4.2 Memory components

Several different

types of memory: Address
DRAM. .
SRAM. C
Flash.

Memory
array

Each type of memory
comes in varying:

Capacities.
Widths.

Computers as Components

Random-access memory

Dynamic RAM is dense, requires refresh.
Off-chip
Synchronous DRAM is dominant type.

SDRAM uses clock to improve performance,
pipeline memory accesses.

Static RAM is faster, less dense, consumes
more power.

On-chip

Computers as Components 2

DDR SDRAM operations

Addressing (32M x 8)
8M x 8 x 4 banks
Refresh count 8k
Row address 8k (A0 — A12)
Bank Address 4 (BAO, BA1)
Column address 1k (A0 — A9)

CKE: clock enable
RAS#, CAS#, WE#: command inputs
DQO — DQ7: data input/output

DQS: data strobe, edge alighed with read data
and center in write data

DM: input data mask

Computers as Components

Functional block diagram

e
H
1
!
1
!
1
|
1
|
1
|
1
i
i
i
i
i
i
i CONTROL i
Euﬂ: LOHGIC i
ig BANK3 !
z8 BANK.2 '
a BANK / !
'
/ / !
1
!
. '
|| ReEFRESH |43 E
| 1 ~
MODE REGISTERS : NTER 94 o s BANKD o :
_ ! ADDRESS RO BANKD i
| RALIX E : ADDRESS MERMORY i
"5\|l ! LaTcH | 9192 ARRAY :
13 & (192 X 512 x 16) L DATA CLL '
T DECODER || 8 i
: gl 18 7 g '
! | '
7 REALD ML i - I
E SEMSE AMPLIFIERS [LaTeH | g 7 cRvRS | !
i > [ﬁ. i
| EH GENERATOR n i o
| \ e DOO-D07
' oL DS i
! 2 10 GATING FrEEE— INPLIT H
| + » DM MASE LOGIC 16 FEGISTERS L ey s
| BANK i
ADDRESS [— e e] COMTROL MASK !
GISTER LOGIC
REGISTE 2 5 = WRITE 4 i
e > . 512 FIFC . i
vl 312 " : ROVRS [a-! i o
—*i DRIVERS 1 + et
- ck CK
COLLUIMN DATA
% DECODER Sut In
COLUMN- T T
M ADDRESS 9 CK
mn COLUNTER! 7
LATEH oL
Jr’
1

DDR SDRAM operations

Table 28: Truth Table 1 - Commands
CKE is HIGH for all commands shown except SELF REFRESH; All states and sequences not shown are illegal or
reserved
Function CS# RAS# CAS# WE# Address Notes
DESELECT H X X X X 1
NO OPERATION (NOP) L H H H X 1
ACTIVE (select bank and activate row) L L H H Bank/row 2
READ (select bank and column and start READ burst) L H L H Bank/col 3
WRITE (select bank and column and start WRITE burst) L H L L Bank/col 3
BURST TERMINATE L H H L X 4
PRECHARGE (deactivate row in bank or banks) L L H L Code 5
AUTO REFRESH or SELF REFRESH L L L H X 6, 7
(enter self refresh mode)
LOAD MODE REGISTER L L L L Op-code 8
Table 29: Truth Table 2 - DM Operation
Used to mask write data, provided coincident with the corresponding data
Name (Function) DM DQ
Write enable L Valid
Write inhibit H X
Computers as Components 5

DDR SDRAM operations

Notes:

—

. DESELECT and NOP are functionally interchangeable.

BAO-BA1 provide bank address and A0-An (128Mb: n=11; 256Mb and 512Mb: n = 12; 1Gb:
n = 13) provide row address.

BAO-BA1 provide bank address; AO-AJ provide column address, (where Aj is the most signif-
icant column address bit for a given density and configuration, see Table 2 on page 2) A10
HIGH enables the auto precharge feature (non persistent), and A10 LOW disables the auto
precharge feature.

Applies only to READ bursts with auto precharge disabled; this command is undefined (and
should not be used) for READ bursts with auto precharge enabled and for WRITE bursts.

A10 LOW: BA0-BA1 determine which bank is precharged. A10 HIGH: all banks are pre-
charged and BAO-BA1 are "Don't Care.”

This command is AUTO REFRESH if CKE is HIGH; SELF REFRESH if CKE is LOW.

Internal refresh counter controls row addressing while in self refresh mode, all inputs and
I/0s are "Don't Care” except for CKE.

BAO-BA1 select either the mode register or the extended mode register (BAO = 0, BAT1 =0
select the mode register; BAO = 1, BA1 = 0 select extended mode register; other combina-
tions of BAO-BA1 are reserved). AO-An provide the op-code to be written to the selected

mode reqister.

Computers as Components 6

DDR SDRAM operations

Table 30: Truth Table 3 - Current State Bank n- Command to Bank n (10 the same bank)
Notes: 1-6 apply to the entire table; Notes appear below

Current State CS# | RAS# | CAS# | WE# |Command/Action Notes
Any H X X X | DESELECT (NOP/continue previous operation)

L H H H NO OPERATION (NOP/continue previous operation)
Idle L L H H ACTIVE (select and activate row)

L L L H |AUTO REFRESH 7

L L L L LOAD MODE REGISTER 7
Row active L H L H READ (select column and start READ burst) 10

L H L L WRITE (select column and start WRITE burst) 10

L L H L PRECHARGE (deactivate row in bank or banks) 8
Read L H L H |READ (select column and start new READ burst) 10
(auto precharge L H L L | WRITE (select column and start WRITE burst) 10, 12
disabled) L L H L |PRECHARGE (truncate READ burst, start PRECHARGE) 8

L H H L BURST TERMINATE 9
Write L H L H READ (select column and start READ burst) 10, 11
(auto precharge L H L L WRITE (select column and start new WRITE burst) 10
disabled) L L H L PRECHARGE (truncate WRITE burst, start 8, 11

PRECHARGE)

Computers as Components 7

DDR SDRAM operations

Table 31: Truth Table 4 - Current State Bank n- Command to Bank m (t0 the different bank)
Notes: 1-6 apply to the entire table; Notes appear on page 45
Current State CS# | RAS# | CAS# | WE# |Command/Action Notes
Any H X X X DESELECT (NOP/continue previous operation)
L H H H |NO OPERATION (NOP/continue previous operation)
Idle X X X X | Any command otherwise allowed to bank m
Row activating, active, L L H H |ACTIVE (select and activate row)
or precharging L H L H |READ (select column and start READ burst) 7
L H L L WRITE (select column and start WRITE burst) 7
L L H L PRECHARGE
Read (auto precharge L L H H | ACTIVE (select and activate row)
disabled) L H L H |READ (select column and start new READ burst) 7
L H L L WRITE (select column and start WRITE burst) 7,9
L L H L PRECHARGE
Write (auto precharge L L H H | ACTIVE (select and activate row)
disabled) L H L H |READ (select column and start READ burst) 7,8
L H L L WRITE (select column and start new WRITE burst) 7
L L H L PRECHARGE
Read (with auto- L L H H ACTIVE (select and activate row)
precharge) L H L H |READ (select column and start new READ burst) 7
L H L L WRITE (select column and start WRITE burst) 7.9
L L H L PRECHARGE
Write (with auto- L L H H | ACTIVE (select and activate row)
precharge) L H L H READ (select column and start READ burst) 7
L H L L WRITE (select column and start new WRITE burst) 7
L L H L

PRECHARGE

SDRAM operations

DESELECT

The DESELECT function (CS# HIGH) prevents new commands from being executed by

the DDR SDRAM. The DDR SDRAM is effectively deselected. Operations already in prog-
ress are not affected.

NO OPERATION (NOP)

The NO OPERATION (NOP) command is used to instruct the selected DDR SDRAM to
perform a NOP (CS# is LOW with RAS#, CAS#, and WE# are HIGH). This prevents

unwanted commands from being registered during idle or wait states. Operations
already in progress are not affected.

LOAD MODE REGISTER (LMR)

The mode registers are loaded via inputs AO-An (see "REGISTER DEFINITION" on page
55). The LMR command can only be issued when all banks are idle, and a subsequent
executable command cannot be issued until "MRD is met.

Computers as Components 9

Activating a Specific Row in a Specific Bank

ACTIVE CK#¢ ------- #

CKE HIGH
An active command is s TN ST
used to open or active

a row in a particular st 1IN ST,

bank for a

subsequent access, st IO
like a read or a write.

The value of BAO, BA1 wee 10| U,
inputs selects the

bank, and the address awes 7777777/,
provided on inputs AQ

~A12 selects the rOW. oo e 777760777
/,.-"" Don't Care

Computers as Components 10

CK# *
cK ———f------- READ

S A read command is
e U used to initiate a burst
. ‘ o rea_d access to an
| active row. The value
wes T U of BAO, BA1 inputs
address /////) <o W//]] selects the bank, and
the address provided
a7/ X
on inputs A0 ~ A12
Bank)(///// selects the starting
//}} por care column location.

Note: EN AP = enable auto precharge; DIS AP = disable auto precharge.

Computers as Components 11

CKE HIGH

st /111N

L

RAS# M
enst (/1IN LI/,

wes 1771/

il

[T,

address ///// <ol Y//1/),

EN AP

a10 //1//) Y
DIS AP

BAOD, BA1 M@M

//,

Don't Care

WRITE

A write command is
used to initiate a burst
write access to an
active row. The value
of BAO, BA1 inputs
selects the bank, and
the address provided
on inputs A0 ~ Al12
selects the starting
column location.

Note: EN AP = enable auto precharge; and DIS AP = disable auto precharge.

Computers as Components 12

PRECHARGE

A precharge command is
o Wi used to deactivate the open
wse I\ I row in a particular bank or
| .
s T ‘ i thhe opclen rO\év in all banks.
The value of BAO, BA1 inputs

WE# W}: f////_ /
m@ selects the bank, and the

A10 input selects whether a
o TG UL single bank is precharged or

BAO, BAT fiiif;{aartm}ziﬁi Whether a” bankS dare
77) oo cae precharged

Motes: 1. If A10is HIGH, bank address becomes "Don't Care.”
Computers as Components 13

SDRAM operations

BURST TERMINATE (BST)

The BURST TERMINATE command is used to truncate READ bursts (with auto
precharge disabled). The most recently registered READ command prior to the BURST
TERMINATE command will be truncated, as shown in “Operations” on page 52. The
open page from which the READ burst was terminated remains open.

AUTO REFRESH (AR)

SELF REFRESH

AUTO REFRESH is used during normal operation of the DDR SDRAM and is analogous
to CAS#-before-RAS# (CBR) refresh in FPM/EDO DRAMs. This command is nonpersis-

tent, so it must be issued each time a refresh is required. All banks must be idle before an
AUTO REFRESH command is issued.

The SELF REFRESH command can be used to retain data in the DDR SDRAM, even if the
rest of the system is powered down. The SELF REFRESH command is initiated like an
AUTO REFRESH command except CKE is disabled (LOW).

Computers as Components 14

Address

A10

BAD, BA1

DQs

DO

oI

[

Supply voltage

%
10 supply votae Initialization
v/) O
I _termination voltage
1)
.._reference voltage
0 Ta0 Tc0 Tel

LOW level

LVEMOS l(_/LH Hw

s |t

e ey p ey

Ay —dy

1T

///?F///////gW/WW/?//??W

AVAV&V//AVAV//&?AVAVMV/

ts

//f/f//f///z////f/ff/,f/f/;;z»k

| All banks ,|

LI, W /11111177,)“

e e

Us|tH | I I

1T, j)f /, ///,-’/// /1/,

;;Mcou 3>Qé//// ////xﬁ?/////////ﬁéf/// ////)WW%?)
i
: Q&Eﬂ?:ﬂ){}é}ﬁ’fﬁ/gzzzzz 7 ?/f/;mf' A)))

| |
d[High Z (L (((((((. (!
| | ‘ ‘ 1] | | | 1] |) ‘) |) ‘ I
1 I | 1 1 1 1 !
{(High-Z, (((((((((
! | }ll)] 1] 1])])| I
T = 200ps ! ! !
i tRp MRD MRD trp tRFC tRFC
- Power-up: Voo and CK stable Load extenc led
mode register 200 eycles of CK4
Load mode
registerh

(
[o poresin. {joencn

15

BAT1 BAD An ...

|

Mode register

|

|

/ne2/ns1/m /. o/ 8/ 1/6/5/4/3

)

AS AB AT AB A5 A4 A3 AZ A1 AD Address bus

| |

2/1/0

Mode register

.0 0 Operating mode |CAS Latency|BT Burst length |/ (Mx)
—
: M2 | M1 |Mo | Burst Length
Mn + 2 [Mn + 1 | Mode Register Definition 0 0 Reserved
0 0 Base mode register Y NrE >
0 1 Extended mode register M3 | Burst Type ol1lo a
1 0 Reserved 0 Sequential e] 3
1 1 Reserved 1 Interleaved 11olo Reserved
110 (1 Reserved
Mn M9 | M8 | M7 | M6-MO | Operating Mode 1[1]0 | Reserved
00|00 |0 Valid |MNormal operation 1) Reserved
olof[0]1 0 | Valid [MNormal operationireset DLL
-l =-1-=-1-1- - All other states reserved - M6 | M5 | ma | cas Latency
0 0 0 Reserved
0 0 1 Reserved
The mode register is used to o[1]o]
. . 0 1 1 3 (-5B only)
define a specific DDR 1[0 [0] Reservec
. 1 0 1 Reserved
SDRAM mode of operation. 10| 2
1 1 1 Reserved
Computers as Components 16

Burst length and Burst type

Table 34: Burst Definition
Order of Accesses Within a Burst
Burst Length Starting Column Address Type = Sequential Type = Interleaved

2 - - A0 - -
- - 0 0-1 0-1
- - 1 1-0 1-0

4 - A1 A0 - -
- 0 0 0-1-2-3 0-1-2-3
- 0 1 1-2-3-0 1-0-3-2
- 1 0 2-3-0-1 2-3-0-1
- 1 1 3-0-1-2 3-2-1-0

8 A2 A1 A0 - -
0 0 0 0-1-2-3-4-5-6-7 0-1-2-3-4-5-6-7
0 0 1 1-2-3-4-5-6-7-0 1-0-3-2-5-4-7-6
0 1 0 2-3-4-5-6-7-0-1 2-3-0-1-6-7-4-5
0 1 1 3-4-5-6-7-0-1-2 3-2-1-0-7-6-5-4
1 0 0 4-5-6-7-0-1-2-3 4-5-6-7-0-1-2-3
1 0 1 5-6-7-0-1-2-3-4 5-4-7-6-1-0-3-2
1 1 0 6-7-0-1-2-3-4-5 6-7-4-5-2-3-0-1
1 1 1 7-0-1-2-3-4-5-6 7-6-5-4-3-2-1-0

Computers as Components

CAS latency

The CAS latency is the delay, in clock cycles, between

the registration of a READ command and the availability

gf tlhekfirst bit of output data, which can be set 2, 2,5, or
clocks.

CK

Command

55;;x<>“’<>§<>$(

DO iy

Computers as Components 18

Read-only memory

ROM may be programmed at factory.

Flash is dominant form of field-
programmable ROM.
Electrically erasable, must be block erased.

Random access, but write/erase is much
slower than read.

NOR flash is more flexible.
NAND flash is more dense.

Computers as Components 19

Flash memory

Non-volatile memory.
Flash can be programmed in-circuit.

Random access for read.

To write:

Erase a block to 1.
Write bits to 0.

Computers as Components

20

Flash writing

Write is much slower than read.
1.6 us write, 70 ns read.
Blocks are large (approx. 1 Mb).

Writing causes wear that eventually
destroys the device.
Modern lifetime approx. 1 million writes.

Computers as Components 21

Types of flash

NOR:

Word-accessible read.
Erase by blocks.

NAND:
Read by pages (512-4K bytes).
Erase by blocks.

NAND is cheaper, has faster erase,
seguential access times.

Computers as Components

22

=X

st UA EHE 82 5= A ®E1
de= AdoltH 4/260HAl M=

NAND flash memory Q| CHoll Al 2= Atot0d
AAlet E OME 5/30HK HI=

Computers as Components 23

4.3 1/0 devices

Timers and counter are very similar:
a is decremented by a periodic signal;

a IS incremented by an
asynchronous, occasional signal.

When the watchdog timer rolls over. It
generates an interrupt to the system.

Computers as Components 24

Watchdog timer

Watchdog timer is periodically reset by
system timer before it reaches this time-
out limit.

If the watchdog timer reaches this limit ,
it generates an interrupt to reset the host.

~interrupt
reset

Computers as Components 25

Switch debouncing

A switch must be debounced to multiple
contacts caused by eliminate mechanical
bouncing:

e

Computers as Components 26

Encoded keyboard

An array of switches is read by an encoder.

A 4-bit microprocessor on a keyboard
Debouncing: wait and see (waits for 10~ 20 ms)
ASCII code for each key is stored in a LUT.

Scanned keyboard: one row at a time
Control-Q

Rollover (pressing another before releasing a key) may not
be allowed

can be programmed, which
remembers multiple key depressions.

Computers as Components 27

Keyboard scan matrix

To allow for “rollover”
identifies the depressing(make code)
and release(break code)

v
.+A4 Multiplexer
AU A Y N A O Y
Micro- N S U A YR A Y
controller A AN AN RANANAN

SN\ A A A A A NN A NN X
2\ A A A A A A A N A A Y

SN\ M\ A A A AN AN

N OO A A A A A AN
A A A A A A AN A Y

programmed to periodically ANV AN \ NN AN

scan all intersections Y

8 X 16 = 128 intersections

Computers as Components 28

Standard Keyboard Layout

A standard computer keyboard has about 100 keys.

Most keyboards use the QWERTY layout, named for

the first six keys in the top row of letters.

.
‘Tdb_*

.

Computers as Components

29

How a Keyboard Works

A keyboard is a lot like a miniature computer.

It has its own processor and circuitry that carries information
to and from that processor.

A large part of this circuitry makes up the key matrix.

Computers as Components 30

Parts of Keyboard Circultry

Keyboard controller
Keyboard buffer
Scan code
Interrupt request

Computers as Components

31

How the Computer Accepts Input

from the Keyboard

0 Key is pressed on the keyboard.

KEYBOARD
CONTROLLER

€) The keyboard controller
sends an interrupt
request to the
system software.

@ The keyboard controller
sends the scan code
for the key to the
keyboard buffer.

Computers as Components

@ The system software responds to

the interrupt by reading the scan
code from the keyboard buffer.

SYSTEM
SOFTWARE

© The system software
passes the scan code
to the CPU.

CPU

32

4.5.1 System architectures

Architectures and components:
software;
hardware.

Some software is very hardware-
dependent (HdS).

Computers as Components

33

Hardware platform architecture

Contains several elements:
CPU;
bus;
memory;

I/O devices: networking, sensors, actuators,
etc.

How big/fast much each one be?
How are they connected?

Computers as Components 34

Software architecture

Functional description must be broken
iInto pieces:

division among people;
conceptual organization;
performance;

testability;

maintenance.

Computers as Components

35

HW/SW architectures

Hardware and software are intimately
related:
software doesn’t run without hardware;

how much hardware you need is determined
by the software requirements:

speed;

memory.

Computers as Components 36

Evaluation boards

Designed by CPU manufacturer or others.
Includes CPU, memory, some I/O devices.

May include prototyping section.

CPU manufacturer often gives out
evaluation board netlist---can be used as
starting point for your custom board

design.

Computers as Components 37

Adding logic to a board

Programmable logic devices (PLDs)

Provic

e low/medium density logic.

Field-programmable gate arrays (FPGAS)

Provic
Applic

e more logic and multi-level logic.
ation-specific integrated circuits

(ASICs) are manufactured for a single
purpose.

Computers as Components 38

4.5.3 The PC as a platform

Advantages:
cheap and easy to get;
rich and familiar software environment.

Disadvantages:
requires a lot of hardware resources;
not well-adapted to real-time.

Computers as Components

39

Typical hardware platfor

e o [
e = W _ L

< >

high-speed bus

A 4
bus
interface

CPU bus
- ‘ low-speed b:us

Interface —

Computers as Components 40

Typical busses

PCI: standard for high-speed interfacing
33 or 66 MHz.

PCI Express (PCle): serial link.

4 data wires per lane,
V1.x: 250 MB/s per lane
V2.0: 500 MB/s per lane
V3.0: 1GB/s per lane

USB (Universal Serial Bus), Firewire (IEEE
1394): relatively low-cost serial interface with
high speed.

Computers as Components

41

Software elements

IBM PC uses BIOS (Basic I/O System) to implement low-
level functions:

boot-up;

minimal device drivers.
BIOS has become a generic term for the lowest-level
system software.

Boot firmware
designed to be the first code run by a PC when powered on.

identify, test, and initialize system devices such as the video
display card, hard disc, and floppy disc and other hardware.

prepare the machine into a known state, so that software stored
OP %om%atible media can be loaded, executed, and given control
of the P

This process is known as booting, or booting up, which is short
for bootstrapping.

Computers as Components 42

Software elements

BIOS programs are stored on a flash ROM and are built
to work with various devices that make up the
complementary chipset of the system.

They provide a small library of basic input/output
functions that can be called to operate and control the
peripherals such as the keyboard, text display functions
and so forth.

In the IBM PC and AT, certain peripheral cards such as
hard-drive controllers and video display adapters carried
their own BIOS extension ROM, which provided
additional functionality.

OS and executive software, designed to supersede this
basic firmware functionality, will provide replacement
software interfaces to applications.

Computers as Components 43

4.6 Debugging embedded systems

Challenges:
target system may be hard to observe;
target may be hard to control;
may be hard to generate realistic inputs;
setup sequence may be complex.

Computers as Components 44

Host/target design

Use a host system to prepare software for
target system:

host system

serial line

Computers as Components

target
system

45

Host-based tools

Cross compiler:
compiles code on host for target system.

Cross debugger:

displays target state, allows target system to be
controlled.

by establishing a debug message protocol and using
an interface like TCP/IP for communication between
host development system and the target system,

where the application to be debugged actually runs.

Computers as Components 46

Software for debuggers

A monitor, which is a small debug handler
application, should run in user space on
the target. It usually idles in user space
memory and gets triggered by a
dedicated debug interrupt.

This is when it starts sending status
information via a dedicated TCP/IP port to
the host system where the debugger itself
IS waiting to pick up the data it receives.

Computers as Components 47

Software for debuggers

The debug interrupt could be caused by a
breakpoint or data watchpoint being hit. It
could also be triggered by an explicit
action on the debug host.

The developer telling the debugger to
attach to a specific running process or
telling the debugger to stop a specific
thread.

Computers as Components 48

Breakpoints

A breakpoint allows the user to stop
execution, examine system state, and
change state.

Replace the breakpointed instruction with
a subroutine call to the monitor program.

Can you set breakpoints in programs
running out of ROM? No

Computers as Components 49

ARM breakpoints

0x400 MUL r4,r6,r6
0x404 ADD r2,r2,r4

0x408 ADD r0,r0,#1
0x40c B loop i

0x400 MU
0x404 AD
0x408 AD

L r4,r6,r6
D r2,r2,r4
D r0,r0,#1

O0x40c BL

obkpoint

Computers as Components

50

Breakpoint handler actions

Save registers.
Allow user to examine machine.

Before returning, restore system state.

(when the breakpoint is erased) Safest way to
continue execution is to replace back the original
instruction while fixing the return address.

(when the breakpoint is to remain) Put another temp
breakpoint after replacing back the original
instruction. When reached to the temp breakpoint
after executing the original instruction, replace back
the original breakpoint, remove the temp breakpoint,
and resume execution.

Computers as Components 51

In-circuit emulators (ICE)

A microprocessor in-circuit emulator is a
specially-instrumented microprocessor.

Allows you to stop execution, examine CPU
state, modify registers.

the emulator is a bridge between your target
and your PC, giving you both an interactive
terminal peering deeply into the target, while
providing a rich set of debugging resources.

Computers as Components

52

History

In the beginning, there was the ROM debug
monitor.

After that the in-circuit emulator (ICE) came. By
using special bond-out versions of processors, an
ICE provides capabilities far beyond those of a
simple ROM monitor.

Now, dedicated debug circuitry is integrated into
their chips. Or, simply software debug capabilities
are added to their existing JTAG ports. Collectively,
we'll call these technologies on-chip debug. Such
hardware-based capabilities take the place of a
software debug monitor, yet offer some additional
features previously associated only with emulators.

Computers as Components 53

What does the debugger
need to know?

RAM ROM 1/O

Programmers’ model: device

System components i 2
System busses)
Base addresses

Device registers DAP

Debug access
description:

Debug access to
processors

Other debug devices
Debug interconnections

0x0)x30000000

DSP

Computers as Components 54

Logic analyzer

A logic analyzer can be regarded as an
array of low-grade oscilloscopes:

-\

Computers as Components

55

Logic analyzer architecture

sample
memory

lock
system cloc vector address
state or 0a
timing mode 28

keypad

display

Computers as Components 56

State and timing modes

Timing mode: several samples per period
For glitch oriented debugging
more memory

State mode: one sample per period
For sequential oriented problem

Computers as Components

o7

Boundary scan

Simplifies testing of
multiple chips on a
board.

Registers on pins can
be configured as a
scan chain.

Used for debuggers,
in-circuit emulators.

Computers as Components

58

How to exercise code

Run on host system.

Run on target system.

Run in instruction-level simulator.
Run on cycle-accurate simulator.

Run in hardware/software co-simulation
environment.

Computers as Components 59

Debugging real-time code

Bugs in drivers can cause non-
deterministic behavior in the foreground
problem.

Bugs may be timing-dependent.

Computers as Components 60

4.7 System-level
performance analysis

Performance depends
on all the elements of
the system:

CPU.

Cache. cache

Bus. <€ K/ >
Main memory.

I/O device.

memory

Computers as Components 61

Bandwidth as performance

Bandwidth applies to several components:

Memory.
Bus.

CPU fetches.

Different par
different cloc

s of the system run at

K rates.

Different components may have different
widths (bus, memory).

Computers as Components 62

Bandwidth and data
transfers

Per video frame: 320 x 240 x 3 = 230,400
bytes.

Transfer in 1/30 sec.

Transfer 1 byte/usec, 0.23 sec per frame.
Too slow.

Increase bandwidth:
Increase bus width.
Increase bus clock rate.

Computers as Components 63

Bus bandwidth

T: # bus cycles.

P: time/bus cycle.

Total time for transfer:
t=TP.

D: data payload length.

O1 + 02 = overhead O.
Address, handshaking

N bytes to be transferred
Bus width: W bytes Thasic(N) = (D+O)N/W

Ol 02

Computers as Components 64

Bus burst transfer bandwidth

T: # bus cycles.
P: time/bus cycle.

Total time for transfer:

t=TP.

D: data payload length.
O1 + O2 = overhead O.

m———
e

I IO

Thurst(N) = (BD+O)N/(BW)

Computers as Components

65

Memory aspect ratios

e - e iy R

N

64 M

Computers as Components 66

Memory access times

Memory component access times comes from chip data
sheet.

Page modes allow faster access for successive
transfers on same page.

What if data doesn't fit naturally into physical words:
A pixel: RGB 24-bit

an access for 24-bit-wide memory

3 accesses for 8-bit wide memory

how about 32-bit wide memory
waste one byte for each access
packing

Computers as Components 67

Bus performance
bottlenecks

Transfer 320 x 240
video frame @ 30

frames/sec = 612,000

bytes/sec. TEOT
Is performance
bottleneck bus or <

memory?

Computers as Components

68

Bus performance
bottlenecks, cont’d.

Bus: assume 1 MHz bus, D=1, O=3:

Thasic = (14+3)612,000/2 = 1,224,000 cycles
= 1.224 sec.

Memory: try burst mode B=4, width
w=0.5. (assume 10MHz)

Tem = (4¥1+4)612,000/(4%0.5) = 2,448,000
cycles = 0.2448 sec.

Computers as Components 69

Performance spreadsheet

bus memory
clock period 1.00E-06 clock period 1.00E-08
W 2 W 0.5
D 1 D 1
o 3 0 4
B 4
N 612000 N 612000
T basic 1224000 T mem 2448000
t 1.22E+00 t 2.45E-02

Computers as Components

4.7.2 Parallelism

Speed things up by C
running several units et p——
at OnCe . bus transfer 1, transfer 2

DMA provides Sequentia Time

parallelism if CPU

doesn’t need the bus:
DMA + bus.

CPy setup calcl calc2

bus transfer 1| | transfer 2

CPU Parallel Time

Computers as Components 71

