
Computers as Components 1

Stereotypes

Stereotype: recurring combination of
elements in an object or class.

Example:

<<signal>> mouse_click :

Mouse_click (x,y,button)

A communication mechanism in Fig 1.11

Computers as Components 2

Signal event

<<signal>>

mouse_click

leftorright: button

x, y: position

Signal event declaration

a

b

mouse_click(x,y,button)

event description

Computers as Components 3

Behavioral description

Several ways to describe behavior:

internal view;

external view.

Computers as Components 4

State machines

a b

state state name

transition

Computers as Components 5

Event-driven state

machines

Behavioral descriptions are written as
event-driven state machines.

Machine changes state when receiving an
input.

An event may come from inside or outside
of the system.

Computers as Components 6

Types of events

Three types of event defined by UML

Signal: asynchronous event.

Call: synchronized communication.

Timer: activated by time.

Computers as Components 7

Signal event

<<signal>>

mouse_click

leftorright: button

x, y: position

Signal event declaration

a

b

mouse_click(x,y,button)

event description

Computers as Components 8

Call event

c d

draw_box(10,5,3,2,blue)

Computers as Components 9

Timer event

e f

tm(time-value)

Computers as Components 10

Example: state machine

region

found

got menu

item

called

menu item

found

object

object

highlighted

start

finish

mouse_click(x,y,button)/

find_region(region)

input/output

region = menu/

which_menu(i) call_menu(i)

region = drawing/

find_object(objid)

highlight(objid)

Computers as Components 11

Sequence diagram

Shows sequence of operations over time.

Relates behaviors of multiple objects.

Designed to show a particular scenario or
choice of events

Computers as Components 12

Sequence diagram

m: Mouse d1: Display u: Menu

mouse_click(x,y,button)
which_menu(x,y,i)

call_menu(i)

Focus of

control

Lifeline

time

Object

When the object is actively

proccessing

Computers as Components 13

Summary

Object-oriented design helps us organize
a design.

UML is a transportable system design
language.

Provides structural and behavioral description
primitives.

Computers as Components 14

1.4 model train controller.

Follow a design through several levels of
abstraction.

Gain experience with UML.

Computers as Components 15

Model train setup

console

power

supply

rcvr motor

ECC address header command

좌우 바뀌었음

Computers as Components 16

Requirements

Console can control 8 trains on 1 track.

Throttle has at least 63 levels.

Inertia control adjusts responsiveness
with at least 8 levels.

Emergency stop button.

Error detection scheme on messages.

Computers as Components 17

Requirements form

name model train controller
purpose control speed of <= 8 model trains
inputs throttle, inertia, emergency stop,

train #
outputs train control signals
functions set engine speed w. inertia;

emergency stop
performance can update train speed at least 10

times/sec
manufacturing cost $50
power 10 W (wall powered)
physical
size/weight

console comfortable for 2 hands;
< 2 lbs.

Computers as Components 18

Digital Command Control

DCC created by model railroad hobbyists,
picked up by industry.

Defines way in which model trains,
controllers communicate.

Leaves many system design aspects open,
allowing competition.

This is a simple example of a big trend:

Cell phones, digital TV rely on standards.

Computers as Components 19

DCC documents

Standard S-9.1, DCC Electrical Standard.

Defines how bits are encoded on the rails.

Standard S-9.2, DCC Communication
Standard.

Defines packet format and semantics.

Computers as Components 20

DCC electrical standard

Voltage moves
around the power
supply voltage; adds
no DC component.

1 is 58 ms, 0 is at
least 100 ms.

time

logic 1 logic 0

58 ms >= 100 ms

Computers as Components 21

DCC communication

standard

Basic packet format: PSA(sD) + E.

P: preamble = 1111111111.

S: packet start bit = 0.

A: address data byte.

s: data byte start bit = 0.

D: data byte (data payload).

E: packet end bit = 1.

A packet include one or more data byte start
bit/ data byte combination.

Computers as Components 22

DCC packet types

A baseline packet: minimum packet that
must be accepted by all DCC
implementations, which has three data
bytes.

an address data byte gives receiver address.

an instruction data byte gives basic
instruction.

an error correction data byte gives ECC.

Computers as Components 23

Instruction data

 bits 0-3: a 4-bit speed value

 bit 4 : an additional speed bit
(interpreted as a LSB of speed)

 bit 5 : forward (1), backward (0)

 bits 7-8:(01) instruction for speed/direction

Computers as Components 24

Conceptual specification

Before we create a detailed specification,
we will make an initial, simplified
specification.
Gives us practice in specification and UML.

Good idea in general to identify potential
problems before investing too much effort in
detail.

Commands and packets may not be
generated in a 1-to-1 ratio.

Computers as Components 25

Basic system commands

command name parameters

set-speed speed
(positive/negative)

set-inertia inertia-value (non-
negative)

estop none

Computers as Components 26

Typical control sequence

:console :train_rcvr
set-inertia

set-speed

set-speed

set-speed

estop

Computers as Components 27

Message classes

command

set-inertia

value: unsigned-

 integer

set-speed

value: integer

estop

Class diagram for the train controller messages

Computers as Components 28 © 2008 Wayne Wolf

Overheads for Computers as

Components

Roles of message classes

Implemented message classes derived
from message class.

Attributes and operations will be filled in for
detailed specification.

Implemented message classes specify
message type by their class.

May have to add type as parameter to data
structure in implementation.

Computers as Components 29 © 2008 Wayne Wolf

Overheads for Computers as

Components 2nd ed.

Collaboration diagram

Interaction diagram

Shows relationship between console and
receiver (ignores role of track):

:console :receiver

1..n: command

Computers as Components 30

System structure modeling

Some classes define non-computer
components (physical objects).

Denote by name*.

Choose important systems at this point to
show basic relationships.

Computers as Components 31

Major subsystem roles

Console:

read state of front panel;

format messages;

transmit messages.

Train:

receive message;

interpret message;

control the train.

Computers as Components 32

Console system classes

console

panel formatter transmitter

knob* sender*

1

1

1

1 1
1

1
1

1
1

Computers as Components 33

Console class roles

panel: describes analog knobs and
interface hardware.

formatter: turns knob settings into bit
streams.

transmitter: sends data on track.

Computers as Components 34

Train system classes

train set

train

receiver

controller

motor

interface

detector* pulser*

1
1..t

1

1

1
1

1 1

1

1

1
1

Computers as Components 35

Train class roles

receiver: digitizes signal from track.

controller: interprets received commands
and makes control decisions.

motor interface: generates signals
required by motor.

Computers as Components 36

Detailed specification

We can now fill in the details of the
conceptual specification:

more classes;

behaviors.

Sketching out the spec first helps us
understand the basic relationships in the
system.

Computers as Components 37

Train speed control

Motor controlled by pulse width
modulation:

V

+

-

duty

cycle

Computers as Components 38

Physical object classes in

console and trains

knobs*

train-knob: integer

speed-knob: integer

inertia-knob: unsigned-

 integer

emergency-stop: boolean

pulser*

pulse-width: unsigned-

 integer

direction: boolean

sender*

send-bit()

detector*

read-bit() : integer

set-nobs()

Computers as Components 39

Panel and motor interface

classes

panel

train-number() : integer

speed() : integer

inertia() : integer

estop() : boolean

new-settings()

motor-interface

speed: integer

new-settings(): use the set-knobs behavior of the Knobs* class

to read the knobs settings whenever the train number setting is changed

Computers as Components 40

Class descriptions

panel class defines the controls.

new-settings() behavior reads the controls.

motor-interface class defines the motor
speed held as state.

Computers as Components 41

Transmitter and receiver

classes

transmitter

send-speed(adrs: integer,

 speed: integer)

send-inertia(adrs: integer,

 val: integer)

set-estop(adrs: integer)

receiver

current: command

new: boolean

read-cmd()

new-cmd() : boolean

rcv-type(msg-type:

 command)

rcv-speed(val: integer)

rcv-inertia(val:integer)

Computers as Components 42

Class descriptions

transmitter class has one behavior for
each type of message sent.

receiver function provides methods to:

detect a new message;

determine its type;

read its parameters (estop has no
parameters).

Computers as Components 43

Formatter class

formatter

current-train: integer

current-speed[ntrains]: integer

current-inertia[ntrains]:

 unsigned-integer

current-estop[ntrains]: boolean

send-command()

panel-active() : boolean

operate()

Computers as Components 44

Formatter class description

Formatter class holds state for each train,
setting for current train.

The operate() operation performs the
basic formatting task.

