
Computers as Components 1 © 2008 Wayne Wolf

Comparison/test instructions

CMP : compare

CMN : negated compare

TST : bit-wise test with a value

TEQ : bit-wise test for two values

These instructions set only the NZCV bits
of CPSR.

Computers as Components 2

Conditional Execution

Most instruction sets only allow branches to be
executed conditionally.

However by reusing the condition evaluation
hardware, ARM effectively increases number of
instructions.

All instructions contain a condition field which
determines whether the CPU will execute them.

Non-executed instructions soak up 1 cycle.

Still have to complete cycle so as to allow
fetching and decoding of following instructions.

Computers as Components 3

Conditional Execution

 This removes the need for many branches, which stall
the pipeline (3 cycles to refill).

Allows very dense in-line code, without branches.

The Time penalty of not executing several
conditional instructions is frequently less than
overhead of the branch
or subroutine call that would otherwise be needed.

Computers as Components 4

The Condition Field

28 31 24 20 16 12 8 4 0

Cond

0000 = EQ - Z set (equal)

0001 = NE - Z clear (not equal)

0010 = HS / CS - C set (unsigned
higher or same)

0011 = LO / CC - C clear (unsigned
lower)

0100 = MI -N set (negative)

0101 = PL - N clear (positive or
zero)

0110 = VS - V set (overflow)

0111 = VC - V clear (no overflow)

1000 = HI - C set and Z clear
(unsigned higher)

1001 = LS - C clear or Z (set unsigned
lower or same)

1010 = GE - N set and V set, or N clear
and V clear (>or =)

1011 = LT - N set and V clear, or N clear
and V set (>)

1100 = GT - Z clear, and either N set
and V set, or N clear and V set
(>)

1101 = LE - Z set, or N set and V
clear,or N clear and V set (<, or
=)

1110 = AL - always

1111 = NV - reserved.

Computers as Components 5 © 2008 Wayne Wolf

Comparison instructions

CMP : compare two 32-bit integers
 flags set as a result of Rn - N

 CMP r0, r1, LSR#2; compare r0 with (r1/4)

 BHS label ; if r0 >= (r1/4) goto label

CMN : compare negative
 flags set as a result of Rn + N

CMN r0, #3; ; compare r0 with (-3)

 BLT label ; if r0 < (-3) goto label

Computers as Components 6 © 2008 Wayne Wolf

Test instructions

TST : bit-wise test of a 32-bit value

 flags set as a result of Rn & N

 TST r0,#0xFF ; test if the LSB 8 bits are 0

TEQ : bit-wise test for two 32-bit values

 flags set as a result of Rn ^ N

TEQ r0, #1 ; test to see if r0==1

Computers as Components

Used to call routines or changes the flow of
execution

Subroutines, if-then-else structures, and loops

Branch :
 B{<cond>} label

Branch with Link :
 BL{<cond>} sub_routine_label

Branch instructions (1)

28 31 24 0

 Cond 1 0 1 L Offset

Condition field

Link bit 0 = Branch
 1 = Branch with link

23 25 27

Computers as Components

The offset for branch instructions is
calculated by the assembler:

By taking the difference between the branch
instruction and the target address minus 8 (to
allow for the pipeline).

This gives a 26 bit offset which is right shifted
2 bits (as the bottom two bits are always zero
as instructions are word – aligned) and stored

into the instruction encoding.

This gives a range of ± 32 Mbytes.

Branch instructions (2)

Computers as Components

Branch instructions (3)

When executing the instruction, the processor:

shifts the offset left two bits, sign extends it to 32
bits, and adds it to PC.

Execution then continues from the new PC,
once the pipeline has been refilled.

The “branch with link" instruction implements

a subroutine call by writing PC-4 into the LR of
the current bank in the EX stage.

i.e. the address of the next instruction following
the branch with link (allowing for the pipeline).

Computers as Components

Branch instructions (4)

To return from subroutine, simply need to
restore the PC from the LR:
MOV pc, lr

Again, pipeline has to refill before execution
continues.

The "Branch" instruction does not affect LR.

Computers as Components

Example: BL

To return from subroutine, simply need to
restore the PC from the LR:
 BL sub0 ;branch to subroutine

 CMP r1, #5 ;compare r1 with 5

 MOVEQ r1, #0

 …

Sub0

 <subroutine code >

 MOV pc, lr ;return to (CMP r1, #5)

Computers as Components 12

Load / Store Instructions

 The ARM is a Load/Store Architecture:

 Does not support memory-to-memory data
processing operations.

 Must move data values into registers before
using them.

1. Load data values from memory into registers.

2. Process data in registers using a number of data
processing instructions which are not slowed
down by memory access.

3. Store results from registers out to memory.

Computers as Components 13

Load / Store Instructions

The ARM has three sets of instructions
which interact with main memory. These
are:

Single register data transfer (LDR / STR).

Block data transfer (LDM/STM).

Single Data Swap (SWP).

Computers as Components 14 © 2008 Wayne Wolf

Load/store instructions

LDR, LDRH, LDRB : load (half-word, byte)

STR, STRH, STRB : store (half-word,
byte)

Addressing modes:
register indirect : LDR r0,[r1]

with second register : LDR r0,[r1,-r2]

with constant : LDR r0,[r1,#4]

Computers as Components 15

Single register data transfer

The basic load and store instructions are:

Load and Store Word or Byte

LDR / STR / LDRB / STRB

ARM Architecture Version 4 also adds
support for halfwords and signed data.

Load and Store Halfword: LDRH / STRH

Load Signed Byte or Halfword - load value
and sign extend it to 32 bits: LDRSB / LDRSH

Computers as Components 16

Single register data transfer

All of these instructions can be
conditionally executed by inserting the
appropriate condition code after STR /
LDR.

e.g. LDREQB

Syntax:

<LDR|STR>{<cond>}{<size>} Rd,
<address>

Computers as Components 17

Load and Store :

Base Register

The memory location to be accessed is
held in a base register

STR r0, [r1] ; Store contents of r0 to location
pointed to by contents of r1.

LDR r2, [r1] ; Load r2 with contents of
memory location pointed to by contents of r1.

Computers as Components 18

Load and Store Word or Byte:

Base Register

r1

0x200
Base

Register

Memory

0x5 0x200

r0

0x5
Source

Register
for STR

r2

0x5
Destination

Register
for LDR

str r0, [r1]

ldr r2, [r1]

strb r0, [r1]

ldrb r2, [r1]

Computers as Components 19

Load and Store :

Offsets from the Base Register

Preindex with writeback: data = mem[base+offset]

Base address register: base + offset

Example: ldr r0, [r1,#4]!

Preindex: data = mem[base+offset]

Base address register: notupdated

Example: ldr r0, [r1,#4]

Postindex: data = mem[base]

Base address register: base + offset

Example: ldr r0, [r1],#4

Computers as Components 20

Load and Store :

Pre-indexed Addressing

Example: STR r0, [r1,#12]

To store to location 0x1f4 instead use:
STR r0, [r1,#-12]

To auto-increment base pointer to 0x20c
use: STR r0, [r1, #12]!

If r2 contains 3, access 0x20c by
multiplying this by 4:

STR r0, [r1, r2, LSL #2]

r1

0x200
Base

Register

Memory

0x5

0x200

r0

0x5
Source

Register
for STR

Offset

12 0x20c

Computers as Components 21

Load and Store :

Post-indexed Addressing

Example: STR r0, [r1], #12

r1

0x200
Original

Base
Register

Memory

0x5 0x200

r0

0x5
Source

Register
for STR

Offset

12 0x20c

r1

0x20c

Updated
Base

Register

Computers as Components 22

Load and Store :

Post-indexed Addressing

To auto-increment the base register to
location 0x1f4 instead use:
 STR r0, [r1], #-12

If r2 contains 3, auto-increment base
register to 0x20c by multiplying this by 4:
STR r0, [r1], r2, LSL #2

Computers as Components 23

Example Usage of

Addressing Modes

Imagine an array, the first element of
which is pointed to by the contents of r0.

If we want to access a particular element,
then we can use pre-indexed addressing:

r1 is element we want.

LDR r2, [r0, r1, LSL #2]

0

1

2

3

element

0

4

8

12

Memory
Offset

r0

Pointer to
start of array

Computers as Components 24

Example Usage of

Addressing Modes

If we want to step through every element
 of the array, for instance to produce sum
 of elements in the array, then we can use
 post-indexed addressing within a loop:

r1 is address of current element (initially equal
to r0).

LDR r2, [r1], #4

Use a further register to store the address
of final element, so that the loop can be
correctly terminated.

Computers as Components 25

Load and Store Byte:

Effect of endianess

The ARM can be set up to access its data
in either little or big endian format.

Little endian:

LSB byte of a word is stored in bits 0-7 of an
addressed word.

Big endian:

LSB byte of a word is stored in bits 24-31 of
an addressed word.

Computers as Components 26

Endianess Example

Big-endian Little-endian

r1 = 0x100

r0 = 0x11223344
31 24 23 16 15 8 7 0

11 22 33 44

31 24 23 16 15 8 7 0

11 22 33 44

31 24 23 16 15 8 7 0

44 33 22 11

31 24 23 16 15 8 7 0

00 00 00 44

31 24 23 16 15 8 7 0

00 00 00 11

r2 = 0x44 r2 = 0x11

STR r0, [r1]

LDRB r2, [r1]

r1 = 0x100 Memory

Computers as Components 27

Block Data Transfer (1)

 Cond 1 0 0 P U S W L Rn Register list

Condition field Base register

Load/Store bit
0 = Store to memory
1 = Load from memory

Write- back bit
0 = no write-back
1 = write address into base

PSR and force user bit
0 = don‟t load PSR or force user mode
1 = load PSR or force user mode

Up/Down bit
0 = Down; subtract offset from base
1 = Up ; add offset to base

Pre/Post indexing bit
0 = Post; add offset after transfer,
1 = Pre ; add offset before transfer

28 31 22 16 0 23 21 15 27 20 19 24

Each bit corresponds to a particular
register. For example:
• Bit 0 set causes r0 to be transferred.
• Bit 0 unset causes r0 not to be transferred.

At least one register must be
transferred as the list cannot be empty.

The Load and Store Multiple instructions
(LDM / STM) allow betweeen 1 and 16
registers to be transferred to or from
memory.

Computers as Components 28

Block Data Transfer (2)

The transferred registers can be either:

Any subset of the current bank of registers
(default).

Any subset of the user mode bank of
registers when in a previledged mode (postfix
instruction with a „^‟).

LDR{<cond>}{add. mode>} Rn{!}, <regs>{^}

STR{<cond>}{add. mode>} Rn{!}, <regs>{^}

Computers as Components 29

Block Data Transfer (3)

Base register used to determine where
memory access should occur.

4 different addressing modes allow increment
and decrement inclusive or exclusive of the
base register location.

IA (increment after)

IB (increment before)

DA (decrement after)

DB (decrement before)

Computers as Components 30

Block Data Transfer (4)

These instructions are very efficient for

Saving and restoring context

For this useful to view memory as a stack.

Moving large blocks of data around memory

For this useful to directly represent functionality
of the instructions.

Computers as Components 31

Example 1

Pre

mem32[0x80018] = 0x03, mem32[0x80014] = 0x02

 mem32[0x80010] = 0x01, r0=0x00080010

 r1=0x00000000, r2=0x00000000, r3=0x00000000

 ldmia r0!, {r1-r3}

Post

r0=0x0008001c, r1=0x00000001, r2=0x00000002,

 r3=0x00000003

Computers as Components 32

Example 2

Pre

r0=0x00009000, r1=0x00000009, r2=0x00000008,

 r3=0x00000007

 stmib r0!, {r1-r3};

 mov r1, #1

 mov r1, #2

 mov r1, #3

Post

r0=0x0000900c, r1=0x00000001, r2=0x00000002,

 r3=0x00000003

Computers as Components 33

Example 2

Pre

r0=0x0000900c, r1=0x00000001, r2=0x00000002,

 r3=0x00000003

 ldmda r0!, {r1-r3};

Post

r0=0x00009000, r1=0x00000009, r2=0x00000008,

 r3=0x00000009

The stmib instruction stores the values of
registers {r1-r3} to memory. We then corrupt
the registers {r1-r3}. The ldmda reloads the
original values and restores the base pointer r0.

Computers as Components 34

Example 3: Block memory copy

loop

 ldmia r9!, {r0-r7} ; load 32 bytes from source

 stmia r10!, {r0-r7} ; and store them to destination

 ; have reached to the end

 cmp r9 r11

 bne loop

; r9 points to start of source data

; r10 points to start of destination data

; r11 points to end of the source

r10

r11

r9

Increasing
Memory

Computers as Components 35

Stacks

A stack is an area of memory which
grows as new data is “pushed” onto the
“top” of it, and shrinks as data is
“popped” off the top.

Two pointers define the current limits of
the stack.

A base pointer: used to point to the
“bottom” of the stack (the first location).

A stack pointer: used to point the current
“top” of the stack.

Computers as Components 36

Stacks

SP

BASE

PUSH

{1,2,3}

1

2

3

BASE

SP

POP

1

2

Result of

pop = 3

BASE

SP

Traditionally, a stack grows down in
memory, with the last “pushed” value at the
lowest address. The ARM also supports
ascending stacks, where the stack structure
grows up through memory.

Computers as Components 37

Stack Operation

The value of the stack pointer can either:

Point to the last occupied address (Full stack)

and so needs pre-decrementing (ie before the
push)

Point to the next occupied address (Empty
stack)

and so needs post-decrementing (ie after the
push)

Computers as Components 38

Stack Operation

The stack type to be used is given by the
postfix to the instruction:

Push / Pop

STMFD / LDMFD : Full Descending stack

STMFA / LDMFA : Full Ascending stack.

STMED / LDMED : Empty Descending stack

STMEA / LDMEA : Empty Ascending stack

Note: ARM Compiler will always use a Full
descending stack.

Computers as Components 39

Stack Examples

STMFD sp!,

{r0,r1,r3-r5}

r5

r4

r3
r1

r0 SP

Old SP

STMED sp!,

{r0,r1,r3-r5}

r5

r4

r3

r1

r0

SP

Old SP

r5

r4

r3

r1

r0

STMFA sp!,

{r0,r1,r3-r5}

SP

Old SP 0x400

0x418

0x3e8

STMEA sp!,

{r0,r1,r3-r5}

r5

r4

r3

r1

r0

SP

Old SP

Computers as Components 40

Stacks and Subroutines (1)

One use of stacks is to create temporary
register workspace for subroutines. Any
registers that are needed can be pushed
onto the stack at the start of the subroutine
and popped off again at the end so as to
restore them before return to the caller :

STMFD sp!,{r0-r12, lr} ; stack all registers

........ ; and the return address

........

LDMFD sp!,{r0-r12, pc} ; load all the registers

 ; and return automatically

Computers as Components 41

Stacks and Subroutines (2)

See the chapter on the ARM Procedure Call
Standard in the SDT Reference Manual for
further details of register usage within
subroutines.

If the pop instruction also had the „S‟ bit
set (using „^‟) then the transfer of the PC

when in a priviledged mode would also
cause the SPSR to be copied into the CPSR
(see exception handling module).

Computers as Components 42

Atomic operation of a memory read
followed by a memory write which moves
byte or word quantities between registers
and memory.

Syntax:

SWP{<cond>}{B} Rd, Rm, [Rn]

Swap and Swap Byte

Rm Rd

Rn

3 2

1

temp

Memory

Computers as Components 43

Thus to implement an actual swap of
contents make Rd = Rm.

The compiler cannot produce this
instruction.

Swap and Swap Byte

Rm Rd

Rn

3 2

1

temp

Memory

Computers as Components 44

Example: Swap

Pre

mem32[0x9000] = 0x12345678,

 r0=0x00000000, r1=0x11112222,

 r2=0x00009000

 swp r0, r1, [r2]

Post

Mem32[0x9000]= 0x11112222

 r0=0x12345678, r1=0x00000001,

 r2=0x00009000,

Computers as Components 45

Software Interrupt (SWI)

In effect, a SWI is a user-defined instruction.

It causes an exception trap to the SWI
hardware vector (thus causing a change to
supervisor mode, plus the associated state
saving), thus causing the SWI exception
handler to be called.

28 31 24 27 0

 Cond 1 1 1 1 Comment field (ignored by Processor)

Condition Field

23

Computers as Components 46

Software Interrupt (SWI)

The handler can then examine the comment
field of the instruction to decide what
operation has been requested.

By making use of the SWI mechanism, an
operating system can implement a set of
privileged operations which applications
running in user mode can request.

See Exception Handling Module for further
details.

