

Computers as Components 1

4.2 Memory components

Several different
types of memory:

DRAM.

SRAM.

Flash.

Each type of memory
comes in varying:

Capacities.

Widths.

Computers as Components 2

Random-access memory

Dynamic RAM is dense, requires refresh.

Off-chip

Synchronous DRAM is dominant type.

SDRAM uses clock to improve performance,
pipeline memory accesses.

Static RAM is faster, less dense, consumes
more power.

On-chip

Computers as Components 3

DDR SDRAM operations

Addressing (32M x 8)
8M x 8 x 4 banks
Refresh count 8k
Row address 8k (A0 – A12)
Bank Address 4 (BA0, BA1)
Column address 1k (A0 – A9)

CKE: clock enable
RAS#, CAS#, WE#: command inputs
DQ0 – DQ7: data input/output
DQS: data strobe, edge aligned with read data

and center in write data
DM: input data mask

Computers as Components 4

Functional block diagram

Computers as Components 5

DDR SDRAM operations

Computers as Components 6

DDR SDRAM operations

Computers as Components 7

DDR SDRAM operations

(to the same bank)

Computers as Components 8

DDR SDRAM operations

(to the different bank)

Computers as Components 9

SDRAM operations

Computers as Components 10

ACTIVE

An active command is
used to open or active
a row in a particular
bank for a
subsequent access,
like a read or a write.
The value of BA0, BA1
inputs selects the
bank, and the address
provided on inputs A0
~A12 selects the row.

Computers as Components 11

READ

A read command is
used to initiate a burst
read access to an
active row. The value
of BA0, BA1 inputs
selects the bank, and
the address provided
on inputs A0 ~ A12
selects the starting
column location.

Computers as Components 12

WRITE

A write command is
used to initiate a burst
write access to an
active row. The value
of BA0, BA1 inputs
selects the bank, and
the address provided
on inputs A0 ~ A12
selects the starting
column location.

Computers as Components 13

PRECHARGE

A precharge command is
used to deactivate the open
row in a particular bank or
the open row in all banks.
The value of BA0, BA1 inputs
selects the bank, and the
A10 input selects whether a
single bank is precharged or
whether all banks are
precharged

Computers as Components 14

SDRAM operations

Computers as Components 15

Initialization

Supply voltage

I/O supply voltage

termination voltage

reference voltage

Computers as Components 16

Mode register

The mode register is used to
define a specific DDR
SDRAM mode of operation.

Computers as Components 17

Burst length and Burst type

Computers as Components 18

CAS latency

 The CAS latency is the delay, in clock cycles, between
the registration of a READ command and the availability
of the first bit of output data, which can be set 2, 2,5, or
3 clocks.

Computers as Components 19

Read-only memory

ROM may be programmed at factory.

Flash is dominant form of field-
programmable ROM.

Electrically erasable, must be block erased.

Random access, but write/erase is much
slower than read.

NOR flash is more flexible.

NAND flash is more dense.

Computers as Components 20

Flash memory

Non-volatile memory.

Flash can be programmed in-circuit.

Random access for read.

To write:

Erase a block to 1.

Write bits to 0.

Computers as Components 21

Flash writing

Write is much slower than read.

1.6 ms write, 70 ns read.

Blocks are large (approx. 1 Mb).

Writing causes wear that eventually
destroys the device.

Modern lifetime approx. 1 million writes.

Computers as Components 22

Types of flash

NOR:

Word-accessible read.

Erase by blocks.

NAND:

Read by pages (512-4K bytes).

Erase by blocks.

NAND is cheaper, has faster erase,
sequential access times.

Computers as Components 23

숙제

 중간고사 문제를 남의 도움을 받지 않고
정답을 작성하여 4/26까지 제출

 NAND flash memory에 대해서 조사하여
자세한 보고서를 5/3까지 제출

Computers as Components 24

4.3 I/O devices

Timers and counter are very similar:

a timer is decremented by a periodic signal;

a counter is incremented by an
asynchronous, occasional signal.

When the watchdog timer rolls over. It
generates an interrupt to the system.

Computers as Components 25

Watchdog timer

Watchdog timer is periodically reset by
system timer before it reaches this time-
out limit.

If the watchdog timer reaches this limit ,
it generates an interrupt to reset the host.

host CPU
watchdog

timer

interrupt

reset

Computers as Components 26

Switch debouncing

A switch must be debounced to multiple
contacts caused by eliminate mechanical
bouncing:

Computers as Components 27

Encoded keyboard

An array of switches is read by an encoder.

A 4-bit microprocessor on a keyboard
Debouncing: wait and see (waits for 10~ 20 ms)

ASCII code for each key is stored in a LUT.

Scanned keyboard: one row at a time
Control-Q

Rollover (pressing another before releasing a key) may not
be allowed

N-key rollover can be programmed, which
remembers multiple key depressions.

Computers as Components 28

Keyboard scan matrix

8 X 16 = 128 intersections

To allow for “rollover”

identifies the depressing(make code)
and release(break code)

programmed to periodically
scan all intersections

Computers as Components 29

• A standard computer keyboard has about 100 keys.

• Most keyboards use the QWERTY layout, named for

 the first six keys in the top row of letters.

Standard Keyboard Layout

Computers as Components 30

How a Keyboard Works

 A keyboard is a lot like a miniature computer.

 It has its own processor and circuitry that carries information

to and from that processor.

 A large part of this circuitry makes up the key matrix.

Computers as Components 31

Parts of Keyboard Circuitry

Keyboard controller

Keyboard buffer

Scan code

Interrupt request

Computers as Components 32

How the Computer Accepts Input

from the Keyboard

Computers as Components 33

4.5.1 System architectures

Architectures and components:

software;

hardware.

Some software is very hardware-
dependent (HdS).

Computers as Components 34

Hardware platform architecture

Contains several elements:
CPU;

bus;

memory;

I/O devices: networking, sensors, actuators,
etc.

How big/fast much each one be?

How are they connected?

Computers as Components 35

Software architecture

Functional description must be broken
into pieces:

division among people;

conceptual organization;

performance;

testability;

maintenance.

Computers as Components 36

HW/SW architectures

Hardware and software are intimately
related:

software doesn’t run without hardware;

how much hardware you need is determined
by the software requirements:

speed;

memory.

Computers as Components 37

Evaluation boards

Designed by CPU manufacturer or others.

Includes CPU, memory, some I/O devices.

May include prototyping section.

CPU manufacturer often gives out
evaluation board netlist---can be used as
starting point for your custom board
design.

Computers as Components 38

Adding logic to a board

Programmable logic devices (PLDs)
provide low/medium density logic.

Field-programmable gate arrays (FPGAs)
provide more logic and multi-level logic.

Application-specific integrated circuits
(ASICs) are manufactured for a single
purpose.

Computers as Components 39

4.5.3 The PC as a platform

Advantages:

cheap and easy to get;

rich and familiar software environment.

Disadvantages:

requires a lot of hardware resources;

not well-adapted to real-time.

Computers as Components 40

Typical hardware platform

CPU

CPU bus

memory

DMA

controller
timers

bus

interface
b
u
s

in
te

rf
ac

e

high-speed bus

low-speed bus

device

device

intr

ctrl

Computers as Components 41

Typical busses

PCI: standard for high-speed interfacing
33 or 66 MHz.
PCI Express (PCIe): serial link.

 4 data wires per lane,
V1.x: 250 MB/s per lane
V2.0: 500 MB/s per lane
V3.0: 1GB/s per lane

USB (Universal Serial Bus), Firewire (IEEE
1394): relatively low-cost serial interface with
high speed.

Computers as Components 42

Software elements

 IBM PC uses BIOS (Basic I/O System) to implement low-
level functions:
boot-up;
minimal device drivers.

 BIOS has become a generic term for the lowest-level
system software.

 Boot firmware
designed to be the first code run by a PC when powered on.
identify, test, and initialize system devices such as the video

display card, hard disc, and floppy disc and other hardware.
prepare the machine into a known state, so that software stored

on compatible media can be loaded, executed, and given control
of the PC

This process is known as booting, or booting up, which is short
for bootstrapping.

Computers as Components 43

Software elements

 BIOS programs are stored on a flash ROM and are built
to work with various devices that make up the
complementary chipset of the system.

 They provide a small library of basic input/output
functions that can be called to operate and control the
peripherals such as the keyboard, text display functions
and so forth.

 In the IBM PC and AT, certain peripheral cards such as
hard-drive controllers and video display adapters carried
their own BIOS extension ROM, which provided
additional functionality.

 OS and executive software, designed to supersede this
basic firmware functionality, will provide replacement
software interfaces to applications.

Computers as Components 44

4.6 Debugging embedded systems

Challenges:

target system may be hard to observe;

target may be hard to control;

may be hard to generate realistic inputs;

setup sequence may be complex.

Computers as Components 45

Host/target design

Use a host system to prepare software for
target system:

target

system

host system
serial line

Computers as Components 46

Host-based tools

Cross compiler:

compiles code on host for target system.

Cross debugger:

displays target state, allows target system to be
controlled.

by establishing a debug message protocol and using
an interface like TCP/IP for communication between
host development system and the target system,
where the application to be debugged actually runs.

Computers as Components 47

Software for debuggers

A monitor, which is a small debug handler
application, should run in user space on
the target. It usually idles in user space
memory and gets triggered by a
dedicated debug interrupt.

This is when it starts sending status
information via a dedicated TCP/IP port to
the host system where the debugger itself
is waiting to pick up the data it receives.

Computers as Components 48

Software for debuggers

The debug interrupt could be caused by a
breakpoint or data watchpoint being hit. It
could also be triggered by an explicit
action on the debug host.

The developer telling the debugger to
attach to a specific running process or
telling the debugger to stop a specific
thread.

Computers as Components 49

Breakpoints

A breakpoint allows the user to stop
execution, examine system state, and
change state.

Replace the breakpointed instruction with
a subroutine call to the monitor program.

Can you set breakpoints in programs
running out of ROM? No

Computers as Components 50

ARM breakpoints

0x400 MUL r4,r6,r6

0x404 ADD r2,r2,r4

0x408 ADD r0,r0,#1

0x40c B loop

uninstrumented code

0x400 MUL r4,r6,r6

0x404 ADD r2,r2,r4

0x408 ADD r0,r0,#1

0x40c BL bkpoint

code with breakpoint

Computers as Components 51

Breakpoint handler actions

Save registers.
Allow user to examine machine.
Before returning, restore system state.
(when the breakpoint is erased) Safest way to

continue execution is to replace back the original
instruction while fixing the return address.

(when the breakpoint is to remain) Put another temp
breakpoint after replacing back the original
instruction. When reached to the temp breakpoint
after executing the original instruction, replace back
the original breakpoint, remove the temp breakpoint,
and resume execution.

Computers as Components 52

In-circuit emulators (ICE)

A microprocessor in-circuit emulator is a
specially-instrumented microprocessor.

Allows you to stop execution, examine CPU
state, modify registers.

the emulator is a bridge between your target
and your PC, giving you both an interactive
terminal peering deeply into the target, while
providing a rich set of debugging resources.

Computers as Components 53

History

In the beginning, there was the ROM debug
monitor.

After that the in-circuit emulator (ICE) came. By
using special bond-out versions of processors, an
ICE provides capabilities far beyond those of a
simple ROM monitor.

Now, dedicated debug circuitry is integrated into
their chips. Or, simply software debug capabilities
are added to their existing JTAG ports. Collectively,
we'll call these technologies on-chip debug. Such
hardware-based capabilities take the place of a
software debug monitor, yet offer some additional
features previously associated only with emulators.

Computers as Components 54

What does the debugger

need to know?

 Programmers’ model:

System components

System busses

Base addresses

Device registers

 Debug access
description:

Debug access to
processors

Other debug devices

Debug interconnections

C
ro

s
s
 T

rig
g
e
r

 In
te

rfa
c
e

C
ro

s
s
 T

rig
g
e
r

 In
te

rfa
c
e

ARM

core
DSP

AMBA AXI/AHB

AHB trace DAP
ETM

ETM

Trace

buffer

Trace bus (ATB)

Trace

port

F
u
n
n
e
l

JTAG

Debug bus (APBv3)

RAM

ROM

I/O

device

Cross trigger matrix

0x10000000 0x0 0x30000000

Reg 1

Computers as Components 55

Logic analyzer

A logic analyzer can be regarded as an
array of low-grade oscilloscopes:

Computers as Components 56

Logic analyzer architecture

UUT
sample

memory
microprocessor

controller

system clock

clock

gen

state or

timing mode

vector address

display
keypad

Computers as Components 57

State and timing modes

Timing mode: several samples per period

For glitch oriented debugging

more memory

State mode: one sample per period

For sequential oriented problem

Computers as Components 58

Boundary scan

Simplifies testing of
multiple chips on a
board.

Registers on pins can
be configured as a
scan chain.

Used for debuggers,
in-circuit emulators.

Computers as Components 59

How to exercise code

Run on host system.

Run on target system.

Run in instruction-level simulator.

Run on cycle-accurate simulator.

Run in hardware/software co-simulation
environment.

Computers as Components 60

Debugging real-time code

Bugs in drivers can cause non-
deterministic behavior in the foreground
problem.

Bugs may be timing-dependent.

Computers as Components 61

4.7 System-level

performance analysis

Performance depends
on all the elements of
the system:

CPU.

Cache.

Bus.

Main memory.

I/O device.

memory

CPU

cache

Computers as Components 62

Bandwidth as performance

Bandwidth applies to several components:

Memory.

Bus.

CPU fetches.

Different parts of the system run at
different clock rates.

Different components may have different
widths (bus, memory).

Computers as Components 63

Bandwidth and data

transfers

Per video frame: 320 x 240 x 3 = 230,400
bytes.

Transfer in 1/30 sec.

Transfer 1 byte/msec, 0.23 sec per frame.

Too slow.

Increase bandwidth:

Increase bus width.

Increase bus clock rate.

Computers as Components 64

Bus bandwidth

 T: # bus cycles.

 P: time/bus cycle.

 Total time for transfer:

t = TP.

 D: data payload length.

 O1 + O2 = overhead O.

Address, handshaking

 N bytes to be transferred

 Bus width: W bytes

O1 D O2

W

Tbasic(N) = (D+O)N/W

Computers as Components 65

Bus burst transfer bandwidth

 T: # bus cycles.

 P: time/bus cycle.

 Total time for transfer:

t = TP.

 D: data payload length.

 O1 + O2 = overhead O.

B O

W

Tburst(N) = (BD+O)N/(BW)

2 1

…

Computers as Components 66

Memory aspect ratios

64 M
16 M

8 M

1 4 8

Computers as Components 67

Memory access times

 Memory component access times comes from chip data
sheet.

Page modes allow faster access for successive
transfers on same page.

What if data doesn’t fit naturally into physical words:

 A pixel: RGB 24-bit

 an access for 24-bit-wide memory

 3 accesses for 8-bit wide memory

 how about 32-bit wide memory
 waste one byte for each access

 packing

Computers as Components 68

Bus performance

bottlenecks

Transfer 320 x 240
video frame @ 30
frames/sec = 612,000
bytes/sec.

Is performance
bottleneck bus or
memory?

memory

CPU

Computers as Components 69

Bus performance

bottlenecks, cont’d.

Bus: assume 1 MHz bus, D=1, O=3:

Tbasic = (1+3)612,000/2 = 1,224,000 cycles
= 1.224 sec.

Memory: try burst mode B=4, width
w=0.5. (assume 10MHz)

Tmem = (4*1+4)612,000/(4*0.5) = 2,448,000
cycles = 0.2448 sec.

Computers as Components 70

Performance spreadsheet

bus memory

clock period 1.00E-06 clock period 1.00E-08

W 2 W 0.5

D 1 D 1

O 3 O 4

B 4

N 612000 N 612000

T_basic 1224000 T_mem 2448000

t 1.22E+00 t 2.45E-02

Computers as Components 71

4.7.2 Parallelism

Speed things up by
running several units
at once.

DMA provides
parallelism if CPU
doesn’t need the bus:

DMA + bus.

CPU.

