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CHAPTER 5. Static Magnetic Fields

1. Magnetostatics in Free Space (or in nonmagnetic media

excluding ferromagnetic materials)

Steady-state (time-independent) magnetic phenomena caused
by moving electric charges or steady currents.

Deductive Approach :
Define    ⇒ Fundamental postulates

⇒ Derive other laws, theorems, and relations
(Gauss's and Ampere's laws, Biot-Savart law,
Vector magnetic potential, ...), which are
verified by experiments

A. Fundamental Postulates

to represent the physical laws of magnetostatics in free space

1) Magnetic flux density (or Magnetic induction) 

= magnetic flux per unit area (or = magnetic force per current moment)

 ≡ lim
∆→
∆

∆
    (T or Wb/m2 or N/A�m) (1)

where   

⋅ (Wb or N�m/A) : magnetic flux (5-23)

 is the magnetic force

   × (N) on a moving charge  in the field (5-4)

or    × (N) on a current-carrying element in the field (5-116)*

(cf)

Notes)

i) Total electromagnetic force on a charge 

        × (N) : Lorentz's force (5-5)

ii) Electromagnetic body force (= e.m. force per unit volume) in plasmas

        ×     × (5-5)*
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2) Differential form of Gauss's and Ampere's laws

∇⋅    : Gauss's law for magnetism (5-6)

solenoidal (continuous closed loops, no magnetic flow sources)

∇ ×     : Ampere's law (in nonmagnetic media) (5-7)

Note) ∇⋅ ⇒ ∇⋅   : Current continuity equation (5-8)

(Conservation of charge)

3) Integral form of Gauss's and Ampere's laws



(5-6)  ⇒ 



∇⋅   

⇒ 


⋅   (5-9)

: Conservation of magnetic flux

(No total outward magnetic flux thru any closed surface,

No isolated monopoles)

(cf)



(5-7)⋅ ⇒ 



∇×⋅  


⋅

⇒ : Ampere's circuital law (5-10)

(in nonmagnetic media)

 around any closed path

= current crossing the area bounded by the path

(Right-had rule for the directions)




⋅  

∇⋅   

∇⋅   






⋅  
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(e.g. 5-1)

Infinitely long straight wire carrying a steady current 

For a cylindrically symmetric field

(   ),

(5-10) ⇒

a) Inside the conductor ( ≤ )

⇒   


 ( ≤ ) (5-11)

b) Outside the conductor (≥ )

⇒   





( ≥ ) (5-12)

(e.g.) Infinitely long coaxial line carrying a steady current 

Axially symmetric (  ).

(5-10) ⇒





 ≤




≤≤








≤ ≤ (5-12)*

 ≤

(e.g.) Solenoid consisting of N turns of fine wire carrying a steady current 

(5-12)**

⇒



⋅      

   

⇒ 




  






⇒ 
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(e.g. 5-2)

Current-carrying toroidal coil ⇒ Toroidal-field coil in fusion devices

(5-13)

(e.g.) Infinite current sheet with a uniform surface current density 

(2)

(cf) Two parallel current sheets

(2)*

Note) Solenoid (5-12)** with    &    

   ×

 ⇒ ⇒

   

   
  

   









 




⋅         

   




 

⇒   










         



 



       





  












    ⇒   ⇒
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B. Vector Magnetic Potential 

1) Definition of 

The fundamental postulate (5-6) in magnetostatics: ∇⋅  

Null vector identity (2-109): ∇⋅∇×  

 can be found by defining an vector magnetic potential  such that

  ∇× (T) (5-14)

Note)  has no physical meaning, only intermediate mathematical step for .

2) Vector Poisson's equation

(5-14) in ∇ ×    (5-7) using ∇×∇×∇∇⋅∇:

∇× ∇×  

⇒ ∇    : vector Poisson's equation (5-20)

where the Lorentz condition (or Coulomb condition) is imposed as

∇⋅   (5-19)

Note) Lorentz gauge transformation:

(R = gauge function) (5-19)*

does not affect B in (5-14): Gauge invariance

(Proof)

Choose R in (5-19)* so that (Lorentz condition)

(5-19)**

3) Solution of the vector Poisson's equation

In view of the solution,    

 
 ′
 ′

  ′
′, of the scalar

Poisson's equation ∇      in electrostatics,

the vector Poisson's equation (5-20) has the solution

   


 ′
 ′
 ′

′ (Wb/m) (5-22)

Notes)    


 ′
 ′

  ′
′ for surface current density (5-22)*

   


 ′
 ′


′ for line current (5-22)**

The magnetic flux linking a surface  bounded by a contour  is

  


⋅ 


∇×⋅  


⋅ (Wb) (5-24)

(5-23) (5-14) Stokes's theorem



- 6 -

C. Biot-Savart Law

Determination of magnetic field due to a current-carrying wire:

For a thin wire,

 ′    ′    ′ (5-25)

Then, (5-22) becomes (5-22)**

   


 ′
 ′
  ′

(5-26)

∴   ∇×  ∇×






 ′
 ′
 ′ 


 
 

 ′

∇×  ′
 ′ 

 

 
 ′





 ′


∇× ′∇ ′
 × ′

 

 
 ′
 ′
  ′  × ′

⇒   

 
 ′
 ′
  ′

×′
 ′  (T) (5-31)

: Biot-Savart Law

   
 ′

 (5-32a)

where

  


 ′
  ′ × 

 


 ′
  ′ ×   ′

(5-32b,c)
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 ′

 ′

  ′

′
′
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D. Calculations of A and B

1) A current-carrying straight wire of a finite length 2L (e.g. 5-1)

a) By applying calculation of A

(5-26):

   


 ′
 ′
  ′

  


′



′
  ′

  


′
′ 

(5-14):

  ∇×

 ∇× 






 



   

 




′
′ 




   

  (5-34)

For ≫  (infinitely long wire),

(5-34) ⇒    





(5-35)≡(5-12)

For ≪  (short wire),

(5-34) ⇒   

 




(5-35)*

(cf) (3-36)   


⋅
for electric dipole :    →  in (5-35)*

b) By applying Biot-Savart law

 ′  ′ &    ′     ′ ,    ′   ′

⇒  ′ ×   ′    ′ in (5-32c)   


 ′
  ′ ×   ′

:

⇒    

 
′
′

in (5-32a)

⇒   




   

  




′
′    

 
≡ (5-34)

′  ′
  ′ 

  ′ 

   ′     ′

   ′   ′

   

 ′   ′
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2) Infinitely long coaxial line carrying a steady current 

Axially symmetric (  )

No edge effect (  )

∇   




 
  




 
 

 

 




 
 

∇     : vector Poisson's equation (5-20)

BVP in a current-free (  ) region (    ) ⇒ ∇  



 
    ①

BCs:

      ②



⋅    ⇒ 



∇×⋅   

⇒ 
 ⋅    

⇒ 





      ③

Integrating twice,①




  ⇒   


⇒       ④

in :② ④     ⑤

in :⑤ ④     


, ⑥

in :⑥ ③ 





      ⇒    

⇒       ⑦

in :⑦ ⑥  


 




Consequently,   ∇×  



  

  
 , (    )

: same result as (5-12)*
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3) Circular loop carrying a steady current 

Biot-Savart Law (5-31):

  

 
 ′
′
  ′

×′
 ′ 

 

  
 ′

′ 

×

     
 

  


 






′

 





′ 






  




′ ′  




 ′ ′  




′

∴     


  


(5-37)

For    (at the center of the loop),

      

 
(5-37)*

For  → ∞   → ∞ (at a distant point),

   

 

 

  



 

: magnetic dipole field (5-37)**

magnetic moment ≡   

E. Magnetic Dipole

1) Far field at a distance point of a small circular loop

At   ,

(5-26) ⇒

  

 
 ′


 ′

 

 






 ′ ′′

  

 






′
′

 

  






′
′

(5-40)

≡ 

 
 ′      

 ′  

′   
 ′

 ′



 ′





 ′  ′
   

  ′

   ′  ′ ′

 

    

         ′
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  ′ 



≅

 

  ′ 



≅

 

 ′  (5-41)

(5-41) in (5-40) :

  

  




   

 ′ ′′

⇒   
 
  



  
 
 


 (5-42)

  ∇×  ∇×

 





  







⇒   
 
  



     (5-43)

2) Magnetic dipole field

(5-42) ⇒   
 
 


 

 
×

(5-44)

(5-43) ⇒   
 


     (5-47)

where  ≡      : magnetic dipole moment (5-45)

(cf) Electric dipole Magnetic dipole

  


⋅


×


 
 




       


     

 ⇔ 

   ⇔   
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Homework Set 6

1) P.5-2

2) P.5-3

3) P.5-6

4) P.5-7

5) P.5-9


