QUE\$TOR HW

Offshore platform FEED

HW: Angola

I. Input parameters

- 1. Oil field
- 2. Africa / Angola / Congo fan basin
- Procurement Strategy Angola (US \$)
 A. Materials Africa
- 4. Recoverable reserves = 150 MMbbl (Oil)
- 5. Gas oil ratio = 1000 scf/bbl
- 6. Reservoir depth = 3000 m
- 7. Reservoir pressure = 300 bar
- 8. Water depth = 1000 m
- 9. CO_2 content = 5%
- 10. H_2S content = 100 ppm
- 11. Well productivity = 10 MMbbl/well
- 12. Peak well flow = 4 Mbbl/day
- 13. Distance to operation base = 110 km
- 14. Distance to delivery point = 100 km

I. Development concept – Tension leg platform (TLP)

- 1. Oil export Pipeline to shore (100 km)
- 2. Gas via existing production platform (20 km)
- 3. Oil export
 - A. Carbon steel X80
 - B. Pipeline size: 12"
- 4. Dry oil tank
 - A. Storage capacity: 1500 bbl

I. Gas is reinjected, rather than exported, resulting in greater recovery:

- Recoverable reserves = 180 MMbbl
- 2. Well productivity = 12 MMbbl/well

II. Concept – Semi-submersible + Subsea tie-back

- 1. Oil export Offshore loading (1 km)
- 2. Gas Inject into reservoir

I. Development concept – Spar buoy + Subsea tie-back

- 1. Oil export Pipeline to shore (100 km)
- 2. Gas Inject into reservoir

II. Oil Export

- 1. Carbon steel X80
- 2. Pipeline size: 12"
- 3. Dry oil tank
 - A. Storage capacity: 1500 bbl

III. Spar platform wells

- 1. 10 Production
- 2. 4 Water injection
- 3. 3 Gas injection

IV. Subsea wells

- 1. 3 Water injection
- 2. 6 Production

I. Gas is exported, rather than reinjected

- II. Development concept FPSO + Subsea
 - 1. Oil export Ship to Ship
 - 2. Gas via existing production platform (20 km)
 - 3. New build (ship shape)
 - 4. Tanker size = VLCC 160-310 kdwt
 - 5. Mooring option = Internal turret

I. Field is tied-back to an existing facility with capacity to handle production

1. Existing facility is 20 km from the field

II. Create the concept by adjusting the schematic of scenario 4

- 1. Delete tanker and topsides
- 2. Join the subsea tie-back to the Sink
- 3. Set the tie-back distance to 20 km within the subsea component
- 4. Chemical injection required to prevent hydrates over longer tie-back
- 5. Add HIPPS on commingling manifold

HW: Angola

I. Compare the cost of each project using the project viewer

- 1. Open the project viewer
- 2. Open the projects to compare
- 3. Sort the projects by Total CAPEX
- 4. Save the graph of
 - A. X axis: Recoverable reserves
 - Y axis: Total CAPEX
 - B. X axis: Recoverable reserves
 - Y axis: CAPEX/BOE
- 5. Save the comparison sheet in excel form
- 6. Discuss your result