
Computers as Components 1

Stereotypes

Stereotype: recurring combination of
elements in an object or class.

Example:

<<signal>> mouse_click :

Mouse_click (x,y,button)

A communication mechanism in Fig 1.11

Computers as Components 2

Signal event

<<signal>>

mouse_click

leftorright: button

x, y: position

Signal event declaration

a

b

mouse_click(x,y,button)

event description

Computers as Components 3

Behavioral description

Several ways to describe behavior:

internal view;

external view.

Computers as Components 4

State machines

a b

state state name

transition

Computers as Components 5

Event-driven state

machines

Behavioral descriptions are written as
event-driven state machines.

Machine changes state when receiving an
input.

An event may come from inside or outside
of the system.

Computers as Components 6

Types of events

Three types of event defined by UML

Signal: asynchronous event.

Call: synchronized communication.

Timer: activated by time.

Computers as Components 7

Signal event

<<signal>>

mouse_click

leftorright: button

x, y: position

Signal event declaration

a

b

mouse_click(x,y,button)

event description

Computers as Components 8

Call event

c d

draw_box(10,5,3,2,blue)

Computers as Components 9

Timer event

e f

tm(time-value)

Computers as Components 10

Example: state machine

region

found

got menu

item

called

menu item

found

object

object

highlighted

start

finish

mouse_click(x,y,button)/

find_region(region)

input/output

region = menu/

which_menu(i) call_menu(i)

region = drawing/

find_object(objid)

highlight(objid)

Computers as Components 11

Sequence diagram

Shows sequence of operations over time.

Relates behaviors of multiple objects.

Designed to show a particular scenario or
choice of events

Computers as Components 12

Sequence diagram

m: Mouse d1: Display u: Menu

mouse_click(x,y,button)
which_menu(x,y,i)

call_menu(i)

Focus of

control

Lifeline

time

Object

When the object is actively

proccessing

Computers as Components 13

Summary

Object-oriented design helps us organize
a design.

UML is a transportable system design
language.

Provides structural and behavioral description
primitives.

Computers as Components 14

1.4 model train controller.

Follow a design through several levels of
abstraction.

Gain experience with UML.

Computers as Components 15

Model train setup

console

power

supply

rcvr motor

ECC address header command

좌우 바뀌었음

Computers as Components 16

Requirements

Console can control 8 trains on 1 track.

Throttle has at least 63 levels.

Inertia control adjusts responsiveness
with at least 8 levels.

Emergency stop button.

Error detection scheme on messages.

Computers as Components 17

Requirements form

name model train controller
purpose control speed of <= 8 model trains
inputs throttle, inertia, emergency stop,

train #
outputs train control signals
functions set engine speed w. inertia;

emergency stop
performance can update train speed at least 10

times/sec
manufacturing cost $50
power 10 W (wall powered)
physical
size/weight

console comfortable for 2 hands;
< 2 lbs.

Computers as Components 18

Digital Command Control

DCC created by model railroad hobbyists,
picked up by industry.

Defines way in which model trains,
controllers communicate.

Leaves many system design aspects open,
allowing competition.

This is a simple example of a big trend:

Cell phones, digital TV rely on standards.

Computers as Components 19

DCC documents

Standard S-9.1, DCC Electrical Standard.

Defines how bits are encoded on the rails.

Standard S-9.2, DCC Communication
Standard.

Defines packet format and semantics.

Computers as Components 20

DCC electrical standard

Voltage moves
around the power
supply voltage; adds
no DC component.

1 is 58 ms, 0 is at
least 100 ms.

time

logic 1 logic 0

58 ms >= 100 ms

Computers as Components 21

DCC communication

standard

Basic packet format: PSA(sD) + E.

P: preamble = 1111111111.

S: packet start bit = 0.

A: address data byte.

s: data byte start bit = 0.

D: data byte (data payload).

E: packet end bit = 1.

A packet include one or more data byte start
bit/ data byte combination.

Computers as Components 22

DCC packet types

A baseline packet: minimum packet that
must be accepted by all DCC
implementations, which has three data
bytes.

an address data byte gives receiver address.

an instruction data byte gives basic
instruction.

an error correction data byte gives ECC.

Computers as Components 23

Instruction data

 bits 0-3: a 4-bit speed value

 bit 4 : an additional speed bit
(interpreted as a LSB of speed)

 bit 5 : forward (1), backward (0)

 bits 7-8:(01) instruction for speed/direction

Computers as Components 24

Conceptual specification

Before we create a detailed specification,
we will make an initial, simplified
specification.
Gives us practice in specification and UML.

Good idea in general to identify potential
problems before investing too much effort in
detail.

Commands and packets may not be
generated in a 1-to-1 ratio.

Computers as Components 25

Basic system commands

command name parameters

set-speed speed
(positive/negative)

set-inertia inertia-value (non-
negative)

estop none

Computers as Components 26

Typical control sequence

:console :train_rcvr
set-inertia

set-speed

set-speed

set-speed

estop

Computers as Components 27

Message classes

command

set-inertia

value: unsigned-

 integer

set-speed

value: integer

estop

Class diagram for the train controller messages

Computers as Components 28 © 2008 Wayne Wolf

Overheads for Computers as

Components

Roles of message classes

Implemented message classes derived
from message class.

Attributes and operations will be filled in for
detailed specification.

Implemented message classes specify
message type by their class.

May have to add type as parameter to data
structure in implementation.

Computers as Components 29 © 2008 Wayne Wolf

Overheads for Computers as

Components 2nd ed.

Collaboration diagram

Interaction diagram

Shows relationship between console and
receiver (ignores role of track):

:console :receiver

1..n: command

Computers as Components 30

System structure modeling

Some classes define non-computer
components (physical objects).

Denote by name*.

Choose important systems at this point to
show basic relationships.

Computers as Components 31

Major subsystem roles

Console:

read state of front panel;

format messages;

transmit messages.

Train:

receive message;

interpret message;

control the train.

Computers as Components 32

Console system classes

console

panel formatter transmitter

knob* sender*

1

1

1

1 1
1

1
1

1
1

Computers as Components 33

Console class roles

panel: describes analog knobs and
interface hardware.

formatter: turns knob settings into bit
streams.

transmitter: sends data on track.

Computers as Components 34

Train system classes

train set

train

receiver

controller

motor

interface

detector* pulser*

1
1..t

1

1

1
1

1 1

1

1

1
1

Computers as Components 35

Train class roles

receiver: digitizes signal from track.

controller: interprets received commands
and makes control decisions.

motor interface: generates signals
required by motor.

Computers as Components 36

Detailed specification

We can now fill in the details of the
conceptual specification:

more classes;

behaviors.

Sketching out the spec first helps us
understand the basic relationships in the
system.

Computers as Components 37

Train speed control

Motor controlled by pulse width
modulation:

V

+

-

duty

cycle

Computers as Components 38

Physical object classes in

console and trains

knobs*

train-knob: integer

speed-knob: integer

inertia-knob: unsigned-

 integer

emergency-stop: boolean

pulser*

pulse-width: unsigned-

 integer

direction: boolean

sender*

send-bit()

detector*

read-bit() : integer

set-nobs()

Computers as Components 39

Panel and motor interface

classes

panel

train-number() : integer

speed() : integer

inertia() : integer

estop() : boolean

new-settings()

motor-interface

speed: integer

new-settings(): use the set-knobs behavior of the Knobs* class

to read the knobs settings whenever the train number setting is changed

Computers as Components 40

Class descriptions

panel class defines the controls.

new-settings() behavior reads the controls.

motor-interface class defines the motor
speed held as state.

Computers as Components 41

Transmitter and receiver

classes

transmitter

send-speed(adrs: integer,

 speed: integer)

send-inertia(adrs: integer,

 val: integer)

set-estop(adrs: integer)

receiver

current: command

new: boolean

read-cmd()

new-cmd() : boolean

rcv-type(msg-type:

 command)

rcv-speed(val: integer)

rcv-inertia(val:integer)

Computers as Components 42

Class descriptions

transmitter class has one behavior for
each type of message sent.

receiver function provides methods to:

detect a new message;

determine its type;

read its parameters (estop has no
parameters).

Computers as Components 43

Formatter class

formatter

current-train: integer

current-speed[ntrains]: integer

current-inertia[ntrains]:

 unsigned-integer

current-estop[ntrains]: boolean

send-command()

panel-active() : boolean

operate()

Computers as Components 44

Formatter class description

Formatter class holds state for each train,
setting for current train.

The operate() operation performs the
basic formatting task.

