

- Take the log of both sides

i . afm
| —om BT 3RT

log

> Make a plot of log [i/(1 - eM)] vs. n

: obtain an intercept of log i, and a slope of -aF/2.3RT
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= Let us reconsider the current-overpotential equation as follows

i _ Co(0, 1) —afn _ Cr(0, 1) J(1-a)fn
h g Cq

» = ;'O[E“C‘Bf”'?—e“ ‘“)f":| : the Butler-Volmer equation

= et us consider its behavior when i, becomes very large compared to any current of

interest

- The ratio i/iy then approaches zero, and we can rearrange the limiting form of

equation
*
Co0,1) _ Co o E—Eeg)
RO Y Co®.0 _ fEeq—E") ,fE-Eeq)
* Cr(0, ¢
E = EO’ + RTI C3 ef(Eeq_Eur) — & R( )
eq F Ly *
Cr Cr
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Co(0, 1)
CR(Oa f)

— ofE-EY)

Co0.D _  fEeq-E”) ,E~Eeq #
CR(Os 2‘)

= This equation can be rearranged to the very important result:

_ .o RT, €0,
E=FE +FlnCR(0,t}

=>» The electrode potential and the surface concentrations of O and R are described
by an equation of the Nernst form, regardless of the current flow.

=> In effect, the potential and the surface concentrations are always kept in
equilibrium with each other by the fast charge-transfer processes

: the thermodynamic equation with characteristic of equilibrium
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= Net current flows because the surface concentrations are not at equilibrium with
the bulk
- mass transfer continuously moves material to the surface, where it must be

reconciled to the potential by electrochemical change

= Previously, a system that is always at equilibrium is termed a reversible
System
- an electrochemical system in which the charge transfer interface is always at

equilibrium is also called a reversible (or, alternatively, a nernstian) system
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= At extreme n (blue box), :

- the current approaches the limiting current i =i

- the current is limited by mass transfer
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TFigure 3.7.I" Twirent-overpotential curves for the system O + ¢ 2 R with o = 0.3, 7 = 208 K,

ijc = —ij, = ijand ip/i; = 0.2. The dashed lines show the component currents i and i,.



1.4.2 Steady-State Mass-Transfer vs. Current

= Consider the reduction of a species O at a cathode:

O+ne=R

= Once electrolysis of species O begins,
- its concentration at the electrode surface, C5(x = 0) becomes smaller than the value,

Co*, in the bulk solution (far from the electrode).
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Co

Electrode Bulk solution

Colx=0) 2

Ys’tagnant layer

= We assume here that stirring is ineffective at the electrode surface,

- so the solution velocity term need not be considered at x = 0.

= This simplified treatment is based on the idea that a stagnant layer of thickness &,
exists at the electrode surface (Nernst diffusion layer), with stirring maintaining the

concentration of O at (5* beyond x = &4
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= Since we also assume that there is an excess of supporting electrolyte,
= migration is not important,
- the rate of mass transfer is proportional to the concentration gradient at the

electrode surface, as given by the first (diffusive) term in the equation:

. dC;(x) P dp(x)
Ji) = =Dy — =~ 55 PiCi

+ Civ(x)

BE)  Un < (dColdx)i= = Do(dCo/dx)—g
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dCi(x) zF dd(x .
Jix) = =D —— = x5 DiC; ﬁi) + Co(x) %
Umt & (dC{jde)x=[) = DD{dCDi’d-x)x=[} Col=0)
\ )
|

= If one further assumes a linear concentration gradient within the diffusion layer,
- then, from the above equation

Vm = DolCG — Colx = 0)1/8o

\ )
|

= Since &, Is often unknown,
- it is convenient to combine it with the diffusion coefficient to produce a single

constant, my=0D,/6¢

Vm = MolCH — Colx = 0)]
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= The proportionality constant, mg, called the mass-transfer coefficient, has units of

cm/s

= Can also be thought of as volume flow/s per unit area (cm3 st cm) .

= Thus, from the following equations and taking a reduction current as positive [i.e., i is

positive when C5* > Cy(x = 0)], we obtain

Urxn = Ut = i/nFA ,
- [ ics o
" n
Umt = MolCo — Colx = 0)]
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ﬁ = mg[CE — Co(x = 0)]

= The largest rate of mass transfer of O occurs
> when C5(x = 0) =0

- or more precisely, when Co (x = 0) << (5% so that (* - (o(x = 0) = (*

= The value of the current under these conditions (maximum current)

- is called the limiting current, i, where

i) = nFAmoCo

= When the limiting current flows,
- the electrode process is occurring at the maximum rate possible for a given set of
mass-transfer conditions,

- O is being reduced as fast as it can be brought to the electrode surface.
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= When we combine the left equations,

- we can obtain expressions for Cy(x = 0):

i

nFA

= F?‘-'-G[CH{; — Cox = 0)]

i) = nFAmCo

CG(X = '0) _ _ I
S i

Colx = 0) = L~
olx =0) = nFAmg

= Thus, the concentration of species O at the electrode surface

- is linearly related to the current

- varies from C,* when i = 0, to a negligible value, when i = i,
o) glig |
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= Under the conditions of a net cathodic reaction,

- R is produced at the electrode surface,

> so that Gy(x = 0) > G* (where (;* is the bulk concentration of R).
> Therefore,

F 5 = melCr(x = 0) = Crl

= Or for the particular case when G* = 0 (no R in the bulk solution),

e

= The values of (5(x = 0) and Ci(x = 0) are functions of electrode potential, E. (Nernst

equation: ch. 2)
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= If the kinetics of electron transfer are rapid,
- the concentrations of O and R at the electrode surface can be assumed to be at
equilibrium with the electrode potential, as governed by the Nernst equation for the

half-reaction

O+nea=R
_ .0, RT Colx =0)
E=EF +nF1nC'R(x=U)

= Let us derive the steady-state i-E curves for nernstian reactions under several
different conditions.

1) R Initially Absent

2) Both O and R Initially Present

3) R Insoluble
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(@) R Initially Absent
= When Cg* = 0, Cy(x = 0) can be obtained from:
Cr(x = 0) = i/nFAmg —

i — i

Colx = 0) = - =1
Famg o E=E-Engo R (1)

o , RT, €Colx=20)
+ nFlnC'R(x=0)

E=LE

= Note that when i = i/2, - where E,, is independent of the substrate

concentration and is therefore characteristic of

RT, ™o the O/R system.
nk —m

E=E;,=E%-

- When mg and mg have similar values,

By = E°
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Figure 1.4.2 (a) Current-potential curve for a nernstian reaction involving two soluble species
with only oxidant present initially. (b) log[(i; — i)/i] vs. E for this system.
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(b) Both O and R Initially Present

= When both members of the redox couple exist in the bulk, we must distinguish between
- a cathodic limiting current, i, when Cy(x = 0) = 0,

- and an anodic limiting current, i, when Cz(x = 0) = O.

= The limiting anodic current naturally reflects the maximum rate at which R can be

brought to the electrode surface for conversion to O

i1 = —hFAmRC f{k

I — I,

Crix =0) = nFAmg
C;I{ i! a

- Sign convention: cathodic currents are taken as positive and anodic ones as negative
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R =00 = e —
, m lf - 1.
P =i E=ED—RTlan+RTln(.’C . )
Co(x — 0) _ nF R nkF 1 — I[’a
nFAmg o
. RT, Colx=0) . |
E=E" + 1 — =« When i= 0, E = E_, and the system is at
nF " Crlx = 0) e Y
equilibrium.
- Surface concentrations are then equal to the bulk
values.
= When current flows, the potential deviates from E,
zqu’ > the extent of this deviation is the concentration
i
(_)E overpotential.
Il a
Figure 1.4.3 Current-potential curve for a nernstian system
involving two soluble species with both forms initially
present.
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(c) R Insoluble

= Suppose species R is a metal and can be considered to be at essentially unit activity
as the electrode reaction takes place on bulk R.

- When ai = 1, the Nernst equation is

E=E"+%InCor=0) —
' Ly — 1
E=EU+%1ncg+gln(’. )
C=0_ i | L v
C* ] \ ] \ ]
0 ’r | |
IEeq Mconc

= Wheni=0, E = Eeq = E® + (RT/nF) InCy*

= If we define the concentration overpotential, n.,.. (or the mass-transfer overpotential,

RT, (u—1
=F—E ==
Tconc eq # Meone = > m( - )

r]mt)l as
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Neone — = (Complete
concentration
polarization)

Figure 1.4.4 Current-potential curve for a nernstian system
where the reduced form is insoluble.

= Wheni = - o0,

||, r]conc

= Since n is a measure of polarization, this condition is sometimes called complete

concentration polarization
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_RT, Iy =1
nconc—}a}"n fl

= The equation can be written in exponential form:

1_i_exp(%) ex=1+x—|—’-’€2~+---zl+x(whenxissmall)

= Under conditions of small deviations of potential from E,,

> the i - N Characteristic is linear:
no = —RTi
conc HF?.I

= Since -n/i has dimensions of resistance (ohms),

- we can define a "small signal" mass transfer resistance, R as

RT : the mass-transfer-limited electrode reaction

B nF|i| resembles an actual resistance element only at

Rt

small overpotentials
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= Let us reconsider the current-overpotential equation as follows

h g Cy
Coe=0) _, _ i L (1 ——.fl)e‘“f’?— (1 —.i)e“‘“Jf“
Cg I.[,C IU I[,C Ii,a
CR(JC = 0) 1
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= For small overpotentials (afn<<1),

jf _ CO(Os I) e‘“f"i o CR(Os t) 8(1_@}&”
b C3 Cy

i _ Cop(0, 1) N Cr(0, 1) _ Fnq

» | c¥ cy RT
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Lo if,c lla
RT .
Rt ”Fi*':i| ~ n = _E(Rct + Rmt,c + Rmt,a)
RT
Ry = Fi ]

= Here we see very clearly that when i, is much greater than the limiting currents,
> R, << R +R

mt,c mt,a

> the overpotential, even near E_, is a concentration overpotential.

eq’

= On the other hand, if iy is much less than the limiting currents,

2> then R + Rt << R,

mt,c mt,a

- the overpotential near E,, is due to activation of charge transfer.
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= i-n curves for several ratios of ig/i, where i, =i, . = i,
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Figure 3.4.6 Relationship between the activation overpotential and net current demand
relative to the exchange current. The reactionis O + e2 R witha = 0.5, T = 298 K, and
ijc = —i;, = ;. Numbers by curves show iy/i,.
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Figure 3.4.1 Current-overpotential curves for the system O + e 2 R witha = 0.5, T = 298 K,
ijc = —ij, = irand ip/i; = 0.2. The dashed lines show the component currents i, and i,.

= For the cathodic branch at high n values, the anodic contribution is insignificant,

F=(1--"1Je o
Iy I ¢

_RT, W , RT, G0
M= GF N T aE T

=> useful for obtaining kinetic parameters for systems in which the normal Tafel plots are

complicated by mass-transfer effects





