
Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-1

Chapter 4: Behavioral Modeling

Prof. Soo-Ik Chae

중간고사1 : 4/10 (토)

중간고사2 : 5/15 (토)

기말고사:    6/12 (토)



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-2

Objectives

After completing this chapter, you will be able to:

 Describe the behavioral modeling structures

 Describe procedural constructs

 Understand the features of initial blocks

 Understand the features of always blocks

 Distinguish the differences between blocking and 

nonblocking assignments

 Understand the features of timing controls

 Understand the features of selection constructs

 Understand the features of loop constructs



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-3

Behavioral Modeling Structures

 Assignments:

 continuous assignment (assign expression) (Dataflow modeling)

 blocking (procedural) assignment  (=)

 nonblocking (procedural) assignment (<=)

 procedural continuous assignment
• assign … deassign

• force … release

 Selection structures: 

 if … else

 case (case, casex, casez)

 Iterative structures:

 repeat

 for

 while

 forever



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-4

Procedural Constructs

 Procedural Constructs

 initial statements are used to initialize variables and set 

values into variables or nets.

 always statements are used to model the continuous 

operations required in the hardware modules.

 Each always statement corresponds to a piece of logic 

circuit.

 initial and always statements:

• Each represents a separate activity flow.

• Each activity starts at simulation 0.

• They cannot be nested.



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-5

Procedural Constructs

 All procedures in the Verilog HDL are specified within one 

of the following four statements:

 initial construct

 always construct

 Task

 Function

 Tasks and functions are procedures that are enabled from 

one or more places in other procedures.



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-6

initial Statements (p. 143 in LRM)

 An initial block

 is composed of all statements inside an initial statement. 

 executes exactly once during simulation.

 is used to initialize signals, or monitor waveforms, etc.

 starts to execute concurrently at simulation time 0 and 

finishes execution independently when multiple initial 

blocks exist.
reg  x, y, z;

initial

begin // complex statement

x = 1`b0;  y = 1`b1;  z = 1`b0;

#10     x = 1`b1;  y = 1`b1;  z = 1`b1;

end

initial x = 1`b0;  // single statement



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-7

initial Statements

 Combined variable declaration and initialization

 Combined port/data declaration and initialization

reg  clk;              // regular declaration

initial clk = 0;

reg clk = 0;         // can be used only at module level

module adder(x, y, c , sum, c_out); 

input [3:0]           x, y;

input                    c_in;

output reg [3:0]   sum = 0;

output reg            c_out = 0;

module adder(input [3:0]           x, y,

input                    c_in,  

output reg [3:0]   sum = 0,

output reg            c_out = 0

);  // ANSI C style



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-8

always Statements (p. 144 in LRM)

 An always block

 consists of all behavioral statements inside an always 

statement. 

 starts at simulation time 0.

 executes continuously during simulation.

 is used to model a block of activity being repeated 

continuously in a digital circuit.

Q: What will be happened in the following statement?

reg  clock;                            // a clock generator

initial  clock = 1`b0;            // initial clock = 0

always  #5 clock = ~clock;  // period = 10

always  begin 

initial  clock = 1`b0; 

#5 clock =  ~clock;  

end
Initial and always blocks cannot be nested.



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-9

Procedural Assignments

 The bit widths of both left-hand and right-hand sides need 

not be the same.

 The right-hand side is truncated if it has more bits.

• by keeping the least significant bits

 The right-hand side is filled with zeros in the most 

significant bits when it has fewer bits.

 Two types of procedural assignments:

 blocking: using the operator “=“

 nonblocking: using the operator “<=“



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-10

Procedural Assignments

 Procedural assignments

 must be placed inside initial or always blocks. 

 update values of variable data types (reg, integer, real, or time.) under 
the control of the procedural flow constructs that surround them.

variable_lvalue = [timing_control] expression

[timing_control] variable_lvalue = expression

variable_lvalue <= [timing_control] expression

[timing_control] variable_lvalue <= expression

 variable_lvalue can be:

• a reg, integer,

• real, time, or 

• a memory word, 

• a bit select, a part select, a concatenation of any of the above.



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-11

Blocking Assignments

 Blocking assignments

 are executed in the order they are specified.

 use the “=“ operator.

// an example illustrating blocking assignments

module blocking;

reg  x, y, z;

// blocking assignments

initial begin

x = #5 1'b0;    // x will be assigned 0 at time 5

y = #3 1'b1;    // y will be assigned 1 at time 8

z = #6 1'b0;    // z will be assigned 0 at time 14

end

endmodule



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-12

Blocking Assignments

module twos_adder_behavioral(x, y, sub_or_add, sum, c_out); 

// I/O port declarations

input  [3:0] x, y;                // declare as a 4-bit array

input  sub_or_add; //  add if 0, subtract if 1

output reg  [3:0] sum;       // declare as a 4-bit array

output reg        c_out;

reg [3:0]        t;           // outputs of xor gates

// specify the function of a two's complement adder

always @(x, y, sub_or_add) begin // define two‟s complement adder function

t = y ^ {4{sub_or_add}}; // What is wrong with:  t = y ^ c_in ?

{c_out, sum} = x + t + sub_or_add;

end

endmodule 

A reg variable doe not 

correspond to a memory 

element after synthesizing 

the circuit.

Q: What will happen if we change blocking operators (=) into nonblocking 

operators (<=)? 



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-13

Nonblocking Assignments (p. 118 in LRM)

 Nonblocking assignments

 are executed without blocking the other statements.

 use the <= operator.

 are used to model several concurrent data transfers.

// an example illustrating nonblocking assignments

module nonblocking;

reg  x, y, z;

// nonblocking assignments

initial begin

x <= #5 1'b0;  // x will be assigned 0 at time 5

y <= #3 1'b1;  // y will be assigned 1 at time 3

z <= #6 1'b0;  // z will be assigned 0 at time 6

end

endmodule



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-14

Nonblocking Assignments

// an example of right-shift register without reset.

module shift_reg_4b(clk, din, qout);

input  clk;

input  din;

output reg [3:0] qout;

// the body of a 4-bit shift register

always @(posedge clk) 

qout <= {din, qout[3:1]};  // Right shift

endmodule

Q: What will happen if we change nonblocking operator (<=) into blocking operator (=)? 

Answer: same as before. Why ?



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-15

Nonblocking Assignments

// an example of right-shift register without reset.

module shift_reg_4b(clk, din, qout);

input  clk;

input  din;

output reg [3:0] qout;

// the body of a 4-bit shift register

always @(posedge clk) 

qout = {din, qout[3:1]};  // Right shift

endmodule

fork // vector blocking assignment: parallel assignment
qout[3]=din; 

qout[2]=qout[3]; 

qout[1]=qout[2]; 

qout[0]=qout[1]; 

join



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-16

Right-shift register with reset

// an example of right-shift register 

module shift_reg_4b(clk, din, qout, dout, reset);

input  clk, reset;

input  din;

output dout;

output reg [3:0] qout;

// the body of a 4-bit shift register

assign dout = qout[0];

always @(negedge reset or posedge clk) 

begin

if (reset=1b‟0) qout <= 4‟b0;

else qout <= {din, qout[3:1]};  // Right shift

end

endmodule



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-17

Race Conditions

// using blocking assignment statements

always @(posedge clock)   // has race condition

x = y;

always @(posedge clock)

y = x;

// using nonblocking assignment statements

always @(posedge clock)   // has no race condition

x <= y;

always @(posedge clock)

y <= x;

Note that: In simulation stage, three steps are performed for nonblocking statements:

1. Read the values of all right-hand-side variables;

2. Evaluate the right-hand-side expressions and store in temporary variables;

3. Assign the values stored in the temporary variables to the left-hand-side variables.



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-18

Blocking vs. Nonblocking Assignments

// shift register module example ---a correct implementation

module shift_reg_nonblocking(clk, sin, qout);

input  clk; 

input  sin; // serial data input

output reg [3:0] qout;

// The body of a 4-bit shift register

always @(posedge clk)

begin                             // using nonblocking assignments

qout[0] <= sin; 

qout[1] <= qout[0];    // better to use qout <= {qout[2:0], sin};

qout[2] <= qout[1];

qout[3] <= qout[2];

end

endmodule

qout[3:0]

qout[3:0]
[3:0]

clk

sin

[2:0] [3:0]
Q[3:0]D[3:0]



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-19

Nonblocking Assignments

// shift register module example --- an correct implementation

module shift_reg_blocking(clk, sin, qout);

input  clk; 

input  sin; // serial data input 

output reg [3:0] qout;

// The body of a 4-bit shift register

always @(posedge clk)

qout <= {qout[2:0], sin}; // using blocking assignments
endmodule

qout[3:0]

qout[3:0]
[3:0]

clk

sin

[2:0] [3:0]
Q[3:0]D[3:0]



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-20

Blocking Assignments

// shift register module example --- an correct implementation

module shift_reg_blocking(clk, sin, qout);

input  clk; 

input  sin; // serial data input 

output reg [3:0] qout;

// The body of a 4-bit shift register

always @(posedge clk)

begin      // using blocking assignments

qout[3] = qout[2];

qout[2] = qout[1];

qout[1] = qout[0];

qout[0] = sin;

end

endmodule

// four bit-select blocking 

assignments are sequentially executed.

qout[3:0]

qout[3:0]
[3:0]

clk

sin

[2:0] [3:0]
Q[3:0]D[3:0]



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-21

Blocking Assignments

// shift register module example --- an incorrect implementation

module shift_reg_blocking(clk, sin, qout);

input  clk; 

input  sin; // serial data input 

output reg [3:0] qout;

// The body of a 4-bit shift register

always @(posedge clk)

begin      // using blocking assignments

qout[0] = sin;

qout[1] = qout[0];

qout[2] = qout[1];

qout[3] = qout[2];

end

endmodule
qout[3:0]

qout[3:0]
[3:0]

clk

sin

[3:0]
Q[3:0]D[3:0]

// four bit-select blocking 

assignments are sequentially executed.

Reverse 

order



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-22

Blocking Assignments

// shift register module example --- an correct implementation

module shift_reg_blocking(clk, sin, qout);

input  clk; 

input  sin; // serial data input 

output reg [3:0] qout;

// The body of a 4-bit shift register

always @(posedge clk)

qout = {qout[2:0], sin}; // using blocking assignments
endmodule

// a vector blocking assignment is 

currently executed bit by bit.

qout[3:0]

qout[3:0]
[3:0]

clk

sin

[2:0] [3:0]
Q[3:0]D[3:0]

Note that: When using qout = {qout[2:0], sin} instead of qout <= {qout[2:0], sin}, 

the result will not be different.



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-23

Blocking vs. Nonblocking Assignments

 Consider the difference between the following two always 

blocks. Assume that the value of count is 1 and finish is 0

before entering the always block at time n.

always @(posedge clk) begin: block_a

count = count – 1;

if (count == 0) finish = 1;

end

always @(posedge clk) begin: block_b

count <= count – 1;

if (count == 0) finish <= 1;

end

Result:

@[n,n+p):  count=0, finish = 1. 

@[n+p,n+2p):  count=-1, finish=1.

Compare with Figure 4.3 (p. 116 in Lin) 

Result:

@[n,n+p): count=0, finish = 0. 

@[n+p,n+2p): count=-1, finish=1.

p p

@posedge(clk)



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-24

Coding Style for Blocking / Nonblocking Assignments

 Coding style: In the always block

 Use nonblocking operators (<=) when it is a piece of 

sequential logic; 

• Otherwise, the result of RTL behavioral may be inconsistent with 

that of gate-level.

 Use blocking operators (=) when it is a piece of 

combinational logic.



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-25

Procedural  continuous assignments

 The assign statement shall 

override all procedural 

assignments to a variable. 

 The deassign statement shall end

a procedural assignment  to a 

variable. 

 Asynchronous clear/preset D-

type edge-triggered flip-flop

module dff (q, d, clear, preset, clock);

output q;

input d, clear, preset, clock;

req q;

always @ (clear or preset)

if (!clear)

assign q = 0;

else if (!preset)

assign  q = 1;

else 

deassign q;

always @ (posedge clock)

q = d;

endmodule;



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-26

Procedural  continuous assignments

 The force/release statements 

have a similar effect to the 

assign/deassign pair, but a force 

can be applied to nets as well as 

variables.

 The LHS of the assignment 

cannot be a memory word (array 

reference) or a bit-select or a 

part-select of a vector variable

 force until release

module test;

reg a, b, c, d;

wire e;

and and1(e, a, b, c);

initial begin

$monitor (“%d d=%b,e=%b”,$stime, d, e);

a=1; b=0; c=1;

#10;

force d = (a | b | c);

force e = (a | b | c);

#10;

release d;

release e;

#10;

$finish;

end;

endmodule;



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-27

Timing Controls

 Timing controls specify the simulation time at which 
procedural statements will be executed.

 In Verilog HDL, if there are no timing control statements, the 
simulation time will not advance.

 Timing Controls

 Delay timing control

• Delay control (#)

• Intra assignment delay control (#)

 Event timing control

• Edge-triggered event control

o Named event control ( event declaration, event triggering(->) )

o Event control (@)

o Event or operator (,)

• Level-sensitive event control (wait)



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-28

Delay Control



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-29

Delay Control

 Delay control

 A non-zero delay is specified to the left of a procedural 

assignment.

 It defers the execution of the entire statement.

reg  x, y;

integer count;

// The “<=” operators in the following statements can be replaced with “=”

// without affecting the results.

#25 y <= ~x;                  // execute at time 25

#15 count <= count  + 1;      // execute at time 40



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-30

Intra-Assignment Delay Control

 Intra-assignment delay control

 A non-zero delay is specified to the right of the 

assignment operator.

 It defers the assignment to the left-hand-side variable.

y = #25 ~x;              // evaluate at time 0 but assign to y at time 25

count = #15 count  + 1;   // evaluate at time 25 but assign to count at time 40

y <= #25 ~x;              // evaluate at time 0 but assign to y at time 25

count <= #15 count  + 1;   // evaluate at time 0 but assign to count at time 15



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-31

Delay Control

module

reg [1:0] a, b;

initial begin

a = „b1;

b = „b0;

end

always begin

#50 a <= ~a;

end 

always begin

#100 b<= ~b;

end 

endmodule

begin-end block: sequential block



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-32

Delay Control

#25; //wait 25 time units

x= a + 6; // execute immediately

#25 x = a +6; // wait 25 time units and execute

reg x, y, z;

integer count;

initial  begin

y<= ~x; // execute at time 0

#10 z = z +1; // execute at time 10

count <= count + 1; // execute at time 10

end



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-33

Event Timing Control

 Event Timing Control

 An event is the change in the value on a variable or a net. 

 The execution of a procedural statement can be 

synchronized with an event. 

 Two types of event control

 Edge-triggered event control

• Named event control

• Event or operator

 Level-sensitive event control



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-34

Edge-Triggered Event Control

 Edge-triggered event control

 The symbol @ is used to specify such event control.

• @(posedge clock): at the positive edge 

• @(negedge clock): at the negative edge

always @(posedge clock)  begin

reg1 <= #25 in_1;                                   // intra-assignment delay control

reg2 <= @(negedge clock) in_2 ^ in_3;  // edge-triggered event control

reg3 <= in_1;                                           // no delay control

end



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-35

Detecting posedge and negedge



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-36

Named Event Control

 A named event triggering scenario consists of three steps

1. (declaration) is declared with the keyword event.

• does not hold any data.

2. (triggering) triggered by the symbol ->. 

3. (recognition) recognized by the symbol @.

event received_data;  // declare an event

// trigger event received_data

always @(posedge clock)  if (last_byte) -> received_data;  

always @(received_data) begin 

….. 

end  // execute event-dependent operations



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-37

Event or Control

 Event or control

 uses the keyword or to specify multiple triggers.

 can be replaced by the “,”.

 can use @* or @(*) to mean a change on any signal.

always @(posedge clock or negative reset_n)  // event or control

begin

if (!reset_n) q <= 1`b0;    // asynchronous reset.

else              q <= d;

end



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-38

Level-Sensitive Event Control

 Level-sensitive event control

 uses the keyword wait.

 If the condition is false, the procedural statements 

following the wait statement shall remain blocked until 

that condition becomes true.

always 

wait (count_enable) count = count –1 ;

always 

wait (!enable) #10 a = b ;

#10 c  = d;



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-39

Intra-assignment timing control



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-40

Intra-assignment timing control



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-41

Intra-assignment timing control

fork // a race condition

#5 a =b;

#5 b=a;

join

fork // a data swap

a = # 5 b;

b = #5  a;

join

fork // a data shift

a = @(posedge clk) b;

b = @(posedge clk) c;

join



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-42

Intra-assignment timing control

a <= repeat(5) @(posedge clk) data;



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-43

Block statements

 Sequential block: begin-end block

 Parallel block: fork-join block

begin : block_1

areg = breg;

creg = areg;  // creg stores the value of breg

end

fork : block_2

# 50   r = „h35;

#100  r = „hE2;

#150  r = „h00;

#200  r = „hF7;

#250  -> end_wave;

join



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-44

Start and finish time of Block statements

 Sequential block: begin-end block

 Start time: when the first statement is executed

 Finish time: when the last statement has been executed

 Parallel block: fork-join block

 Start time: the same for all statements

 Finish time: when the last time-ordered statement has 

been executed



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-45

Block statements

parameter d= 50;

reg [7:0] r;

begin :block_3 

#d  r = „h35;

#d  r = „hE2;

#d  r = „h00;

#d  r = „hF7;

#d  -> end_wave;

end

fork : block_2

# 50   r = „h35;

#100  r = „hE2;

#150  r = „h00;

#200  r = „hF7;

#250  -> end_wave;

join



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-46

Block statements

fork : block_4

#250  -> end_wave;

#200  r = „hF7;

#150  r = „h00;

#100  r = „hE2; 

# 50   r = „h35;

join

fork : block_2

# 50   r = „h35;

#100  r = „hE2;

#150  r = „h00;

#200  r = „hF7;

#250  -> end_wave;

join



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-47

Block statements

begin

fork

@Aevent;

@Bevent;

join

areg = breg;

end

fork

@enable_a

begin

#ta wa = 0;

#ta wa = 1;

#ta wa = 0;

end

@enable_b

begin

#tb wb = 0;

#tb wb = 1;

#tb wb = 0;

end

join

begin

begin

@Aevent;

@Bevent;

end

areg = breg;

end



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-48

Disabling of named blocks and tasks

begin : bloak_a

rega=regb;

disable block_a;

regc=rega; // never executed

end

begin : break

for (i=0; i<n; i= i+1) begin : continue

@clk

if (a==0) // “continue” loop

disable continue;

statements;

@clk

if (a==b) //”break” from loop

disable break;

statements;

end

end



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-49

Scheduling and execution of events

 A design : consists of connected threads of execution or processes.

 Processes : are objects that can be evaluated, that may have state, and 
that can respond to changes on their inputs to produce outputs.

Processes include primitives, modules, initial and always procedural 
blocks, continuous assignments, tasks, procedural assignment statements.

 Every change in value of a net or variable in the circuit being simulated, 
as well as the named event, is considered an update event.

 Processes are sensitive to update events. 



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-50

Scheduling and execution of events

 When an update event is executed, all the processes that are sensitive to 

that event are evaluated in an arbitrary order. 

 The evaluation of a process is also an event, known as an evaluation 

event.

 The term simulation time is used to refer to the time value maintained by 

the simulator to the model the actual time it would take for the circuit 

being simulated.

 Events can occur at different times. In order to keep track of the events 

and to make sure they are processed in the correct order, the events are 

kept on an event queue, ordered by the simulation time. Putting an event 

on the queue is called scheduling time. 



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-51

Simulation Terminology

 Simulation time

 Time value used by simulator to model actual time.

 Simulation cycle

 Complete processing of all currently active events

 Can be multiple simulation cycles per simulation time

 Explicit zero delay (#0)

 Forces process to be inactive event instead of active

 Incorrectly  used to avoid race conditions

 #0 doesn‟t synthesize!

 Don‟t use it



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-52

Question: Level-Sensitive Event Control

 Level-sensitive event control

 uses the keyword wait.

 If the condition is false, the procedural statements 

following the wait statement shall remain blocked until 

that condition becomes true.

always 

wait (count_enable) count = count –1 ;

always 

wait (!enable) #10 a = b ;

#10 c  = d;



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-53

Stratified event queue

 The Verilog event queue is logically segmented into five different regions. 

Events are added to any of the five regions, but are only removed from the 

active region.

1. Active events occur at the current simulation time and can be processed in 

any order.

2. Inactive events occur at the current simulation time, but shall be processed 

after all the active events are processed.

3. Nonblocking assignment (NBA) update events have been evaluated during 

some previous simulation time, but shall be assigned at this simulation 

time after all active and inactive events are processed.

4. Monitor events shall be processed after all active, inactive, and NBA 

update events are processed.

5. Future events occurs at some future simulation time. Future events are 

divided into future active events and future NBA update events.



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-54

Stratified event queue

 Active events region: the events in this region result from

 evaluating the RHS of nonblocking assignments

 evaluating the inputs of a primitive and changing the output

 executing a procedural (blocking) assignment to a register variable

 evaluating the RHS of a continuous assignment and updating the 
LHS

 evaluating the RHS of a procedural continuous assignment and 
updating the LHS

 evaluating and executing $display and $write system tasks.

 The processing of all active events is called a simulation cycle.

 An explicit zero delay control (#0) requires that the process be 
suspended and added as an inactive event for the current time so that the 
process is resumed in the next simulation time in the current time.

 The $monitor and $strobe system tasks create monitor events for their 
arguments.



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-55

Verilog simulation reference model
while (there are events)

if (no active events)

if (there are inactive events) {

activate all inactive events;

} else if (there are nonblobking assign update events) {

activate all nonblocking assign update events;

} else if (there are monitor events) { 

activate all monitor events;

} else {

advance T to the next event time;

activate all inactive events for time T; // inactive events become active.

}

}

E = any active events;

if (E is an update event) {

update the modified object;

add evaluation events for the sensitive processes to event queue;

} else  { /* shall be an evaluation event */

evaluate the process;

add all update events to the event queue;

}

}



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-56

Delay control

 “a = b;” : immediately evaluated and updated:

 “a <= b;” : evaluated and an NBA update event is scheduled

 “a = #0 b;”: evaluated and an inactive update event is scheduled

 “a <= #0 b;”: evaluated and an NBA update event is scheduled

 “#0 a = b;”: an inactive evaluation event is scheduled

 “#0 a <= b;”: an inactive evaluation event is scheduled

 a = #4 b;”

 “a <= #4 b;”

 “#3 a = b;”

 “#3 a <= b;”



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-57

Selection Constructs

 if-else

 case

 casex

 casez



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-58

If-else Constructs

if (<expression>)  true_statement ;

if (<expression>) true_statement; else false_statement;

if (<expression1>) true_statement1; 

else if (<expression2>) true_statement2; 

else false_statement;



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-59

Selection Constructs

module mux4_to_1_ifelse (i0, i1, i2, i3, s1, s0, out);

// port declarations

input    i0, i1, i2, i3;

input    s1, s0;

output  reg out;

// using conditional operator if  else statement

always @(*)  // triggered for all signals used in the 

// if else statement

if (s1) begin

if (s0)  out = i3; else out = i2; end

else begin

if (s0)  out = i1; else out = i0; end

endmodule

 un1_s1_1 

 un1_s1_2 

 un1_s0_1 

 un1_s0_2 

 out 

e

d

e

d

e

d

e

d

out

s0

s1

i3

i2

i1

i0



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-60

A Simple 4-bit Counter

module counter (clock, clear, qout);

input   clock, clear;

output reg [3:0] qout;

// the body of the 4-bit counter.

always @(negedge clock or posedge clear)

begin

if (clear)

qout <= 4'd0;

else      

qout <= (qout + 1) ;   // qout = (qout + 1) % 16;

end

endmodule

 un3_qout[3:0] 

+

 qout[3:0] 

R

[3:0]

[3:0]

1

[3:0]
Q[3:0]

[3:0]
D[3:0]

clear

clock

qout[3:0]
[3:0]



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-61

Selection Constructs

 case statement: a multiway selection.

 compares the expression to the alternatives in the order 
they are written. 

 compares 0, 1, x, and z values in the expression and the 
items (alternatives) bit for bit. (exact match bit by bit)

 executes the default statement if no matches are made.

 fills zeros to match the unequal bit widths between the 
expression and an item (alternative).

 is acted like a multiplexer.

 The default statement is optional and at most one default 
statement can be placed inside one case statement.

 A block statement must be grouped by begin and end.



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-62

A 4-to-1 MUX Example

// a 4-to-1 multiplexer using case statement

module mux_4x1_case (I0, I1, I2, I3, S, Y); 

input I0, I1, I2, I3;

input [1:0] S;    // declare S as a two-bit selection signal.

output reg Y;

always @(I0 or I1 or I2 or I3 or S) // It can use always @(*).

case (S)  // four-state logic ?

2'b00: Y = I0;  

2'b01: Y = I1;

2'b10: Y = I2;  

2'b11: Y = I3;

endcase

endmodule



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-63

A 4-to-1 MUX Example

// a 4-to-1 multiplexer using case and default statements.

module mux4_to_1_case_default (i0, i1, i2, i3, s1, s0, out); 

input   i0, i1, i2, i3, s1, s0;

output reg out;       //output declared as register

always @(s1 or s0 or i0 or i1 or i2 or i3)

case ({s1, s0})   // concatenate s1 and s0 

// as a two-bit selection signals

2'b00: out = i0;

2'b01: out = i1;

2'b10: out = i2;

2'b11: out = i3;

default: out = 1'bx; // using default to include 

// all other possible cases.

endcase

endmodule

Y9

 un1_S_2 

 un1_S_3 

 un1_S_4 

 Y 

e

d

e

d

e

d

e

d

[0]

[1]

[0]

[1]

[0]

[1]

[1]

[0]

Y

S[1:0]
[1:0]

I3

I2

I1

I0



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-64

A 3-to-1 MUX Example

// a 4-to-1 multiplexer using case statement – incorrect version

module mux_4x1_case (I0, I1, I2, S, Y); 

input I0, I1, I2, I3;

input [1:0] S;    // declare S as a two-bit selection signal.

output reg Y;

always @(I0 or I1 or I2 or S) 

case (S)  

2'b00: Y = I0;  

2'b01: Y = I1;

2'b10: Y = I2;  

endcase

endmodule

If not completely specified, a latch will be inferred when it is synthesized



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-65

A 3-to-1 MUX Example

// a 4-to-1 multiplexer using case statement – icorrect version

module mux_4x1_case (I0, I1, I2, S, Y); 

input I0, I1, I2, I3;

input [1:0] S;    // declare S as a two-bit selection signal.

output reg Y;

always @(I0 or I1 or I2 or S)

case (S)  

2'b00: Y = I0;  

2'b01: Y = I1;

2'b10: Y = I2;  

default: y = 1‟b0;

endcase

endmodule

If not completely specified, a latch will be inferred when it is synthesized



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-66

Selection Constructs

 casex and casez statements

 are used to perform a multiway selection like that of case 

statement. 

 compare only non-x or z positions in both the case 

expression and the case items (alternatives).

 casez treats all z values as don‟t cares. 

 casex treats all x and z values as don‟t cares.

 In place of z, they may also be specified with question marks 

“?” which also indicates don‟t-care



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-67

Selection Constructs

// an example illustrating how to count the trailing zeros in a nibble.

module trailing_zero_4b (data, out); 

input   [3:0] data;

output reg [2:0] out;   //output declared as register

always @(data)

casex (data)            // treat both x and z as don‟t care conditions.

4'bxxx1: out = 0;

4'bxx10: out = 1;

4'bx100: out = 2;

4'b1000: out = 3;

4'b0000: out = 4;

default:  out = 3'b111; //using default to include all other possible cases.

endcase

endmodule



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-68

Selection Constructs

// an example of casex.

module decode; 

reg [7:0] r, mask;

always 

begin

// other statements

r       =  8‟b01100110;

mask = 8‟bx0x0x0x0;

casex (r  ^  mask)            // r ^ mask = 8b‟x1x0x1x0

// treat both x and z as don‟t care conditions.

8'b001100xx: statement1;

8'b1100xx00: statement2;  // matches and executed

8'b00xx0011: statement3;

8'bxx001100: statement4; // matches

endcase

endmodule



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-69

Loop Constructs

 Loop constructs control the execution of a statement zero, 

one, or more times. 

 Loop constructs

 can appear only inside an initial or always block. 

 may contain delay expressions.

 Four types

 while loop executes a statement until an expression 

becomes false. 

 for loop repeatedly executes a statement.

 repeat loop executes a statement a fixed number of times.

 forever loop continuously executes a statement.



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-70

While Loop Structure

 A while loop

 executes until the condition is false.

 shall not be executed at all if the condition_expr starts out 

false.

while (condition_expr) statement;

while (count < 12) count <= count + 1;

while (count <= 100 && flag) begin

// put statements wanted to be carried out here.

end



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-71

While Loop Structure

// an example illustrating how to count the zeros in a byte.

module zero_count_while (data, out); 

input   [7:0] data;

output reg [3:0] out; //output declared as register

integer i;

always @(data) begin

out = 0; i = 0;

while (i <= 7) begin // simple condition

if (data[i] == 0) out = out + 1; // may be replaced with out = out + ~data[i].

i = i + 1; end

end

endmodule



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-72

While Loop Structure

// an example illustrating how to count the trailing zeros in a byte.

module trailing_zero_while (data, out); 

input   [7:0] data;

output reg [3:0] out;  // output declared as register

integer i;                    // loop counter

always @(data) begin

out = 0; i = 0;

while (data[i] == 0 && i <= 7) begin // complex condition

out = out + 1;

i = i + 1;

end

end

endmodule

Note that: Please distinguish the difference between this example and the 

previous one.



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-73

For Loop Structure

 A for loop is used to perform a counting loop. It

 behaves like the for statement in C programming 

language.

 is equivalent to

for (init_expr; condition_expr; update_expr) statement;

init_expr;

while (condition_expr) begin

statement;

update_expr;

end



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-74

For Loop Structure

// an example illustrating how to count the zeros in a byte.

module zero_count_for (data, out); 

input   [7:0] data;

output reg [3:0] out;   // output declared as register

integer i;

always @(data) begin

out = 0;

for (i = 0; i <= 7; i = i + 1) // simple condition

if (data[i] == 0)     

out = out + 1;           // may be replaced with out = out + ~data[i]. 

end

endmodule



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-75

For Loop Structure

// an example illustrating how to count the trailing zeros in a byte.

module trailing_zero_for (data, out); 

input   [7:0] data;

output reg [3:0] out;  // output declared as register

integer i;                    // loop counter

always @(data) begin

out = 0;

for (i = 0; data[i] == 0 && i <= 7; i = i + 1) // complex condition

out = out + 1;

end

endmodule

Note that: Please distinguish the difference between this example and the 

previous one.



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-76

Repeat Loop Structure

 A repeat loop performs a loop a fixed number of times.

 counter_expr can be a constant, a variable or a signal 

value.

 counter_expr is evaluated only once before starting the 

execution of statement (loop).

repeat (counter_expr) statement;



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-77

Repeat Loop Structure

 Examples:

i = 0;

repeat (32) begin 

state[i] = 0;      // initialize to zeros

i  =  i  +  1;       // next item

end

repeat (cycles) begin                           // cycles must be evaluated to a number

@(posedge clock) buffer[i] <= data;  // before entering the repeat loop.

i  <=  i  + 1;      // next item

end



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-78

Forever Loop Structure

 A forever loop continuously performs a loop until the $finish

task is encountered. It

 is equivalent to a while loop with an always true 

expression such as while (1).

forever statement;



Chapter 4: Behavioral Modeling

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 4-79

Forever Loop Structure

 The forever statement example

 The forever statement is usually used with timing control 

statements.

initial  begin

clock <= 0;

forever begin

#10 clock <= 1; 

#5   clock <= 0;

end

end

reg clock, x, y;

initial

forever @(posedge clock) x <= y;


