2. Wave Propagation on Transmission Lines

A. General Solutions of Transmission-Line Equations

1) Wave solutions in the phasor domain

For uniform transmission lines with time-harmonic variation $e^{j\omega t}$, Transmission-line equations:

$$\frac{d^2 V(z)}{dz^2} - \gamma^2 V(z) = 0$$
(8-10)

$$\frac{d^2 I(z)}{dz^2} - \gamma^2 I(z) = 0 \tag{8-11}$$

where
$$\gamma = \alpha + j\beta = \sqrt{(R + j\omega L)(G + j\omega C)} = \sqrt{ZY}$$
 (m⁻¹) (8-12)

$$\alpha = Re[\sqrt{(R+j\omega L)(G+j\omega C)}] \qquad (Np/m) \qquad (8-12a)$$

$$\beta = Im[\sqrt{(R+j\omega L)(G+j\omega C)}] \qquad (rad/m) \qquad (8-12b)$$

General solutions of (8-10, 11):

$$V(z) = V_o^+ e^{-\gamma z} + V_o^- e^{+\gamma z} \quad (\forall)$$
(8-33, 62)

$$I(z) = I_o^+ e^{-\gamma z} + I_o^- e^{+\gamma z} \quad (A)$$
(8-34, 63)

FTW BTW(reflected wave)

where unknown amplitudes ($V_o^+, \, V_o^-, \, I_o^+, \, I_o^-$) are to be determined by BCs. Generally, V_o^+ , V_o^- , I_o^+ , I_o^- are complex quantities, like $V_o^{\pm} = |V_o^{\pm}| e^{j\phi^{\pm}}$ (8-33) in (8-8):

$$I(z) = \frac{\gamma}{(R+j\omega L)} \left[V_o^+ e^{-\gamma z} - V_o^- e^{+\gamma z} \right]$$
(8-34)*

2) Characteristic impedance

Comparison of (8-34)* with (8-34) leads to

$$\frac{V_o^+}{I_o^+} = -\frac{V_o^-}{I_o^-} = \frac{R + j\omega L}{\gamma} \equiv Z_o = R_o + jX_o$$
(8-35, 64)

Define the Characteristic Impedance Z_o of the transmission line by

$$Z_o = \frac{R + j\omega L}{\gamma} = \frac{\gamma}{G + j\omega C} = \sqrt{\frac{R + j\omega L}{G + j\omega C}} = \sqrt{\frac{Z}{Y}} \quad (\Omega) \quad (8-38)$$

Notes)

i) $Z_o \ {
m and} \ \gamma$ are independent of z and the length of the line, but

depends only on distributed parameters(R, L, G, C) and frequency (ω). ii) Phasor solution in terms of Z_o from (8-34)*:

$$I(z) = \frac{V_o^+}{Z_o} e^{-\gamma z} - \frac{V_o^-}{Z_o} e^{+\gamma z}$$
(8-34)**

B. Wave Characteristics on an Infinite Transmission Line

1) Wave solutions

For an infinite uniform transmission line, \exists no reflection waves (BTW). Then, $V(z) = V^+(z) = V_o^+ e^{-\gamma z}$ (8-36)

$$I(z) = I^{+}(z) = I_{o}^{+} e^{-\gamma z} = \frac{V_{o}^{+}}{Z_{o}} e^{-\gamma z}$$
(8-37)

or

$$v(z,t) = |V_o^+| e^{-\alpha z} \cos(\omega t - \beta z + \phi^+)$$
(8-36)*

$$i(z,t) = \frac{|V_o^+|}{|Z_o|} e^{-\alpha z} \cos\left(\omega t - \beta z + \phi^+ - \phi_{Z_o}\right)$$
(8-37)*

 \Rightarrow The transmission line is characterized by two fundamental properties, γ and Z_o which are specified by R, L, G, C, and ω .

2) Characteristics in the lossless line

For lossless (R = 0, G = 0) or high frequency $(\omega L \gg R, \omega C \gg G)$,

a) Propagation constant

$$(8-12) \implies \gamma = \alpha + j\beta = j\omega \sqrt{LC}$$
(8-39)

i.e.,
$$\alpha = 0$$
 (no attenuation), $\beta = \omega \sqrt{LC}$ (8-40, 41)

(cf) For lossless unbounded medium, $\gamma = jk$, $k = \beta = \omega \sqrt{\mu \epsilon}$ (7-4, 42)

b) Characteristic impedance

$$(8-38) \implies Z_o = R_o + jX_o = \sqrt{L/C}$$

$$(8-43)$$

i.e.,
$$R_o = \sqrt{L/C}$$
 (constant), $X_o = 0$ (8-44, 45)

(cf) For lossless unbounded medium, $\eta = \sqrt{\mu/\epsilon}$ (7-14)

c) Phase velocity

(8-41) in (7-50)
$$\Rightarrow u_p = \frac{\omega}{\beta} = \frac{1}{\sqrt{LC}}$$
 (constant: ind. of f) (8-42)

 \Rightarrow Distortionless (or nondispersive) line

(cf) For lossless unbounded medium,
$$u_p = \frac{1}{\sqrt{\mu\epsilon}} = \frac{c}{\sqrt{\mu_r\epsilon_r}}$$

3) Characteristics in the distortionless lossy line

For the (distortionless) condition of
$$\frac{R}{L} = \frac{G}{C}$$
 (8-46)

a) Propagation constant

(8-46) in (8-12)
$$\Rightarrow \gamma = \alpha + j\beta = \sqrt{C/L} (R + j\omega L)$$
 (8-47)

i.e.,
$$\alpha = R\sqrt{C/L}$$
 (attenuation), $\beta = \omega\sqrt{LC}$ (8-48, 49)

b) Characteristic impedance

$$(8-46) \text{ in}(8-38) \implies Z_o = R_o + jX_o = \sqrt{L/C}$$
(8-51)

i.e.,
$$R_o = \sqrt{L/C}$$
 (constant), $X_o = 0$ (8-52, 53)

c) Phase velocity

(8-49) in (7-50)
$$\Rightarrow$$
 $u_p = \frac{\omega}{\beta} = \frac{1}{\sqrt{LC}}$ (constant: ind. of f) (8-42)

 \Rightarrow Distortionless (or nondispersive) lossy line

4) Characteristics in the lossy line

For the lossy transmission line,

Distortionless (or nondispersive) line

Distorted (or dispersive) short line

Distorted (or dispersive) long line

For small losses ($\omega L \gg R$, $\omega C \gg G$)

In most practical transmission lines of good conductors and very low leakage dielectrics,

$$rac{G}{C} < rac{R}{L}$$
 in (8-51)* \Rightarrow $X_o < 0$ (capacitive reactance)

Therefore, from (8-36) and (8-37) ,

$$V(z) = Z_o I(z) = (R_o - j | X_o|) I(z)$$

$$\Rightarrow V(z) \text{ lags behind } I(z) \text{ by } \phi_{Z_o} = \tan^{-1} \frac{|X_o|}{R_o} V$$

Attenuation constant from power relation

From (8-36) and (8-37) ,

$$V(z) = V_o e^{-(\alpha + j\beta)z}, \qquad I(z) = \frac{V_o}{Z_o} e^{-(\alpha + j\beta)z}$$
 (8-54, 55)

Time-average power along the line (like time-ave Poynting vector 7-79):

$$P(z) = \mathscr{P}_{av}(z) = \frac{1}{2} Re[V(z)I^{*}(z)] = \frac{V_{o}^{2}e^{-2\alpha z}}{2} Re\left[\frac{1}{Z_{o}}\right]$$
$$= \frac{V_{o}^{2}e^{-2\alpha z}}{2} Re\left[\frac{1}{R_{o}+jX_{o}}\right] = \frac{V_{o}^{2}e^{-2\alpha z}}{2} Re\left[\frac{R_{o}-jX_{o}}{R_{o}^{2}+X_{o}^{2}}\right] = \frac{V_{o}^{2}R_{o}e^{-2\alpha z}}{2|Z_{o}|^{2}} (8-56)$$

From energy conservation law,

Decrease rate of P(z) along z = Time-ave. power loss per length $\partial P(z) = P(z)$

$$-\frac{\partial P(z)}{\partial z} = P_L(z) \quad \Rightarrow \quad 2\alpha P(z) = P_L(z),$$

from which the attenuation constant can be found by

$$\alpha = \frac{P_L(z)}{2P(z)} \quad (Np/m)$$
(8-57)

For lossy line, $P_L(z) = (1/2)(I^2R + V^2G) = (V_o^2/2|Z_o|^2)(R + G|Z_o|^2)e^{-2\alpha z}$ (8-58)

(8-58) in (8-57) :
$$\alpha = \frac{1}{2R_o} (R + G |Z_o|^2)$$
 (8-59)

For a low loss line with $Z_{o}\cong R_{o}=\sqrt{L/C}\,\text{,}$

(8-59) becomes
$$\alpha \simeq \frac{1}{2} (R \sqrt{C/L} + G \sqrt{L/C})$$
 (cf) (7-47) (8-60)

For a distortionless lossy line with $Z_{\!_o} = R_{\!_o} = \sqrt{L/C}$ using (8-46),

(8-60) yields
$$\alpha = R \sqrt{\frac{C}{L}}$$
 (8-61) = (8-48)

1) General solutions

FTW

For finite uniform transmission lines, \exists reflection waves (BTW). General solutions of (8-10, 11):

$$V(z) = V_o^+ e^{-\gamma z} + V_o^- e^{+\gamma z}$$
(8-33, 62)

$$I(z) = I_o^+ e^{-\gamma z} + I_o^- e^{+\gamma z} = Z_o^{-1} [V_o^+ e^{-\gamma z} - V_o^- e^{+\gamma z}]$$
(8-34, 63)

where $\frac{V_o^+}{I_o^+} = -\frac{V_o^-}{I_o^-} \equiv Z_o = R_o + jX_o$: characteristic impedance (8-64)

BCs : (8-62, 63) at the load end (z = l) using (8-64),

$$V_{L} = V_{o}^{+} e^{-\gamma l} + V_{o}^{-} e^{+\gamma l} , \qquad I_{L} = \frac{V_{o}^{+}}{Z_{o}} e^{-\gamma l} - \frac{V_{o}^{-}}{Z_{o}} e^{+\gamma l}$$
(8-66, 67)

Solution of (8-66, 67) in (8-62, 63) with change of variable z' = l - z,

$$V(z') = \frac{I_L}{2} [(Z_L + Z_o)e^{\gamma z'} + (Z_L - Z_o)e^{-\gamma z'}] = \frac{I_L}{2} (Z_L + Z_o)e^{\gamma z'} [1 + \Gamma e^{-2\gamma z'}] (8-72, 87)$$
$$= I_L (Z_L \cosh \gamma z' + Z_o \sinh \gamma z')$$
(8-74)

$$I(z') = \frac{I_L}{2Z_o} [(Z_L + Z_o)e^{\gamma z'} - (Z_L - Z_o)e^{-\gamma z'}] = \frac{I_L}{2Z_o} (Z_L + Z_o)e^{\gamma z'} [1 - \Gamma e^{-2\gamma z'}] (8-73, 89)$$
$$= \frac{I_L}{Z_o} (Z_L \sinh \gamma z' + Z_o \cosh \gamma z')$$
(8-75)

where $\Gamma \equiv \frac{V_o^-}{V_o^+} = \frac{Z_L - Z_o}{Z_L + Z_o} = |\Gamma| e^{j\theta_{\Gamma}} = \text{(voltage) reflection coeff. of } Z_L \quad (8-88)$: complex value with $|\Gamma| \le 1$

Notes)

i) Current reflection coeff.
$$\equiv \frac{I_o^-}{I_o^+} = -\Gamma$$
 (out of phase)

ii) For $Z_L = Z_o$, $\Gamma = 0$ and $V_o^- = 0$ (no reflection wave)

 \Rightarrow The transmission line is said to be matched to the load.

- iii) For an open-circuit line $(Z_L \rightarrow \infty)$, $\Gamma = 1$ and $V_o^- = V_o^+$ (in phase)
- iv) For a short-circuit line $(Z_L = 0)$, $\Gamma = -1$ and $V_o^- = -V_o^+$ (out of phase)
- v) For $Z_L \neq Z_o$, \exists standing voltage and current waves along the line,

standing-wave ratio (SWR):
$$S = \frac{|V_{\text{max}}|}{|V_{\text{min}}|} = \frac{1+|\Gamma|}{1-|\Gamma|}$$
 or $20 \log_{10} S$ in (dB) (8-90)

$$\Rightarrow \quad |\Gamma| = \frac{S-1}{S+1} \qquad (8-91)$$

$$|\Gamma| = 0: matched \qquad |\Gamma| = 1: o.c. \text{ or } s.c.$$

vi) For a lossless($\alpha = 0, X_o = 0; \gamma = j\beta, Z_o = R_o$) line, (8-87, 89) become

$$V(z') = \frac{I_L}{2} (Z_L + R_o) e^{j\beta z'} \left[1 + |\Gamma| e^{j(\theta_{\Gamma} - 2\beta z')} \right]$$
(8-92)

$$I(z') = \frac{I_L}{2R_o} (Z_L + R_o) e^{j\beta z'} \left[1 - |\Gamma| e^{j(\theta_{\Gamma} - 2\beta z')} \right]$$
(8-93)

2) Input impedance

Impedance Z(z') looking toward the load end at z' from the load:

$$Z(z') \equiv \frac{V(z')}{I(z')} = Z_o \frac{Z_L + Z_o \tanh \gamma z'}{Z_o + Z_L \tanh \gamma z'} = Z_o \frac{1 + \Gamma e^{-2\gamma z'}}{1 - \Gamma e^{-2\gamma z'}} \quad (\Omega)$$

$$(8-77)$$

$$\frac{(8-74)}{(8-75)} \qquad \frac{(8-87)}{(8-89)}$$

Input impedance Z_i looking into the line from the source at z' = l:

$$Z_{i} \equiv \frac{V_{i}}{I_{i}} = (Z)_{\substack{z'=l\\z=0}}$$

$$= Z_{o} \frac{Z_{L} + Z_{o} \tanh \gamma l}{Z_{o} + Z_{L} \tanh \gamma l} = Z_{o} \frac{1 + \Gamma e^{-2\gamma l}}{1 - \Gamma e^{-2\gamma l}} \quad (8-78)$$

Note) When $Z_L = Z_o$, $Z_i = Z_o$ irrespective of the length l

 \Rightarrow The transmission line is matched

For a lossless($\alpha=0,~X_{o}=0~;~\gamma=j\beta,~Z_{o}=R_{o}$) line, (8-78) become

$$Z_{i} = R_{o} \frac{Z_{L} + jR_{o} \tan\beta l}{R_{o} + jZ_{L} \tan\beta l}$$
(8-79)

From the standpoint of the generator circuit,

$$V_{i} = Z_{i}I_{i} = \frac{Z_{i}V_{g}}{Z_{g} + Z_{i}} = V_{g} - I_{i}Z_{g}$$
(8-94)

If $Z_L \neq Z_o$ but $Z_g = Z_o$, reflected at the load and ending at the generator If $Z_L \neq Z_o$ but $Z_g \neq Z_o$, reflected at both the load and generator repeating indefinitely

3) Standing waves

For lossless lines ($\gamma\!=\!j\beta),$ (8–62, 63) with (8–88) becomes

$$V(z') = V_o^+ (e^{j\beta z'} + \Gamma e^{-j\beta z'})$$
(8-62)*

$$I(z') = \frac{V_o^+}{Z_o} \left(e^{j\beta z'} - \Gamma e^{-j\beta z'} \right)$$
(8-63)*

Polar expression of (8-88) in (8-62)* using $|V(z')| = [V(z')V^*(z')]^{1/2}$ gives

$$\begin{aligned} |V(z')| &= \{ [V_o^+(e^{j\beta z'} + |\Gamma|e^{j\theta_{\Gamma}}e^{-j\beta z'})] \cdot [(V_o^+)^* e^{-j\beta z'} + |\Gamma|e^{-j\theta_{\Gamma}}e^{j\beta z'})] \}^{-1/2} \\ &= |V_o^+|[1 + |\Gamma|^2 + |\Gamma|(e^{j(2\beta z' - \theta_{\Gamma})} + e^{-j(2\beta z' - \theta_{\Gamma})})]^{1/2} \\ &= |V_o^+|[1 + |\Gamma|^2 + 2|\Gamma|\cos\left(2\beta z' - \theta_{\Gamma}\right)]^{1/2} \quad (8-62)^{\star\star} \end{aligned}$$

⇒ Standing-wave pattern resulted from interference of incid. and reflec. waves

 $|V|_{\max} = |V_o^+|(1+|\Gamma|) \tag{3}$ when $\cos(2\beta z'_{\max} - \theta_{\Gamma}) = 1 \implies 2\beta z'_{\max} - \theta_{\Gamma} = 2n\pi$ $\left(\begin{array}{c} \theta_{\Gamma} & n \end{array}\right) \qquad (n = 1, 2, \dots, \text{ for } \theta_{\Gamma} < 0$

$$\Rightarrow z'_{\max} = (\theta_{\Gamma} + 2n\pi)/2\beta = \left(\frac{\delta T}{4\pi} + \frac{\pi}{2}\right)\lambda \text{ for } \begin{cases} n = 1, 2, \dots, \text{ for } \theta_{\Gamma} < 0 \\ n = 0, 1, 2, \dots, \text{ for } \theta_{\Gamma} > 0 \end{cases}$$
(4)
$$V|_{\min} = |V_{o}^{+}|(1 - |\Gamma|) \qquad -\pi \le \theta_{\Gamma} \le \pi, \quad \beta = 2\pi/\lambda$$
(5)
when $\cos\left(2\beta z'_{\min} - \theta_{\Gamma}\right) = -1 \Rightarrow 2\beta z'_{\min} - \theta_{\Gamma} = (2n+1)\pi$

$$\begin{array}{l} \text{men } \cos\left(2\beta z'_{\min} - \theta_{\Gamma}\right) = -1 \implies 2\beta z'_{\min} - \theta_{\Gamma} = (2n+1)\pi \\ \Rightarrow z'_{\min} = \left(\frac{\theta_{\Gamma}}{4\pi} + \frac{2n+1}{4}\right)\lambda \qquad n = 0, 1, 2, \dots \end{array}$$

$$\tag{6}$$

1st minimum position
$$(n=0)$$
: $l_{\min} = \left(\frac{\theta_{\Gamma}}{\pi} + 1\right) \frac{\lambda}{4}$ (7)

1st maximum position(n = 0 or 1): $l_{\max} = \frac{\theta_{\Gamma} \lambda}{4\pi} \text{ or } \frac{\theta_{\Gamma} \lambda}{4\pi} + \frac{\lambda}{2}$ (8) Using $|z'_{\min} - z'_{\max}| = \lambda/4$,

$$l_{\min} = \begin{cases} l_{\max} + \lambda/4 & \text{for } l_{\max} < \lambda/4 \\ l_{\max} - \lambda/4 & \text{for } l_{\max} \ge \lambda/4 \end{cases}$$
(9)

Determination SWR, $|\Gamma|$, θ_{Γ} and Z_L by a slotted-line probe:

Measurements of $~|V_{\rm max}|,~|V_{\rm min}|,~{\rm and}~l_{\rm min}$

$$\Rightarrow \quad \text{Determine } S \text{ and } |\Gamma| \text{ from } S = \frac{|V_{\text{max}}|}{|V_{\text{min}}|} (8-90) \text{,} \quad |\Gamma| = \frac{S-1}{S+1} (8-91)$$

$$\theta_{\Gamma} \text{ from } l_{\text{min}} = \left(\frac{\theta_{\Gamma}}{\pi} + 1\right) \frac{\lambda}{4} (7)$$

$$\Gamma \text{ and } Z_{L} \text{ from } \Gamma = |\Gamma| e^{j\theta_{\Gamma}} = \frac{Z_{L} - Z_{o}}{Z_{L} + Z_{o}} (8-88)$$

(e.g. 8-5) For a lossless terminated transmission line,

given
$$Z_0 = R_o = 50 (\Omega)$$
, $S = 3$, $l_{\min} = 5$ (cm), volt. min. dist.= 20 (cm)
a) $\Gamma = ?$ and b) $Z_I = ?$

a)
$$\lambda = 2 \times 0.2 = 0.4$$
, $|\Gamma| = (3-1)/(3+1) = 0.5$
 $l_{\min} = \left(\frac{\theta_{\Gamma}}{\pi} + 1\right) \frac{\lambda}{4} \implies \theta_{\Gamma} = \pi (4l_{\min}/\lambda - 1) = \pi (4 \times 0.05/0.4 - 1) = -\pi/2$
 $\therefore \underline{\Gamma} = |\Gamma| e^{j\theta_{\Gamma}} = 0.5 e^{-j\pi/2} \underline{= -j0.5}$
b) $\Gamma = \frac{Z_L - Z_o}{Z_L + Z_o} \implies -j0.5 = \frac{Z_L - 50}{Z_L + 50} \implies \underline{Z_L} = 30 - j40$ (Ω)

- 4) Characteristics in lossless finite lines ($\alpha = 0, X_o = 0$; $\gamma = j\beta, Z_o = R_o$)
- a) Open-circuited line ($Z_L \rightarrow \infty$, $\Gamma = 1, S \rightarrow \infty$)

$$Z_{ioc} \longrightarrow Z_{o} = R_{o} \qquad Z_{L} \rightarrow \infty \text{ (practically for } f < f_{UHF} \text{)}$$

$$Q_{L} \longrightarrow Q_{L} \rightarrow \infty \text{ (practically for } f < f_{UHF} \text{)}$$

$$(8-62)\star \implies V_{oc}(z') = V_o^+(e^{j\beta z'} + e^{-j\beta z'}) = 2V_o^+\cos\beta z' \qquad (8-62)\star_{oc}$$

$$(8-63)\star \implies I_{oc}(z') = \frac{V_o^+}{R_o} \left(e^{j\beta z'} - e^{-j\beta z'} \right) = \frac{2jV_o^+}{R_o} \sin\beta z' \tag{8-63}\star_{oc}$$

$$(8-79) \implies Z_{ioc} = \frac{V_{oc}(l)}{I_{oc}(l)} = jX_{ioc} = \frac{-jR_o}{\tan\beta l} = -jR_o \cot\beta l \text{ (purely reactive)} \quad (8-80)$$

For very shot line ($\beta l = 2\pi l/\lambda \ll 1$),

$$Z_{ioc} = jX_{ioc} \simeq \frac{-jR_o}{\beta l} = -j\frac{\sqrt{L/C}}{\omega\sqrt{LC}l} = \frac{1}{2\omega}\frac{1}{\omega cl}$$
: capacitively reactive (8-81)

b) Short-circuited line $(Z_L = 0, \Gamma = -1, S \rightarrow \infty)$

$$Z_{ioc} \longrightarrow Z_{o} = R_{o} \qquad Z_{L} = 0$$
short circuit
$$z' \leftarrow 0$$

$$(8-62)\star \implies V_{oc}(z') = V_o^+ (e^{j\beta z'} - e^{-j\beta z'}) = 2jV_o^+ \sin\beta z'$$
(8-62)*_{sc}

$$(8-63)^{\star} \implies I_{oc}(z') = \frac{V_o^+}{R_o} \left(e^{j\beta z'} + e^{-j\beta z'} \right) = \frac{2V_o^+}{R_o} \cos\beta z' \qquad (8-63)^{\star} \mathrm{sc}$$

$$(8-79) \implies Z_{isc} = \frac{V_{sc}(l)}{I_{sc}(l)} = jX_{isc} = jR_o \tan\beta l = jR_o \tan\left(\frac{2\pi l}{\lambda}\right)$$

$$(8-82)$$

 \Rightarrow purely reactive (inductive or capacitive depending on aneta l)

 \Rightarrow Proper choice of l of s.c. line can substitute for inductors and capacitors. For very shot line ($\beta l=2\pi l/\lambda\ll 1),$

$$\begin{split} Z_{isc} &= j X_{isc} \cong j R_o \beta l = j \sqrt{L/C} \omega \sqrt{LC} l = j \omega L \, l \ : \ \text{inductively reactive} \ \ \text{(8-83)} \\ \text{For} \ \beta l = \pi/2, \ i.e., \ l = \lambda/4 \ , \ \ Z_{isc} \to \infty \end{split}$$

 \Rightarrow A s.c. quarter-wavelength line is effectively an o.c. line.

Load condition	General case ($\alpha \neq 0$)	Lossless case ($\alpha = 0$)
Any value of load Z_L	$Z_{t} = Z_{0} \frac{Z_{L} + Z_{0} \tanh \gamma x}{Z_{0} + Z_{L} \tanh \gamma x}$	$Z_{\rm I} = Z_0 \frac{Z_L + jZ_0 \tan \beta x}{Z_0 + jZ_L \tan \beta x}$
Open-circuited line $(Z_L = \infty)$	$Z_{\rm f} = Z_0 \coth \gamma x$	$Z_{i} = -jZ_{0} \cot \beta x$
Short-circuited line ($Z_L = 0$)	$Z_{0} = Z_{0} \tanh \gamma x$	$Z_{1} = jZ_{0} \tan \beta x$

Input impedance of terminated transmission line[†]

[†] $\gamma = \alpha + j\beta$, where α = attenuation constant in nepers per meter, $\beta = 2\pi/\lambda$ = phase constant in radians per meter, and λ = wavelength.

c) Half-wavelength lossless line $(l = n\lambda/2)$

For
$$l = n\lambda/2$$
 $(n = 1, 2, 3,)$, $\tan\beta l = \tan\left(\frac{2\pi l}{\lambda}\right) = \tan n\pi = 0$ in (8-79):
 $Z_i = Z_L$ for $l = n\lambda/2$ $(n = 1, 2, 3,)$ (10)

- ⇒ A half-wave lossless line transfers a load impedance to the generator end without change.
- \Rightarrow The generator induce the same V and I across the load as when the line does not exist there.

d) Quater-wavelength lossless line $(l = \lambda/4 + n\lambda/2)$

For $l = \lambda/4 + n\lambda/2$ (n = 0, 1, 2, 3,),

$$\tan\beta l = \tan\left(\frac{2\pi l}{\lambda}\right) = \tan\left(\pi/2 + n\pi\right) \to \infty \quad \text{in (8-79):}$$
$$Z_{i} = \frac{Z_{o}^{2}}{Z_{L}} \quad \text{for} \quad l = \lambda/4 + n\lambda/2 \quad (n = 0, 1, 2, 3,) \tag{8-111}$$

 \Rightarrow Quater-wave transformer to eliminate reflections at the load terminal.

If $Z_{\!i} = Z_{\!01}$, no reflections at the terminal AA'.

By (8-111), $Z_{01} = Z_o^2/Z_L \implies Z_o = \sqrt{Z_{01}Z_L}$ (11) Therefore, if a quarter-wave lossless line having a characteristic impedance of $Z_o = \sqrt{Z_{01}Z_L}$ is inserted between the feedline and the load, there are no reflections at the terminal and all the incident power is transferred into the load. e) Determination of $Z_o \ {
m and} \ \gamma$ by input impedance measurements

From (8-78)
$$Z_i(l) = Z_o \frac{Z_L + Z_o \tanh \gamma l}{Z_o + Z_L \tanh \gamma l}$$
,
 $Z_{ioc} = Z_o \coth \gamma l \text{ for } Z_L \rightarrow \infty \text{ and } Z_{isc} = Z_o \tanh \gamma l \text{ for } Z_L = 0$ (8-84a, b)
 $\Rightarrow Z_o = \sqrt{Z_{ioc} Z_{isc}}$ (Q) (8-85)

$$\gamma = \frac{1}{l} \tanh^{-1} \sqrt{\frac{Z_{isc}}{Z_{ioc}}} \quad (m^{-1})$$
(8-86)

d) Power flow along the transmission lines

Time-average power flow along the line by analogy with (7-79),

$$P(z') = \mathscr{P}_{av}(z') = \frac{1}{2} \operatorname{Re}[V I^*]$$
(12)

For lossless lines $(\gamma = j\beta)$,

$$V(z') = V_o^+ (e^{j\beta z'} + \Gamma e^{-j\beta z'})$$
(8-62)*

$$I(z') = \frac{V_o^+}{Z_o} \left(e^{j\beta z'} - \Gamma e^{-j\beta z'} \right)$$
(8-63)*

At the load (z'=0), the incident and reflected waves are

$$V_i(0) = V_o^+, \qquad I_i(0) = V_o^+ / Z_o$$
 (13)

$$V_r(0) = \Gamma V_o^+, \quad I_i(0) = -\Gamma V_o^+ / Z_o$$
(14)

(13), (14) in (12) :

$$P_{i} = \frac{1}{2} Re[V_{o}^{+}V_{o}^{+*}/Z_{o}] = \frac{|V_{o}^{+}|^{2}}{2Z_{o}}$$
(12)

$$P_{r} = \frac{1}{2} Re \left[\Gamma V_{o}^{+} \left(-\Gamma^{*} V_{o}^{+*} / Z_{o} \right) \right] = -|\Gamma|^{2} \frac{|V_{o}^{+}|^{2}}{2Z_{o}}$$
(12)

Net average power delivered to the load :

$$P = P_i + P_r = \frac{|V_o^+|^2}{2Z_o} (1 - |\Gamma|^2) \qquad (cf) \ (7-104) \tag{15}$$