
Computers as Components 1

Exception Modes

FIQ: fast interrupt request

IRQ: interrupt request

SVC: SWI and reset

 protected mode for OS

abort: prefetch abort and data abort

(virtual) memory protection

undefined: undefined instruction

Software emulation of HW coprocessors

Computers as Components 2

IRQ and FIQ exceptions

 IRQ and FIQ exceptions only occur when
a specific interrupt mask is cleared in cpsr.

 The ARM processor automaticaaly
completes the instruction in the execution
stage before handling the interrupt.

1. Change the processor mode

2. Save cpsr to spsr

3. Save pc to lr

4. Interrupt(s) are disabled

5. Branch to a specific entry in the vector table.

Computers as Components 3

Vector Table

A table of addresses that the ARM core
branches to when an exception is raised.

 RSET 0x0000 ; 0xffff0000 if in the higher address

 UNDEF 0x0004

 SWI 0x0008

 PABT 0x000c ; prefetch abort

 DABT 0x0010 ;data abort

 - 0x0014 ; reserved

 IRQ 0x0018

 FIQ 0x001c ; 0xffff001c if in the higher address

Computers as Components 4

Enabling and disabling

IRQ and FIQ exceptions

enabling_irq

 MRS r1, cpsr

 BIC r1, r1, #0x80

 MSR cpsr_c, r1

enabling_fiq

 MRS r1, cpsr

 BIC r1, r1, #0x40

 MSR cpsr_c, r1

disabling_irq

 MRS r1, cpsr

 ORR r1, r1, #0x80

 MSR cpsr_c, r1

disabling_fiq

 MRS r1, cpsr

 ORR r1, r1, #0x40

 MSR cpsr_c, r1

BIC: logical bit clear (AND NOT), ORR: logical bitwise or

Computers as Components 5

Basic interrupt stack

Exception handlers make intensive use of
stacks

A good stack design tries to avoid stack
overflow

Use memory protection

Call a stack check function

The stack for each processor mode has to
be set up in the initialization code

Computers as Components 6

Typical memory layouts

Vector table

Interrupt stack

Code

User stack

Heap

A

Vector table

Code

User stack

Heap

B
interrupt stack

Layout B does not corrupt the vector table when a stack overflow occurs

traditional

Computers as Components 7

Example: Basic interrupt stack

Vector table

Code

User stack

Static data

Free space

Unused

SVC stack

IRQ stack
0x8000

0x8000 - 640

0x8000 - 128

0x20

0x20000

Computers as Components 8

Stack design

Depends on
OS requirement for stack design

Target HW provides a physical limit to the
size and positioning of the stack memory.

ARM-based system : stack grow
downward with top of the stack at a high
memory address

Stack overflow must be avoided

Computers as Components 9

SVC Stack Setup

 USER_Stack EQU 0x200000

 IRQ_Stack EQU 0x8000

 SVC_Stack EQU IRQ_Stack – 128

 USER32md EQU 0x10 ;User mode

 IRQ32md EQU 0x12 ;IRQ mode

 SVC32md EQU 0x13 ;SVC mode

 Sys32md EQU 0x1f ;System mode

 NoInt EQU 0xc0 ;disable interrupts

; supervisor mode stack set up : core starts in supervisor mode

 LDR r13, SVC_NewStack ; r13_svc

 . . .

SVC_NewStack

 DCD SVC_Stack

Computers as Components 10

IRQ Stack Setup

; IRQ mode stack set up : change to IRQ mode

 MOV r2, #NoInt | IRQ32md

 MSR cpsr_c, r2

 LDR r13, IRQ_NewStack ; r13_irq

 . . .

IRQ_NewStack DCD IRQ_Stack

; USER mode stack set up : last in the initialization code

 MOV r2, Sys32md

 MSR cpsr_c, r2

 LDR r13, USR_NewStack ; r13_usr

 . . .

USR_NewStack DCD USR_Stack

Computers as Components 11

IRQ Handler

; assume that the IRQ stack has been set up by the initialization code

Interrupt_handler

 SUB r14, r14, #4 ; adjust lr

 STMFD sp!, {r0-r3, r12, r14} :save context

 LDR r0, =IRQStatus ;interrupt status address

 LDR r0, [r0] ;get interrupt status

 TST r0, #0x0080 ;if counter timer

 BNE timer_isr ; then branch to ISR

 TST r0,#0x0001 ;else if button press

 BNE button_isr ; then call button ISR

 LDMFD sp!,{r0-r3,r12,pc}^ ;return

Computers as Components 12

Often confused

Exception: an internal CPU event such as

floating point overflow

MMU fault (e.g., page fault)

trap (SWI)

Interrupt: an external I/O event such as

I/O device request

reset

In the ARM architecture manuals, the two
terms are mixed together

Computers as Components 13

SWI exception

Only a branch to the SWI handler is at x08.

SWI_handler

 STMFD sp!, {r0-r12,r14} ; save context

 LDR r10, [r14,#-4] ; load SWI instruction

 ; lr points to next instruction

 BIC r10, r10, #0xff000000 ;mask off the MSB 8 bits

 MOV r1,r13 ;copy SVC stack to r1

 MRS r2, spsr ;copy spsr to r2

 STMFD sp!, {r2} ; save r2 on stack

 BL swi_jumptable ;branch to swi_jumptable

Computers as Components 14

SWI exception

Only a branch to the SWI handler is at x08.

 LDMFD sp!, {r2} ;restore r2 (spsr)

 MSR spsr_cxsf, r2 ;copy r2 back to cpsr

 ; control, extension, status, flags bytes

 LDMFD sp!, {r0-r12, pc} ;restore context and return

swi_jumptable

 MOV r0,r10 ;mov SWI number to r0

 ; SWI number in r1

 B eventSWIhanlder ;branch to SWI handler

>

Computers as Components 15

Exception

Exception: internally detected error.

Exceptions are synchronous with
instructions but unpredictable.

Build exception mechanism on top of
interrupt mechanism.

Exceptions are usually prioritized and
vectorized.

Computers as Components 16

Trap

Trap (software interrupt): an exception
generated by an instruction.

Call supervisor mode.

ARM uses SWI instruction for traps.

Computers as Components 17

Co-processor

Co-processor: added function unit that is
called by instruction.

Floating-point units are often structured as
co-processors.

ARM allows up to 16 designer-selected co-
processors.

Floating-point co-processor uses units 1, 2.

Computers as Components 18

Caches and CPUs

CPU
ca

ch
e

co
n
tr

o
ll

er
 cache

main

memory

data

data

address

data

address

Computers as Components 19

Cache operation

Many main memory locations are mapped
onto one cache entry.

May have caches for:

instructions;

data;

data + instructions (unified).

Memory access time is no longer
deterministic.

Computers as Components 20

Terms

Cache hit: required location is in cache.

Cache miss: required location is not in
cache.

Working set: set of locations used by
program in a time interval.

Computers as Components 21

Types of misses

Compulsory (cold) miss : location has
never been accessed.

Capacity miss: working set is too large.

Conflict miss: multiple locations in
working set map to same cache entry.

Computers as Components 22

Memory system

performance

h = cache hit rate.

tcache = cache access time, tmain = main
memory access time.

Average memory access time:

tav = htcache + (1-h)tmain

Computers as Components 23

Multiple levels of cache

CPU L1 cache L2 cache

Computers as Components 24

Multi-level cache access

time

h1 = cache hit rate.

h2 = hit rate on L2 and miss on L1.

Average memory access time:

tav = h1tL1 + (1-h1)h2tL2 + (1- h2)(1-h1)tmain

 = h1tL1 + h2*tL2 + (1- h1-h2*)tmain

Computers as Components 25

Replacement policies

Replacement policy: strategy for choosing
which cache entry to throw out to make
room for a new memory location.

Two popular strategies:

Random.

Least-recently used (LRU).

Computers as Components 26

Cache organizations

Fully-associative: any memory location
can be stored anywhere in the cache
(almost never implemented).

Direct-mapped: each memory location
maps onto exactly one cache entry.

N-way set-associative: each memory
location can go into one of n sets.

Computers as Components 27

Cache performance

benefits

Keep frequently-accessed locations in fast
cache.

Cache retrieves more than one word at a
time.

Sequential accesses are faster after first
access.

Spatial locality

Computers as Components 28

Direct-mapped cache

valid

=

tag index offset

hit=match and valid

value

tag data

1 0xabcd byte byte byte ...

byte

cache block

address

match

Computers as Components 29

Write operations

Write-through: immediately copy write to
main memory.

Write-back: write to main memory only
when location is removed from cache.

Computers as Components 30

Direct-mapped cache

locations

Many locations map onto the same cache
block.

Conflict misses are easy to generate:

Array a[] uses locations 0, 4, 8, …

Array b[] uses locations 1024, 1028, 1032, …

Operation a[i] + b[i] generates conflict
misses.

Computers as Components 31

Fully Associative Cache

Computers as Components 32

Example caches

StrongARM:

16 Kbyte, 32-way, 32-byte block instruction
cache.

16 Kbyte, 32-way, 32-byte block data cache
(write-back).

C55x:

Various models have 16KB, 24KB cache.

Can be used as scratch pad memory.

Computers as Components 33

Scratch pad memories

Alternative to cache:

Software determines what is stored in
scratch pad.

Provides predictable behavior at the cost
of software control.

C55x cache can be configured as scratch
pad.

Computers as Components 34

Memory management units

Memory management unit (MMU)
translates addresses:

CPU
main

memory

memory

management

unit

logical

address
physical

address

Computers as Components 35

MMU

Responsible for
 VIRTUAL  PHYSICAL
address mapping

Sits between CPU and cache

Cache operates on Physical Addresses
(mostly - some research on VA cache)

CPU

MMU

Cache
Main

Mem D or I

VA PA
PA

D

 or

 I

Computers as Components 36

Access time comparison

 Price

HDD<<NAND<DRAM<NOR

Media Read Write Erase

DRAM 60ns (2B)
2.56us (512B)

60ns (2B)
2.56us (512B)

N/A

NOR flash 150ns (2B)
14.4us (512B)

211us (2B)
3.53ms (512B)

1.2s (128KB)

NAND flash 10.2us (2B)
35.9us (512B)

201us (2B)
226us (512B)

2ms (16KB,
128K)

Disk 12.5ms (512B)
(Average seek)

14.5ms (512B)
(Average seek)

N/A

Computers as Components 37

MMU - operation

Operating System allocates pages of physical
memory to users

OS constructs page tables - one for each user

Page address from memory address selects a
page table entry

Page table entry contains physical page address

Computers as Components 38

Memory management tasks

Allows programs to move in physical
memory during execution.

Allows virtual memory:

memory images kept in secondary storage;

images returned to main memory on demand
during execution.

Page fault: request for location not
resident in memory.

Computers as Components 39

MMU – address translation

q-k

Computers as Components 40

MMU - Virtual memory space

Page Table Entries can also point to disc blocks

If Valid bit is set, page in memory (address is physical
page address); cleared, page “swapped out” (

address is disc block address)

MMU hardware generates page fault when swapped out
page is requested

Allows virtual memory space to be larger than
physical memory

Only “working set” is in physical memory

Remainder on paging disc

Computers as Components 41

MMU - Page Faults

Page Fault Handler

Part of OS kernel

Finds usable physical page

LRU algorithm

Writes it back to disc if modified

Reads requested page from paging disc

Adjusts page table entries

Memory access re-tried

Computers as Components 42

Page Fault

q-k

8

6

2

1

4

3

7

Computers as Components 43

MMU - Page Faults

Page Fault Handler
 Part of OS kernel

 Finds usable physical page

LRU algorithm

Writes it back to disc if modified

 Reads requested page from paging disc

 Adjusts page table entries

Memory access re-tried

Can be an expensive process!

Usual to allow page tables to be swapped out too!

Page fault can be generated on the page tables!

Computers as Components 44

MMU - practicalities

 Page size

8 kbyte pages  k = 13

 q = 32, q - k = 19

So page table size

219 ≈ 0.5 x 106 entries

Each entry 4 bytes

 0.5 x 106 × 4 ≈ 2 Mbytes!

 Page tables can take a lot of memory!

Larger page sizes reduce page table size
but can waste space (fragmentation)

Computers as Components 45

MMU - practicalities

Page tables are stored in main memory

They’re too large to be in smaller memories!

MMU needs to read page table for address
translation

 Address translation can require additional
memory accesses!

Computers as Components 46

MMU - Protection

Page table entries
Extra bits are added to specify access rights

Set by OS (software)

but

Checked by MMU hardware!

Access control bits

Read

Write

Read/Write

Execute only

Computers as Components 47

MMU - Alternative Page

Table Styles

Inverted Page tables

One page table entry (PTE) / page of physical memory

MMU has to search for correct VA entry

PowerPC hashes VA  PTE address

• PTE address = h(VA)

• h – hash function

Hashing  collisions

Hash functions in hardware

 “hash” of n bits to produce m bits (Usually m < n)

Fewer bits reduces information content

Computers as Components 48

MMU - Alternative Page

Table Styles

Hash functions in hardware

“Fewer bits reduces information content

There are only 2m distinct values now!

 Some n-bit patterns will reduce to the same m-bit

patterns

Trivial example

2-bits  1-bit with xor

h(x1 x0) = x1 xor x0

y h(y)

00 0

01 1

10 1

11 0

Collisions

Computers as Components 49

MMU - Alternative Page

Table Styles

Inverted Page tables
One page table entry (PTE) / page of

physical memory

MMU has to search for correct VA entry

PowerPC hashes VA  PTE address
• PTE address = h(VA)

• h – hash function

Hashing  collisions

PTEs are linked together
• PTE contains tags (like cache) and link bits

MMU searches linked list to find correct entry

Smaller Page Tables / Longer searches

Computers as Components 50

Address Translation -

Speeding it up

Two+ memory accesses for each datum?

Page table 1 - 3 (single - 3 level tables)

Actual data 1

 system can be slowed down

 Translation Look-Aside Buffer

• Acronym: TLB or TLAB

• Small cache of recently-used page table entries

• Usually fully-associative

• Can be quite small!

Computers as Components 51

Address Translation -

Speeding it up

TLB sizes

MIPS R10000 1996 64 entries

Pentium 4 (Prescott) 2006 64 entries

• One page table entry / page of data

• Locality of reference

• Programs spend a lot of time in same memory region

TLB hit rates tend to be very high

• 98%

Compensate for cost of a miss
(many memory accesses –

but for only 2% of references to memory!)

Computers as Components 52

TLB – Sequential access

 Luckily, sequential access is fine!

 Example: large (several MByte) matrix of
doubles (8 bytes floating point values)
 8kbyte pages => 1024 doubles/page

 Sequential access, eg sum all values:
 for(j=0;j<n;j++)

 sum = sum + x[j]

Computers as Components 53

Memory Hierarchy - Operation

Computers as Components 54

Address translation

Requires some sort of register/table to
allow arbitrary mappings of logical to
physical addresses.

Two basic schemes:

segmented;

paged.

Segmentation and paging can be
combined (x86).

Computers as Components 55

Segments and pages

memory

segment 1

segment 2

page 1

page 2

Computers as Components 56

Segment address translation

segment base address logical address

range

check

physical address

+

range

error
segment lower bound

segment upper bound

Computers as Components 57

ARM memory management

Memory region types:

section: 1 Mbyte block;

large page: 64 kbytes;

small page: 4 kbytes.

An address is marked as section-mapped
or page-mapped.

Two-level translation scheme.

Computers as Components 58

ARM address translation

offset 1st index 2nd index

physical address

Translation table

base register

1st level table
descriptor

2nd level table
descriptor

concatenate

concatenate

