
Computers as Components 1

4. Bus-Based Computer Systems

CPU bus, I/O devices, and interfacing

CPU system as a framework

System level performance

Development and debugging

Computers as Components 2

Bus-Based Computer Systems

Microprocessors

Busses.

Memory devices.

I/O devices:

serial links

timers and counters

Keyboards, displays

analog I/O

Computers as Components 3

Summary

How to interconnect the components with
the system bus

4.2 memory

4.3 I/O devices

4.4. Interfaces for memory and I/O devices

4.5 platform

4.6 debugging

Computers as Components 4

4.1 The CPU bus

Bus allows CPU, memory, devices to
communicate.

Shared communication medium.

A bus is:

A set of wires.

A communications protocol.

Computers as Components 5

4.1.1 Bus protocols

Bus protocol determines how devices
communicate.

Devices on the bus go through sequences
of states.

Protocols are specified by state machines

One state machine per actor in the protocol

May contain asynchronous logic behavior.

Computers as Components 6

Four-cycle handshake

device 1 device 2

enq

ack

time

enquire

(device 1)

ack

(device 2)

1 2 3 4

action

1. Device 1 raises enq.

2. Device 2 responds with ack.

3. Device 2 lowers ack once it has finished.

4. Device 1 lowers enq.

Computers as Components 7

Handshaking

 In the handshaking transfer, four events
are proceeded in a cycle order:

1. ready (request):

2. data valid:

3. data acceptance:

4. acknowledge:

Computers as Components 8

Source-initiated transfer (Valid-Ack)

Source Destination

Data bus

Valid

Ack

: source's action

Data Valid

Valid

Ack

1

2

3

: destination's action

4

(ready)

(1. Source sends data: Valid ↑) (2. Destination receives data: Ack
↑)

(3. Source acknowledge: Valid ↓) (4. Destination is ready : Ack ↓)

Computers as Components 9

 In the handshaking transfer, four events are
proceeded in a cycle order:

1. ready: The destination device deasserts the acknowledge
signal and is ready to accept the next data.

2. data valid: The source device places the data onto the
data bus and asserts the valid signal to notify the
destination device that the data on the data bus is valid.

3. data acceptance: The destination device accepts (latches)
the data from the data bus and asserts the acknowledge
signal.

4. acknowledge: The source device invalidates data on the

data bus and deasserts the valid signal

Source-initiated transfer

Computers as Components 10

Destination-initiated transfer

(Req–Valid)

Source Destination

Data bus

Valid

Req

Data Valid

Valid

Req

1

4

3

2

: source's action : destination's action (ready)

(1. Destination requests data: Req↑) (2. Source sends data: Valid ↑)

(3. Destination receives data: Req↓) (4. Source acknowledge: Valid ↓
)

Computers as Components 11

 In the handshaking transfer, four events are
proceeded in a cycle order:
1. request: The destination device asserts the request

signal to request data from the source device.

2. data valid: The source device places the data on the
data bus and asserts the valid signal to notify the
destination device that the data is valid now.

3. data acceptance: The destination device accepts
(latches) the data from the data bus and asserts the
request signal.

4. acknowledge: The source device invalidates data on the
data bus and deasserts the valid signal to notify the
destination device that it has removed the data from
the data bus

Destination-initiated transfer

Computers as Components 12

Microprocessor busses

 Clock provides
synchronization.

 R/W is true when
reading (R/W’ is false
when reading).

 Address is a-bit bundle
of address lines.

 Data is n-bit bundle of
data lines.

 Data ready signals
when n-bit data is
ready.

Computers as Components 13

Timing diagrams

 Bus behavior is often specified as a timing diagram.

 Changing and stable

 Timing constraints

Computers as Components 14

State diagrams for bus read

CPU’s state diagam Device’s state diagram

Get

data
Done

Address

send

Check

ack

See

ack

Send

data
Release

ack

Address

receive

Wait

state

Issue

ack

Start state

Computers as Components 15

Multiple Bus Reads

wait

state

Computers as Components 16

Four-beat Wrapping Burst

HTRANS

HBURST

HCLK

HADDR

HSIZE

HREADY

HRDATA

NON SEQ SEQ SEQ

0x38 0x3C 0x30 0x34

0x38 0x3C 0x30 0x34

WRAP4

Word

If the start address of the transfer is not aligned to the total number of bytes

(size x beats) then the address of the transfers in the burst will wrap when

the boundary is reached.

wrapping

Computers as Components 17

Address and data Buses

CPU

adrs

device

data

adrs

data enable

Adrs enable

clk

Computers as Components 18

Address decoding

Computers as Components 19

Arbitration

Which master
uses the bus ?

Master#1

Slave#1 Slave#2

Master#2 Master#3

Slave#3

Arbiter mux

Decoder mux

Computers as Components 20

4.1.2 DMA

Direct memory access
(DMA) performs data
transfers without
executing
instructions.

CPU sets up transfer.

DMA engine fetches,
writes.

DMA controller is a
separate unit.

Computers as Components 21

Bus mastership

By default, CPU is bus master and initiates
transfers.

DMA must become bus master to perform
its work.

CPU can’t use bus while DMA operates.

Bus mastership protocol:

Bus request.

Bus grant.

Computers as Components 22

DMA operation

 CPU sets DMA registers for start address, length.

 DMA status register controls the unit.

 Once DMA is bus master, it transfers automatically.

May run continuously until complete.

May use every nth bus cycle.

Computers as Components 23

Bus transfer

sequence

diagram

Only if it requires to use the bus

Computers as Components 24

System bus configurations

Multiple busses allow
parallelism:

Slow devices on one
bus.

Fast devices on
separate bus.

A bridge connects
two busses.

CPU slow device

memory

high-speed

device

b
ri

d
g
e

slow device

Computers as Components 25

Bridge state diagram

Computers as Components 26

Bus Bridge

 A slave on a fast bus and the master of the slow
bus

 It takes commands from the fast bus and issues
those commands on the slow bus

 It also returns the results form the slow bus to the
fast bus.

Computers as Components 27

ARM AMBA bus

 Two varieties:

AHB is high-performance.

APB is lower-speed, lower
cost.

 AHB supports pipelining,
burst transfers, split
transactions, multiple bus
masters.

 All devices are slaves on
APB.

 Read AMBA specification

Computers as Components 28

On-Chip Bus (OCB)

 Interconnect components inside a single chip

CPU
On-chip

RAM

DMA
Bus

Master

B
R
I
D
G
E

UART

External
Memory
Interface

 Timer

 PIO Keypad

High bandwidth
bus

Low bandwidth
bus

Computers as Components 29

Importance of OCB for SOC

 Different components (IPs) may be developed by
different vendors

 On-chip bus: interface between different vendors

 Functional test vector generation based on the bus
protocol

Computers as Components 30

AMBA 2.0

 Advanced Microprocessor Bus Architecture

 On-chip bus proposed by ARM

 Very simple protocol

 High bandwidth bus

AHB (Advanced High-performance Bus)

ASB (Advanced System Bus)

 Low bandwidth bus

APB (Advanced Peripheral Bus)

Computers as Components 31

slave #1 slave #3

AMBA AHB

master #1 master #2

slave #2

arbiter

AMBA AHB Components

Computers as Components 32

On-Chip Bus (OCB)

Computers as Components 33

AMBA AHB Features

 Pipelined transfer

 Burst transfers

 Split Txns (Transactions)

 Single cycle bus master handover

 Single clock edge operation

 Non-tristate implementation

Wider data bus configurations (64/128 bits)

Computers as Components 34

AHB - Operation

 Master sends a request signal to the Arbiter

 Arbiter grants the bus to the Master

 Master starts transfer by sending address and control
signals and data

 Slave responds by sending the status signal

 Uses Write data bus for data transfer from Master to
Slave

 Uses Read data bus for data transfer from Slave to
Master

Computers as Components 35

Each transfer

 Each transfer consists of

An address and control cycle

One or more cycles for the data

 Two forms of bursts

Incrementing bursts

Wrapping bursts

 The address cycle cannot be extended

 The data cycle can be extended

Using HREADY signal.

Computers as Components 36

Basic Signals for Read Txn

master slave

HADDR[31:0]

HRDATA[31:0]

HRESP[1:0]

master slave

HCLK

master

HRESP[1:0]: transfer response

 OKAY,

 ERROR,

 RETRY,

 SPLIT

Computers as Components 37

Operation for a Read Txn

HADDR[31:0]

HRESP[1:0]

HCLK

A

Data (A) HRDATA[31:0]

OK (A)

Address Phase Data Phase

 OKAY: The transfer is normal. When READY goes high, the

 transfer has completed successfully.

Computers as Components 38

Pipelined Operation

HADDR

HRESP

HCLK

A1

Data (A1) HRDATA

OK (A1)

Address Phase (A1) Data Phase (A1)

Data (A2)

OK (A2)

A2

Address Phase (A2) Data Phase (A2)

Computers as Components 39

HREADY for a Slow Slave

master slave

HADDR[31:0]

HRDATA[31:0]

HRESP[1:0]

HREADY

master slave

HCLK

master

Computers as Components 40

Wait State Insertion

HADDR

HRESP

HCLK

A

HRDATA Data (A)

OK (A)

Slave Not Ready Slave Giving Data

HREADY Wait State

Computers as Components 41

HWRITE/HWDATA for a Write Txn

master slave

HADDR[31:0]

HRDATA[31:0]

HRESP[1:0]

HREADY

HWRITE

HWDATA[31:0]
master slave

HCLK

master

Computers as Components 42

HWRITE/HRDATA for a Read Txn

master slave

HADDR[31:0]

HRDATA[31:0]

HRESP[1:0]

HREADY

HWRITE

HWDATA[31:0]
master slave

HCLK

master

HWRITE: a read transfer when low

Computers as Components 43

Operation for a Write Txn

HADDR[31:0]

HRESP[1:0]

HCLK

A

Data (A) HWDATA[31:0]

OK (A)

Address Phase Data Phase

HWRITE

Computers as Components 44

Interconnection of Data Buses

Master#1

Slave#1 Slave#2

Master#2 Master#3

Slave#3

Arbiter mux

HWDATA

HRDATA

Decoder mux

Computers as Components 45

Response Type

HRESP[1:0] Response Description

00 OKAY Transaction Completed

01 ERROR Error Occurs

10 RETRY Transaction Not Completed

 Master Must Retry

11 SPLIT Transaction Not Completed

 Master Must Retry

 Slave Informs Completion

ERROR/RETRY/SPLIT: requires at least two cycle response

Computers as Components 46

Two Cycle Response

HADDR

HRESP

HCLK

A

HRDATA

RETRY (A)

HREADY

RETRY (A)

Computers as Components 47

Timing Diagram Practice

HADDR

HRESP

HCLK

HRDATA

HREADY

A1 A2 A3 A4

D1 D2

OK OK RETRY OK

D3

RETRY

A5 A4

D4

OK

The tow cycle response allows sufficient time for the master

to cancel the address already broadcasted and drive HTRANS[1:0] to IDLE

Before the start of the next transfer

Computers as Components 48

Timing Diagram Practice

HADDR

HRESP

HCLK

HRDATA

HREADY

A1 A2 A3 A4

A1 A2

OK OK OK OK

A3

A5

RETRY RETRY

A4

If the slave need more than two cycles to provide the ERROR, SPLIT

or RERTY response, then additional wait state may be inserted at the start

of the transfer.

Computers as Components 49

Burst Operation

HADDR[31:0]

HRDATA[31:0]

HRESP[1:0]

HREADY

HWRITE

HWDATA[31:0]

HTRANS[1:0]

HBURST[2:0]

HSIZE[2:0]

master slave

HCLK

master

HTRANS[1:0]: transfer types

 IDLE,

 BUSY,

 NONSEQ,

 SEQ

HBURST[2:0]: burst types

 Incrementing bursts,

 wrapping bursts

HSIZE[2:0]: transfer size

 8 x 2n

 8, 16, 32, 64, 128,

 256, 512, 1024

Computers as Components 50

Transfer Types

HTRANS[1:0] Type Description

00 IDLE No data transfer required

 Requires zero wait state OKAY response

01 BUSY Same as IDLE in the middle of burst
 transfers

 Address/Control unrelated previous

10 NONSEQ Single transfer or the first of a burst

 to the previous transfer

11 SEQ Remaining transfers in a burst

 Address/control related
 to the previous transfer

Computers as Components 51

Burst Modes

HBURST[2:0] Type Description

000 SINGLE Single transfer

001 INCR Incrementing burst of unspecified length

010 WRAP4 4-beat wrapping burst

100 WRAP8 8-beat wrapping burst

011 INCR4 4-beat incrementing burst

101 INCR8 8-beat incrementing burst

110 WRAP16 16-beat wrapping burst

111 INCR16 16-beat incrementing burst

Burst cannot cross a 1KB address boundary.

Computers as Components 52

Transfer Sizes

HSIZE[2:0] Size Description

000 8 bits Byte

001 16 bits Halfword

010 32 bits Word

100 128 bits 4-word line

011 64 bits -

101 256 bits 8-word line

110 512 bits -

111 1024 bits -

Computers as Components 53

Transfer Type Examples

HTRANS

HBURST

HCLK

HADDR

HSIZE

HREADY

HRDATA

NON BUSY SEQ SEQ SEQ

0x20 0x24 0x24 0x28 0x2C

INCR

Word

0x20 0x24 0x28 0x2C

Computers as Components 54

Four-beat Wrapping Burst

HTRANS

HBURST

HCLK

HADDR

HSIZE

HREADY

HRDATA

NON SEQ SEQ SEQ

0x38 0x3C 0x30 0x34

0x38 0x3C 0x30 0x34

WRAP4

Word

If the start address of the transfer is not aligned to the total number of bytes

(size x beats) then the address of the transfers in the burst will wrap when

The boundary is reached.

wrapping

Computers as Components 55

Four-beat Incrementing Burst

HTRANS

HBURST

HCLK

HADDR

HSIZE

HREADY

HRDATA

NON SEQ SEQ SEQ

0x38 0x3C 0x40 0x44

INCR4

Word

0x38 0x3C 0x40 0x44

Computers as Components 56

Undefined-length Bursts

HTRANS

HBURST

HCLK

HADDR

HSIZE

HREADY

HRDATA

NON SEQ NON SEQ SEQ

0x20 0x22 0x5C 0x60 0x64

INCR

Word

0x20 0x22 0x60 0x64

INCR

Halfword

0x5C

Computers as Components 57

Address decoding

Computers as Components 58

Arbitration

Which master
uses the bus ?

Master#1

Slave#1 Slave#2

Master#2 Master#3

Slave#3

Arbiter mux

Decoder mux

Computers as Components 59

Arbitration Signals

slave

HADDR[31:0]

HRDATA[31:0]

HRESP[1:0]

master

HREADY

HWRITE

HWDATA[31:0]

HTRANS[1:0]

HBURST[2:0]

HSIZE[2:0]

Arbiter

HBUSREQx

HGRANTx

Computers as Components 60

Arbitration signals

 Masters

HBUSREQx: up to 16 separate bus masters

HLOCKx: request locking during burst transactions

 Arbiter

HGRANTx:

HMASTER[3:0]: granted master ID

Used by a MUX that selects a granted master

Also used by split-capable slaves

HMASTERLOCK: indicate that the current transfer is part of
the locked sequence

 Slaves

HSPLIT[15:0]: indicate which master can complete a SPLIT
transaction

Computers as Components 61

Arbitration Phase

 A bus master uses the HBUSREQx signal to request
access to the bus.

 The arbiter will sample the request on the rising edge of
the clock and then … decide which master will be the

next to gain access to the bus

 A master gains ownership of the address bus when
HGRANTx is HIGH and HREADY is HIGH at the rising
edge of HCLK.

Computers as Components 62

Bus Master grant signals

Computers as Components 63

Arbitration Phases

HBUSREQx

HTRANS

HCLK

HGRANTx

HRDATA

HRESP OK

NONSEQ

DATA

Request Grant Address Data

Computers as Components 64

Undefined Length Burst

 For undefined length bursts the master should continue
to assert the request until it has started the last
transfer.

 The arbiter cannot predict when to change the
arbitration at the end of an undefined length burst.

Computers as Components 65

Undefined Length Burst

HBUSREQx

HTRANS

HCLK

HGRANTx

HBURST

HRESP OK

NON SEQ

OK OK OK

SEQ SEQ

INCR

For undefined length burst the master should continue to assert the request

until it has started the last transfer.

Computers as Components 66

Fixed Length Burst

When a master is granted the bus and is performing a
fixed length burst it is not necessary to continue to
request the bus in order to complete the burst.

 The arbiter observes the progress of the burst and uses
the HBURST[2:0] signals to determine how many
transfers are required by the master.

 Normally the arbiter will only grant a different bus
master when a burst is completing. However, if
required, the arbiter can terminate a burst early to allow
a higher priority master access to the bus.

Computers as Components 67

Fixed Length Burst

HBUSREQx

HTRANS

HCLK

HGRANTx

HBURST

HRESP OK

NON SEQ

OK OK OK

SEQ SEQ

WRAP4

Computers as Components 68

Arbitration Example: Slow Grant

HBUSREQx

HADDR

HCLK

HGRANTx

HRDATA

HRESP

DATA(A)

A

OK (A)

A

A

Computers as Components 69

Arbitration Example: Slow Grant

Computers as Components 70

Arbitration Example: Two Masters

HBUSREQ1

HTRANS

HCLK

HBUSREQ2

HBURST

HRESP OK OK

HGRANT1

HGRANT2

INCR4

SEQ

OK

SEQ NON SEQ NON

WRAP4

OK

Computers as Components 71

Arbitration Example: Two Masters

Computers as Components 72

Handover after burst

Computers as Components 73

On-Chip Bus (OCB)

 Interconnect components inside a single chip

CPU
On-chip

RAM

DMA
Bus

Master

B
R
I
D
G
E

UART

External
Memory
Interface

 Timer

 PIO Keypad

AHB APB

Computers as Components 74

AHB Arbiter Interface Diagram

Computers as Components 75

AMBA APB

 APB: Advanced Peripheral Bus

 Low power

 Latched address and control

 Simple interface

 Suitable for many peripherals

 No wait state allowed

 No burst transfers

 No arbitration (bridge the only master)

 No pipelined transfer

 No response signal

Computers as Components 76

APB State diagram

 IDLE: default state

 SETUP: only for one clock cycle

 ENABLE: address, data and
select signals all must remain
stable during the transition for
SETUP to ENABLE state. Only
for one clock cycle.

 Latched address and control

Computers as Components 77

Operation for a Read Txn

PADDR

PSELx

PCLK

A

PWRITE

Setup Phase Enable Phase

PRDATA

PENABLE

DATA (A)

Computers as Components 78

Operation for a Write Txn

PADDR

PSELx

PCLK

A

PWRITE

Setup Phase Enable Phase

PWDATA

PENABLE

DATA (A)

Computers as Components 79

APB Operation Example

PADDR

PSELx

PCLK

PWRITE

PRDATA

PENABLE

A1 A2 A3

A1 A4

A4

PWDATA A2

PSELy

A3

Computers as Components 80

APB Bridge

Computers as Components 81

APB Slave

Computers as Components 82

AMBA AXI

 Targeted at high-performance, high-frequency system
designs

 Backward compatible with AHB and APB interfaces
 Separate address/control and data phases
 Support for unaligned data transfers using byte strobes
 Burst-based transaction with only start address issued
 Separate read and write data channels to enable low-

cost DMA
 Ability to issue multiple outstanding addresses
 Out-of-order transaction completion
 Easy to add register stages for providing timing closure

