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Exception Modes 

FIQ: fast interrupt request 

IRQ: interrupt request 

SVC: SWI and reset 

 protected mode for OS 

abort: prefetch abort and data abort 

(virtual) memory protection  

undefined: undefined instruction 

Software emulation of HW coprocessors 



Computers as Components 2 

IRQ and FIQ exceptions 

 IRQ and FIQ exceptions only occur when 
a specific interrupt mask is cleared in cpsr. 

 The ARM processor automaticaaly 
completes the instruction in the execution 
stage before handling the interrupt. 

1. Change the processor mode 

2. Save cpsr to spsr 

3. Save pc to lr 

4. Interrupt(s) are disabled 

5. Branch to a specific entry in the vector table. 
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Vector Table 

A table of addresses that the ARM core 
branches to when an exception is raised. 

        RSET  0x0000  ; 0xffff0000 if in the higher address 

  UNDEF  0x0004 

  SWI  0x0008 

  PABT  0x000c  ; prefetch abort 

  DABT  0x0010  ;data abort 

  -  0x0014  ; reserved 

  IRQ  0x0018 

  FIQ  0x001c  ; 0xffff001c if in the higher address 
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Enabling and disabling 

IRQ and FIQ exceptions 

enabling_irq 

  MRS  r1, cpsr 

  BIC                    r1, r1, #0x80 

             MSR  cpsr_c, r1

   

enabling_fiq 

  MRS  r1, cpsr 

  BIC                    r1, r1, #0x40 

             MSR  cpsr_c, r1

   

 

 

disabling_irq 

  MRS  r1, cpsr 

  ORR                  r1, r1, #0x80 

             MSR  cpsr_c, r1

   

disabling_fiq 

  MRS  r1, cpsr 

  ORR                  r1, r1, #0x40 

             MSR  cpsr_c, r1 

BIC: logical bit clear (AND NOT), ORR: logical bitwise or 
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Basic interrupt stack 

Exception handlers make intensive use of 
stacks 

A good stack design tries to avoid stack 
overflow  

Use memory protection 

Call a stack check function 

The stack for each processor mode has to 
be set up  in the initialization code 
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Typical memory layouts 

Vector table 

Interrupt stack 

Code 

User stack 

Heap 

A 

Vector table 

Code 

User stack 

Heap 

B 
interrupt stack 

Layout B does not corrupt the vector table when a stack overflow occurs 

traditional 
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Example: Basic interrupt stack 

Vector table 

Code 

User stack 

Static data 

Free space 

Unused 

SVC stack 

IRQ stack 
0x8000 

0x8000 - 640 

0x8000 - 128 

0x20 

0x20000 
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Stack design 

Depends on 
OS requirement for stack design 

Target HW provides a physical limit to the 
size and positioning of the stack memory. 

ARM-based system : stack grow 
downward with top of the stack at a high 
memory address 

Stack overflow must be avoided 
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SVC Stack Setup 

 USER_Stack EQU 0x200000 

 IRQ_Stack  EQU 0x8000 

 SVC_Stack  EQU IRQ_Stack – 128 

     USER32md  EQU 0x10  ;User mode 

     IRQ32md  EQU 0x12  ;IRQ mode 

 SVC32md  EQU 0x13  ;SVC mode 

     Sys32md  EQU 0x1f  ;System mode 

 NoInt  EQU 0xc0  ;disable interrupts  

; supervisor mode stack set up : core starts in supervisor mode 

  LDR  r13, SVC_NewStack ; r13_svc 

             . . . 

SVC_NewStack 

  DCD  SVC_Stack   
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IRQ Stack Setup 

; IRQ mode stack set up : change to IRQ mode 

  MOV  r2, #NoInt | IRQ32md 

  MSR  cpsr_c, r2 

  LDR  r13, IRQ_NewStack ; r13_irq 

             . . . 

IRQ_NewStack   DCD  IRQ_Stack   

; USER mode stack set up :  last in the initialization code 

  MOV  r2, Sys32md 

  MSR  cpsr_c, r2 

  LDR  r13, USR_NewStack ; r13_usr 

             . . . 

USR_NewStack  DCD  USR_Stack   
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IRQ Handler 

; assume that the IRQ stack has been set up by the initialization code 

Interrupt_handler 

  SUB r14, r14, #4  ; adjust lr 

             STMFD sp!, {r0-r3, r12, r14} :save context 

             LDR r0, =IRQStatus  ;interrupt status address 

  LDR r0, [r0]   ;get interrupt status 

  TST r0, #0x0080  ;if counter timer 

  BNE timer_isr  ; then branch to ISR 

  TST r0,#0x0001  ;else if button press 

  BNE button_isr  ; then call button ISR 

  LDMFD sp!,{r0-r3,r12,pc}^ ;return 
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Often confused 

Exception: an internal CPU event such as  

floating point overflow  

MMU fault (e.g., page fault)  

trap (SWI)  

Interrupt:  an external I/O event such as  

I/O device request  

reset  

In the ARM architecture manuals, the two 
terms are mixed together 
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SWI exception 

Only a branch to the SWI handler is at x08. 

SWI_handler 

       STMFD   sp!, {r0-r12,r14}  ; save context 

           LDR  r10, [r14,#-4]  ; load SWI instruction 

                                                                               ; lr points to next instruction 

           BIC  r10, r10, #0xff000000 ;mask off the MSB 8 bits 

           MOV  r1,r13   ;copy SVC stack to r1 

           MRS                    r2, spsr                            ;copy spsr to r2 

           STMFD               sp!, {r2}                            ; save r2  on stack 

           BL  swi_jumptable  ;branch to swi_jumptable 
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SWI exception 

Only a branch to the SWI handler is at x08. 

 

           LDMFD                sp!, {r2}   ;restore r2 (spsr) 

           MSR  spsr_cxsf, r2  ;copy r2 back to cpsr 

                                       ; control, extension, status, flags bytes 

           LDMFD  sp!, {r0-r12, pc}  ;restore context and return 

swi_jumptable 

       MOV  r0,r10   ;mov SWI number to r0 

       ; SWI number in r1 

       B  eventSWIhanlder ;branch to SWI handler  

        

>
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Exception 

Exception: internally detected error. 

Exceptions are synchronous with 
instructions but unpredictable. 

Build exception mechanism on top of 
interrupt mechanism. 

Exceptions are usually prioritized and 
vectorized. 
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Trap 

Trap (software interrupt): an exception 
generated by an instruction. 

Call supervisor mode. 

ARM uses SWI instruction for traps. 
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Co-processor 

Co-processor: added function unit that is 
called by instruction. 

Floating-point units are often structured as 
co-processors. 

ARM allows up to 16 designer-selected co-
processors. 

Floating-point co-processor uses units 1, 2. 
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Caches and CPUs 
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Cache operation 

Many main memory locations are mapped 
onto one cache entry. 

May have caches for: 

instructions; 

data; 

data + instructions (unified). 

Memory access time is no longer 
deterministic. 
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Terms 

Cache hit: required location is in cache. 

Cache miss: required location is not in 
cache. 

Working set: set of locations used by 
program in a time interval. 



Computers as Components 21 

Types of misses 

Compulsory (cold) miss : location has 
never been accessed. 

Capacity miss: working set is too large. 

Conflict miss: multiple locations in 
working set map to same cache entry. 
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Memory system 

performance 

h = cache hit rate. 

tcache = cache access time, tmain = main 
memory access time. 

Average memory access time: 

tav = htcache + (1-h)tmain 
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Multiple levels of cache 

CPU L1 cache L2 cache 
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Multi-level cache access 

time 

h1 = cache hit rate. 

h2 = hit rate on L2 and miss on L1. 

Average memory access time: 

tav = h1tL1 + (1-h1)h2tL2 + (1- h2)(1-h1)tmain 

        = h1tL1 + h2*tL2 + (1- h1-h2*)tmain 
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Replacement policies 

Replacement policy: strategy for choosing 
which cache entry to throw out to make 
room for a new memory location. 

Two popular strategies: 

Random. 

Least-recently used (LRU). 
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Cache organizations 

Fully-associative: any memory location 
can be stored anywhere in the cache 
(almost never implemented). 

Direct-mapped: each memory location 
maps onto exactly one cache entry. 

N-way set-associative: each memory 
location can go into one of n sets. 
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Cache performance 

benefits 

Keep frequently-accessed locations in fast 
cache. 

Cache retrieves more than one word at a 
time. 

Sequential accesses are faster after first 
access. 

Spatial locality 
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Direct-mapped cache 

valid 

= 

tag index offset 

hit=match and valid 

value 

tag data 

1 0xabcd byte byte byte ... 

byte 

cache block 

address 

match 
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Write operations 

Write-through: immediately copy write to 
main memory. 

Write-back: write to main memory only 
when location is removed from cache. 
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Direct-mapped cache 

locations 

Many locations map onto the same cache 
block. 

Conflict misses are easy to generate: 

Array a[] uses locations 0, 4, 8, … 

Array b[] uses locations 1024, 1028, 1032, … 

Operation a[i] + b[i] generates conflict 
misses. 
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Fully Associative Cache 
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Example caches 

StrongARM: 

16 Kbyte, 32-way, 32-byte block instruction 
cache. 

16 Kbyte, 32-way, 32-byte block data cache 
(write-back). 

C55x: 

Various models have 16KB, 24KB cache. 

Can be used as scratch pad memory. 
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Scratch pad memories 

Alternative to cache: 

Software determines what is stored in 
scratch pad. 

Provides predictable behavior at the cost 
of software control. 

C55x cache can be configured as scratch 
pad. 
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Memory management units 

Memory management unit (MMU) 
translates addresses: 

CPU 
main 

memory 

memory 

management 

unit 

logical 

address 
physical 

address 
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MMU 

Responsible for 
 VIRTUAL  PHYSICAL  
address mapping 

Sits between CPU and cache 

 

 

 

 

 

Cache operates on Physical Addresses 
(mostly - some research on VA cache) 

CPU 

MMU 

Cache 
Main 

Mem D or I 

VA PA 
PA 

D 

 or 

 I 
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Access time comparison 

 

 

 

 

 

 

 

 Price 

HDD<<NAND<DRAM<NOR 

Media Read Write Erase 

DRAM 60ns (2B) 
2.56us (512B) 

60ns (2B) 
2.56us (512B) 

N/A 

NOR flash 150ns (2B) 
14.4us (512B) 

211us (2B) 
3.53ms (512B) 

1.2s (128KB) 

NAND flash 10.2us (2B) 
35.9us (512B) 

201us (2B) 
226us (512B) 

2ms (16KB, 
128K) 

 

Disk 12.5ms (512B) 
(Average seek) 

14.5ms (512B) 
(Average seek) 

N/A 



Computers as Components 37 

MMU - operation 

Operating System allocates pages of physical 
memory to users  

OS constructs page tables - one for each user 

Page address from memory address selects a 
page table entry 

Page table entry contains physical page address
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Memory management tasks 

Allows programs to move in physical 
memory during execution. 

Allows virtual memory: 

memory images kept in secondary storage; 

images returned to main memory on demand 
during execution. 

Page fault: request for location not 
resident in memory. 
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MMU – address translation 

q-k 
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MMU - Virtual memory space 

Page Table Entries can also point to disc blocks 

If Valid bit is set, page in memory (address is physical 
page address); cleared, page “swapped out” (       

address is disc block address) 

MMU hardware generates page fault when swapped out 
page is requested 

Allows virtual memory space to be larger than 
physical memory 

Only “working set” is in physical memory 

Remainder on paging disc 
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MMU - Page Faults 

Page Fault Handler 

Part of OS kernel 

Finds usable physical page 

LRU algorithm 

Writes it back to disc if modified 

Reads requested page from paging disc 

Adjusts page table entries 

Memory access re-tried 
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Page Fault 

q-k 

8 

6 

2 

1 

4 

3 

7 



Computers as Components 43 

MMU - Page Faults 

Page Fault Handler 
 Part of OS kernel 

 Finds usable physical page 

LRU algorithm 

Writes it back to disc if modified 

 Reads requested page from paging disc 

 Adjusts page table entries 

Memory access re-tried 

Can be an expensive process! 

Usual to allow page tables to be swapped out too! 

Page fault can be generated on the page tables! 
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MMU - practicalities 

 Page size 

8 kbyte pages  k = 13 

 q = 32,  q - k = 19 

So page table size 

219 ≈ 0.5 x 106 entries 

Each entry 4 bytes 

 0.5 x 106 × 4 ≈ 2 Mbytes! 

 Page tables can take a lot of memory! 

Larger page sizes reduce page table size 
but can waste space (fragmentation) 
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MMU - practicalities 

Page tables are stored in main memory 

They’re too large to be in smaller memories! 

MMU needs to read page table for address 
translation 

 Address translation can require additional 
memory accesses!  
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MMU - Protection  

Page table entries 
Extra bits are added to specify access rights 

Set by OS (software) 

but 

Checked by MMU hardware! 

Access control bits 

Read 

Write 

Read/Write 

Execute only 
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MMU - Alternative Page 

Table Styles  

Inverted Page tables 

One page table entry (PTE) / page of physical memory 

MMU has to search for correct VA entry 

PowerPC hashes VA  PTE address 

• PTE address = h( VA ) 

• h – hash function 

Hashing  collisions 

Hash functions in hardware 

 “hash” of n bits to produce m bits (Usually m < n) 

Fewer bits reduces information content  
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MMU - Alternative Page 

Table Styles  

Hash functions in hardware 

“Fewer bits reduces information content 

There are only 2m distinct values now! 

 Some n-bit patterns will reduce to the same m-bit 

patterns 

Trivial example 

2-bits  1-bit with xor 

h(x1 x0) = x1 xor x0 

 

 

 

y     h(y) 

00     0 

01     1 

10     1 

11     0 

Collisions 
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MMU - Alternative Page 

Table Styles  

Inverted Page tables 
One page table entry (PTE) / page of 

physical memory 

MMU has to search for correct VA entry 

PowerPC hashes VA  PTE address 
• PTE address = h( VA ) 

• h – hash function 

Hashing  collisions 

PTEs are linked together 
• PTE contains tags (like cache) and link bits 

MMU searches linked list to find correct entry 

Smaller Page Tables / Longer searches 
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Address Translation - 

Speeding it up 

Two+ memory accesses for each datum? 

Page table 1 - 3 (single - 3 level tables) 

Actual data 1 

 system can be slowed down 

 Translation Look-Aside Buffer  

• Acronym: TLB or TLAB 

• Small cache of recently-used page table entries 

• Usually fully-associative 

• Can be quite small! 
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Address Translation - 

Speeding it up 

TLB sizes 

MIPS R10000         1996 64 entries 

Pentium 4 (Prescott) 2006 64 entries 

• One page table entry / page of data 

• Locality of reference 

• Programs spend a lot of time in same memory region 

TLB hit rates tend to be very high 

• 98% 

Compensate for cost of a miss 
(many memory accesses –  

but for only 2% of references to memory!) 
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TLB – Sequential access 

 Luckily, sequential access is fine! 

 Example: large (several MByte) matrix of 
doubles (8 bytes floating point values) 
 8kbyte pages => 1024 doubles/page 

 Sequential access, eg sum all values: 
 for(j=0;j<n;j++) 

   sum = sum + x[j] 
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Memory Hierarchy - Operation 
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Address translation 

Requires some sort of register/table to 
allow arbitrary mappings of logical to 
physical addresses. 

Two basic schemes: 

segmented; 

paged. 

Segmentation and paging can be 
combined (x86). 
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Segments and pages 

memory 

segment 1 

segment 2 

page 1 

page 2 
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Segment address translation 

segment base address logical address 

range 

check 

physical address 

+ 

range 

error 
segment lower bound 

segment upper bound 
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ARM memory management 

Memory region types: 

section: 1 Mbyte block; 

large page: 64 kbytes; 

small page: 4 kbytes. 

An address is marked as section-mapped 
or page-mapped. 

Two-level translation scheme. 
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ARM address translation 

offset 1st index 2nd index 

physical address 

Translation table 

base register 

1st level table 
descriptor 

2nd level table 
descriptor 

concatenate 

concatenate 


