Stereotypes

Stereotype: recurring combination of
elements in an object or class.
Example:

<<signal>> mouse_click :
Mouse_click (x,y,button)
A communication mechanism in Fig 1.11

Computers as Components

Signal event

<<signal>>
mouse click a
Ieft(?rrlght_: button mOUSG_W,button)
X, Y: position
Signal event declaration \ b }

event description

Computers as Components

Behavioral description

Several ways to describe behavior:
internal view;
external view.

Computers as Components

State machines

transition
)/ |
b
[N \
state state name

Computers as Components

Event-driven state
machines

Behavioral descriptions are written as
event-driven state machines.

Machine changes state when receiving an
input.

An event may come from inside or outside
of the system.

Computers as Components 5

Types of events

Three types of event defined by UML

Signal: asynchronous event.
Call: synchronized communication.
Timer: activated by time.

Computers as Components

Signal event

<<signal>>
mouse click a
Ieft(?rrlght_: button mOUSG_W,button)
X, Y: position
Signal event declaration \ b }

event description

Computers as Components

Call event

draw_box(10,5,3,2,blue)

-

Computers as Components

Timer event

tm(time-value)

-

Computers as Components

Example: state machine

start Input/output
mouse_click(x,y,button)/ ~ region = menu/
find_region(reglon) which_menu(i) call_menu(i)

‘ reglon got menu called
found Item menu item

region = drawmg/
find_object(objid)

found object W
[object ; highlightedJ @
highlight(objid) /
finish

Computers as Components 10

Sequence diagram

Shows sequence of operations over time.
Relates behaviors of multiple objects.

Designed to show a particular scenario or
choice of events

Computers as Components

11

Sequence diagram

‘ m: Mouse d1: Display

mouse_click(x,y,button)
»—- Which_menu(x,y,i)

When the object is actively |

- call_menu(i)
‘

proccessing

A 4

v
Computers as Components

A 4

12

Summary

Object-oriented design helps us organize
a design.

UML is a transportable system design
language.

Provides structural and behavioral description
primitives.

Computers as Components 13

1.4 model train controller.

Follow a design through several levels of
abstraction.

Gain experience with UML.

Computers as Components

14

Model train setup

| console >N

command

address

header

15

Requirements

Console can control 8 trains on 1 track.
Throttle has at least 63 levels.

Inertia control adjusts responsiveness
with at least 8 levels.

Emergency stop button.
Error detection scheme on messages.

Computers as Components

16

Requirements form

name
purpose
inputs

outputs
functions

performance

manufacturing cost
power

physical
size/weight

model train controller

control speed of <= 8 model trains
throttle, inertia, emergency stop,
train #

train control signals

set engine speed w. inertia;
emergency stop

can update train speed at least 10
times/sec

$50

10 W (wall powered)

console comfortable for 2 hands;
< 2 |bs.

Computers as Components

17

Digital Command Control

DCC created by model railroad hobbyists,
picked up by industry.
Defines way in which model trains,

controllers communicate.

Leaves many system design aspects open,
allowing competition.

This is a simple example of a big trend.:
Cell phones, digital TV rely on standards.

Computers as Components 18

DCC documents

Standard S-9.1, DCC Electrical Standard.
Defines how bits are encoded on the rails.

Standard S-9.2, DCC Communication
Standard.

Defines packet format and semantics.

Computers as Components 19

DCC electrical standard

Voltage moves
around the power
supply voltage; adds
no DC component.
1is58 us, Ois at
least 100 ps.

logic 1

logic O

time

58 us

Computers as Components

>=100 pus

20

DCC communication
standard

Basic packet format: PSA(sD) + E.
P: preamble = 1111111111.

S: packet start bit = 0.

A: address data byte.

S: data byte start bit = 0.

D: data byte (data payload).

E: packet end bit = 1.

A packet include one or more data byte start
bit/ data byte combination.

Computers as Components

21

DCC packet types

A baseline packet: minimum packet that
must be accepted by all DCC
implementations, which has three data
bytes.

an address data byte gives receiver address.

an instruction data byte gives basic
instruction.

an error correction data byte gives ECC.

Computers as Components 22

Instruction data

bits 0-3: a 4-bit speed value

bit 4 : an additional speed bit
(interpreted as a LSB of speed)

bit 5 : forward (1), backward (0)
bits 7-8:(01) instruction for speed/direction

Computers as Components 23

Conceptual specification

Before we create a detailed specification,
we will make an initial, simplified
specification.

Gives us practice in specification and UML.

Good idea in general to identify potential

problems before investing too much effort in
detail.

Commands and packets may not be
generated in a 1-to-1 ratio.

Computers as Components 24

Basic system commands

command name parameters

set-speed speed
(positive/negative)

set-inertia inertia-value (non-
negative)

estop none

Computers as Components

25

Typical control sequence

‘console

set-1nertia

‘train rcvr

set-speed

set-speed

estop

set-speed

Computers as Components

26

Message classes

command

/)

set-speed

set-Inertia

value: integer

value: unsigned-
Integer

Class diagram for the train controller messages

Computers as Components

estop

27

Roles of message classes

Implemented message classes derived
from message class.

Attributes and operations will be filled in for
detailed specification.

Implemented message classes specify
message type by their class.

May have to add type as parameter to data
structure in implementation.

Overheads for Computers as
© 2008 Wayne Wolf Computeosrgm Gemgponents 28

Collaboration diagram

Interaction diagram

Shows relationship between console and
receiver (ignores role of track):

1..n: command

:console " recelver

Overheads for Computers as
© 2008 Wayne Wolf Congmrtgrsreesn@azithedents

System structure modeling

Some classes define non-computer
components (physical objects).
Denote by name*,

Choose important systems at this point to
show basic relationships.

Computers as Components 30

Major subsystem roles

Console:
read state of front panel;
format messages;
transmit messages.

Train:
receive message;
interpret message;
control the train.

Computers as Components

31

Console system classes

panel

knob*

console

1

1
formatter

Computers as Components

1

transmitter

11

sender*

32

Console class roles

panel: describes analog knobs and
interface hardware.

formatter: turns knob settings into bit
streams.

transmitter: sends data on track.

Computers as Components

33

Train system classes

train set
T
. _ 1.t 1
_ /tram \motor
reECeIver Interface
111
1 1 controller 1 1
detector* pulser*

Computers as Components

34

Train class roles

receiver: digitizes signal from track.
controller: interprets received commands
and makes control decisions.

motor interface: generates signals
required by motor.

Computers as Components

35

Detailed specification

We can now fill in the details of the
conceptual specification:

more classes;
behaviors.

Sketching out the spec first helps us
understand the basic relationships in the
system.

Computers as Components 36

Train speed control

Motor controlled by pulse width

modulation:

duty
cycle

v

)

Computers as Components

37

Physical object classes In
console and trains

knobs*

pulser*

train-knob: integer

speed-knob: integer

Inertia-knob: unsigned-
Integer

emergency-stop: boolean

pulse-width: unsigned-
Integer
direction: boolean

set-nobs()

sender*

send-bit()

detector*

read-bit() : integer

Computers as Components

38

Panel and motor interface
classes

panel motor-interface

. . speed: integer
train-number() : integer P :

speed() : Integer
Inertia() : integer
estop() : boolean
new-settings()

new-settings(): use the set-knobs behavior of the Knobs™* class
to read the knobs settings whenever the train number setting is changed

Computers as Components

Class descriptions

panel class defines the controls.
new-settings() behavior reads the controls.

motor-interface class defines the motor
speed held as state.

Computers as Components

40

Transmitter and receiver

classes

transmitter

receiver

send-speed(adrs: integer,
speed: integer)

send-inertia(adrs: integer,
val: integer)

set-estop(adrs: integer)

current: command
new: boolean

read-cmd()
new-cmd() : boolean
rcv-type(msg-type:
command)
rcv-speed(val: integer)
rcv-inertia(val:integer)

Computers as Components

41

Class descriptions

transmitter class has one behavior for
each type of message sent.

receiver function provides methods to:

detect a new message;
determine its type;

read its parameters (estop has no
parameters).

Computers as Components

42

Formatter class

formatter

current-train: integer
current-speed[ntrains]: integer
current-inertia[ntrainsj:
unsigned-integer
current-estop[ntrains]: boolean

send-command()
panel-active() : boolean
operate()

Computers as Components

43

Formatter class description

Formatter class holds state for each train,
setting for current train.

The operate() operation performs the
basic formatting task.

Computers as Components 44

