
Computers as Components 1

Linking

Combines several object modules into a
single executable module.

Jobs:

put modules in order;

resolve labels across modules.

Computers as Components 2

Module ordering

Code modules must be placed in absolute
positions in the memory space.

Load map or linker flags control the order
of modules.

module1

module2

module3

Computers as Components 3

Module ordering

Code modules must be placed in absolute
positions in the memory space.

Load map or linker flags control the order
of modules.

module1

module2

module3

Computers as Components 4

Linker and Loader

The linker does the symbol resolution

The loader does the program loading

Either of them can do the relocation.

Computers as Components 5

Static shared library and DLL

Computers as Components 6

Dynamic Linking

Only link/load library procedure when it is
called

Shares one copy of library among all
executing programs;

Requires procedure code to be relocatable

Automatically picks up new library versions

Computers as Components 7

Loading a Program

 Load from image file on disk into memory

1. Read header to determine segment sizes

 Validation: permission, memory requirement

2. Create virtual address space

3. Copy text and initialized data into memory

 Or set page table entries so they can be faulted in

4. Copy command line arguments on stack

5. Initialize registers (including $sp, $fp)

6. Jump to startup routine

Computers as Components 8

5.4 Basic compilation techniques

Compilation flow.

Basic statement translation.

Basic optimizations.

Interpreters and just-in-time compilers.

Computers as Components 9

Compilation

Compilation strategy (Wirth):

compilation = translation + optimization

Compiler determines quality of code:

use of CPU resources;

memory access scheduling;

code size.

Computers as Components 10

Basic compilation phases

HLL

parsing, symbol table

machine-independent

optimizations

machine-dependent

optimizations

assembly

Computers as Components 11

Statement translation and

optimization

Source code is translated into
intermediate form such as CDFG.

CDFG is transformed/optimized.

CDFG is translated into instructions with
optimization decisions.

Instructions are further optimized.

Computers as Components 12

Arithmetic expressions

a*b + 5*(c-d)

expression

DFG

* -

*

+

a b c d

5

Computers as Components 13

2

3

4

1

Arithmetic expressions

ADR r4,a

MOV r1,[r4]

ADR r4,b

MOV r2,[r4]

ADD r3,r1,r2

DFG

* -

*

+

a b c d

5

ADR r4,c

MOV r1,[r4]

ADR r4,d

MOV r5,[r4]

SUB r6,r4,r5

MUL r7,r6,#5

ADD r8,r7,r3

code

Computers as Components 14

Control code generation

if (a+b > 0)

 x = 5;

else

 x = 7;

a+b>0 x=5

x=7

Computers as Components 15

3

2 1

Control code generation

 ADR r5,a

 LDR r1,[r5]

 ADR r5,b

 LDR r2,b

 ADD r3,r1,r2

 BLE label3

a+b>0 x=5

x=7
 LDR r3,#5

 ADR r5,x

 STR r3,[r5]

 B label4

label3 LDR r3,#7

 ADR r5,x

 STR r3,[r5]

label4 ...

Computers as Components 16

Procedure linkage

Need code to:

call and return;

pass parameters and results.

Parameters and returns are passed on
stack.

Procedures with few parameters may use
registers.

Computers as Components 17

Procedure stacks

proc1
Stack growth

proc1(…) {

 proc2(…);

}

proc2

SP

stack pointer

end of current frame

FP

frame pointer

end of last frame

accessed relative to SP

Computers as Components 18

ARM procedure linkage

APCS (ARM Procedure Call Standard):

r0-r3 pass parameters into procedure. Extra
parameters are put on stack frame.

r0 holds return value.

r4-r7 hold register values.

r11 is frame pointer, r13 is stack pointer.

r10 holds limiting address on stack size to
check for stack overflows.

Computers as Components 19

Data structures

Different types of data structures use
different data layouts.

Some offsets into data structure can be
computed at compile time, others must be
computed at run time.

Computers as Components 20

One-dimensional arrays

C array name points to 0th element:

a[0]

a[1]

a[2]

a

 *(a + 2x4)

Computers as Components 21

Two-dimensional arrays

Row-major layout:

a[0,0]

a[0,1]

a[1,0]

a[1,1] = a[i*M+j]

...

M
Inner variable j varies

more quickly

Array size: a[N,M]

a[i,j]

Computers as Components 22

Two-dimensional arrays

Column-major layout: FORTRAN

a[0,0]

a[1,0]

a[0,1]

a[1,1] = a[i+j*N]

...

N

Array size: a[N,M]

a[i,j]

Computers as Components 23

Structures

Fields within structures are static offsets:

field1

field2

aptr
struct {

 int field1;

 char field2;

} mystruct;

struct mystruct a, *aptr = &a;

4 bytes

*(aptr+4)

Computers as Components 24

Expression simplification

Machine independent transformation

Constant folding:

8+1 = 9

Expression simplification:

a*b + a*c = a*(b+c)

Strength reduction:

a*2 = a<<1

Computers as Components 25

Dead code elimination

Dead code: code that never be executed

difficult to identify in general

Can be eliminated by analysis of control
flow.

a special case
#define DEBUG 0

if (DEBUG) dbg(p1);

0

dbg(p1);

1

0

Computers as Components 26

Procedure inlining

Eliminates procedure linkage overhead:

Increase code size

int foo(a,b,c) { return a + b - c;}

z = foo(w,x,y);

z = w + x + y;

Computers as Components 27

Loop transformations

Goals:

reduce loop overhead;

increase opportunities for pipelining;

Reduce pipeline stalls

improve memory system performance.

Computers as Components 28

Loop unrolling

Reduces loop overhead, enables some
other optimizations.

Expose parallelism

for (i=0; i<4; i++)

 a[i] = b[i] * c[i];

for (i=0; i<2; i++) {

 a[i*2] = b[i*2] * c[i*2];

 a[i*2+1] = b[i*2+1] * c[i*2+1];

}

Computers as Components 29

Loop fusion and distribution

Fusion combines two loops into one:
for (i=0; i<N; i++) a[i] = b[i] * 5;
for (j=0; j<N; j++) w[j] = c[j] * d[j];

 for (i=0; i<N; i++) {

 a[i] = b[i] * 5;
 w[i] = c[i] * d[i];
 }

Loop distribution breaks one loop into
two.
Both changes optimizations within loop

body.

Computers as Components 30

Loop tiling

Breaks one loop into a nest of loops.

Changes order of accesses within array.

Changes cache behavior: why?

Computers as Components 31

Loop tiling example

for (i=0; i<N; i++)

 for (j=0; j<N; j++)

 c[i] = a[i,j]*b[i];

for (i=0; i<N; i+=k)

 for (j=0; j<N; j+=k)

 for (ii=0; ii<min(i+k,n); ii++)

 for (jj=0; jj<min(j+k,N); jj++)

 c[ii] = a[ii,jj]*b[ii];

3N 3n

Computers as Components 32

Array padding

Add array elements to change mapping
into cache, which reduces conflict:

Computers as Components 33

Register allocation

Goals:

choose register to hold each variable;

determine lifespan of variable in the register.

Basic case: within basic block.

Spilling registers: problematic

Computers as Components 34

Register lifetime graph

w = a + b;

x = c + w;

y = c + d;

time

a

b

c

d

w

x

y

1 2 3

t=1

t=2

t=3

Register assignment

a r0; b r1; c r2; d r0; w r3; x r0; y r3

Computers as Components 35

Conflict graph

time

a

b

c
d
w
x
y

1 2 3

Register assignment

a r0; b r1; c r2; d r0; w r3; x r0; y r3

a b

x

w

y

c

d

Conflict graph

Minimum coring problem

Computers as Components 36

Instruction scheduling

Non-pipelined machines do not need
instruction scheduling: any order of
instructions that satisfies data
dependencies runs equally fast.

In pipelined machines, execution time of
one instruction depends on the nearby
instructions: opcode, operands.

Computers as Components 37

Reservation table

A reservation table
relates
instructions/time to
CPU resources.

Resource A B

instr1 X

instr2 X X

instr3 X

instr4 X

time

Computers as Components 38

Software pipelining

Schedules instructions across loop
iterations.

Reduces instruction latency in iteration i
by inserting instructions from iteration
i+1.

Computers as Components 39

Instruction selection

May be several ways to implement an
operation or sequence of operations.

Represent operations as graphs, match
possible instruction sequences onto
graph.

*

+

expression templates

* +

*

+

MUL ADD

MADD

Computers as Components 40

Using your compiler

Understand various optimization levels (-
O1, -O2, etc.)

Look at mixed compiler/assembler output.

Modifying compiler output requires care:

correctness;

loss of hand-tweaked code.

Computers as Components 41

Interpreters and JIT

compilers

Interpreter: translates and executes
program statements on-the-fly.

JIT compiler: compiles small sections of
code into instructions during program
execution.
Eliminates some translation overhead.

Often requires more memory.

Javascript: script executed in web
browser

Computers as Components 42

5.6 Program level

performance analysis

Optimizing for:

Execution time.

Energy/power.

Program size.

Program validation and testing.

Computers as Components 43

Program-level performance

analysis

 Need to understand
performance in detail:

Real-time behavior, not
just typical.

On complex platforms.

 Program performance
CPU performance:

Pipeline, cache are
windows into program.

We must analyze the entire
program.

Computers as Components 44

Complexities of program

performance

Varies with input data:

Different-length paths.

Cache effects.

Instruction-level performance variations:

Pipeline interlocks.

Fetch times.

Computers as Components 45

How to measure program

performance

Simulate execution of the CPU.

Makes CPU state visible.

Measure on real CPU using timer.

Requires modifying the program to control
the timer.

Measure on real CPU using logic analyzer.

Requires events visible on the pins.

Computers as Components 46

Program performance

metrics

Average-case execution time.

Typically used in application programming.

Worst-case execution time.

A component in deadline satisfaction.

Best-case execution time.

Task-level interactions can cause best-case
program behavior to result in worst-case
system behavior.

Computers as Components 47

Elements of program

performance

Basic program execution time formula:

execution time = program path + instruction timing

Solving these problems independently helps
simplify analysis.

Easier to separate on simpler CPUs.

Accurate performance analysis requires:

Assembly/binary code.

Execution platform.

Computers as Components 48

Data-dependent paths in

an if statement

if (a || b) { /* T1 */

 if (c) /* T2 */

 x = r*s+t; /* A1 */

 else y=r+s; /* A2 */

 z = r+s+u; /* A3 */

 }

else {

 if (c) /* T3 */

 y = r-t; /* A4 */

}

a b c path

0 0 0 T1=F, T3=F: no assignments

0 0 1 T1=F, T3=T: A4

0 1 0 T1=T, T2=F: A2, A3

0 1 1 T1=T, T2=T: A1, A3

1 0 0 T1=T, T2=F: A2, A3

1 0 1 T1=T, T2=T: A1, A3

1 1 0 T1=T, T2=F: A2, A3

1 1 1 T1=T, T2=T: A1, A3

Computers as Components 49

Paths in a loop

for (i=0, f=0; i<N; i++)

 f = f + c[i] * x[i];

i=0

f=0

i=N

f = f + c[i] * x[i]

i = i + 1

N

Y

Computers as Components 50

Instruction timing

 Not all instructions take the same amount of time.

Multi-cycle instructions.

Fetches.

 Execution times of instructions are not independent.

Pipeline interlocks.

Cache effects.

 Execution times may vary with operand value.

Floating-point operations.

Some multi-cycle integer operations.

Computers as Components 51

Mesaurement-driven

performance analysis

Not so easy as it sounds:

Must actually have access to the CPU.

Must know data inputs that give worst/best
case performance.

Must make state visible.

Still an important method for performance
analysis.

Computers as Components 52

Feeding the program

Need to know the desired input values.

May need to write software scaffolding to
generate the input values.

Software scaffolding may also need to
examine outputs to generate feedback-
driven inputs.

Computers as Components 53

Trace-driven measurement

Trace-driven:

Instrument the program.

Save information about the path.

Requires modifying the program.

Trace files are large.

Widely used for cache analysis.

Computers as Components 54

Physical measurement

In-circuit emulator allows tracing.

Affects execution timing.

Logic analyzer can measure behavior at pins.

Address bus can be analyzed to look for events.

Code can be modified to make events visible.

Particularly important for real-world input
streams.

Computers as Components 55

CPU simulation

Some simulators are less accurate.

Cycle-accurate simulator provides
accurate clock-cycle timing.

Simulator models CPU internals.

Simulator writer must know how CPU works.

Computers as Components 56

SimpleScalar FIR filter

simulation

int x[N] = {8, 17, … };

int c[N] = {1, 2, … };

main() {

 int i, k, f;

 for (k=0; k<COUNT; k++)

 for (i=0, f=0 ; i<N; i++)

 f += c[i]*x[i];

}

N total sim
cycles

sim cycles
per filter
execution

100 25854 259

1,000 155759 156

1,0000 1451840 145

Loop set up: 1

Loop test: N+1

Computers as Components 57

Performance optimization

motivation

Embedded systems must often meet
deadlines.

Faster may not be fast enough.

Need to be able to analyze execution
time.

Worst-case, not typical.

Need techniques for reliably improving
execution time.

Computers as Components 58

Programs and performance

analysis

Best results come from analyzing
optimized instructions, not high-level
language code:

non-obvious translations of HLL statements
into instructions;

code may move;

cache effects are hard to predict.

Computers as Components 59

Loop optimizations

Loops are good targets for optimization

Why?

Basic loop optimizations:

code motion;

induction-variable elimination;

strength reduction (x*2 -> x<<1).

Computers as Components 60

Code motion

for (i=0; i<N*M; i++)

 z[i] = a[i] + b[i];

i<N*M

i=0;

z[i] = a[i] + b[i];

i = i+1;

N

Y

i<X

i=0; X = N*M

Performed (NM-1) times

Computers as Components 61

Induction variable elimination

 Induction variable: its value is derived form the loop
index.

 Consider loop:

for (i=0; i<N; i++)

 for (j=0; j<M; j++)

 z[i,j] = b[i,j];

 Rather than recompute i*M+j for each array in each
iteration, share induction variable between arrays,
increment at end of loop body.

Computers as Components 62

Strength reduction

for (i=0; i<N; i++)

 for (j=0; j<M; j++)

 zbinduct = i*M + j;

 *(zptr + zbinduct) = *(bptr + zbinduct);

 Better code with strength reduction

 xbinduct = 0;

for (i=0; i<N; i++)

 for (j=0; j<M; j++) {

 *(zptr + zbinduct) = *(bptr + zbinduct);

 zbinduct++;

 }

}

Computers as Components 63

Cache analysis

Loop nest: set of loops, one inside other.

Perfect loop nest: no conditionals in nest.

Because loops use large quantities of
data, cache conflicts are common.

Computers as Components 64

Array conflicts in cache

a[0,0]

b[0,0]

main memory cache

1024 4099

...

1024

4099

Computers as Components 65

Array conflicts, cont’d.

Array elements conflict because they are
in the same line, even if not mapped to
same location.

Solutions:

move one array;

pad array.

Computers as Components 66

Performance optimization

hints

Use registers efficiently.

Use page mode memory accesses.

Analyze cache behavior:

instruction conflicts can be handled by
rewriting code, rescheudling;

conflicting scalar data can easily be moved;

conflicting array data can be moved, padded.

Computers as Components 67

Energy/power optimization

Energy: ability to do work.

Most important in battery-powered systems.

Power: energy per unit time.

Important even in wall-plug systems---power
becomes heat.

Computers as Components 68 © 2008 Wayne Wolf

Overheads for Computers as

Components 2nd ed.

Measuring energy

consumption

Execute a small loop, measure current:

while (TRUE)

a();

I

Computers as Components 69

Sources of energy

consumption

Relative energy per operation (Catthoor et
al):

memory transfer: 33

external I/O: 10

SRAM write: 9

SRAM read: 4.4

multiply: 3.6

add: 1

Computers as Components 70

Cache behavior is

important

Energy consumption has a sweet spot as
cache size changes:

cache too small: program thrashes, burning
energy on external memory accesses;

cache too large: cache itself burns too much
power.

Computers as Components 71

Cache sweet spot

[Li98] © 1998 IEEE

Computers as Components 72

Optimizing for energy

First-order optimization:

high performance = low energy.

Not many instructions trade speed for
energy.

Computers as Components 73

Optimizing for energy,

cont’d.

Use registers efficiently.

Identify and eliminate cache conflicts.

Moderate loop unrolling eliminates some
loop overhead instructions.

Eliminate pipeline stalls.

Inlining procedures may help: reduces
linkage, but may increase cache
thrashing.

Computers as Components 74

Efficient loops

General rules:

Don’t use function calls.

Keep loop body small to enable local repeat
(only forward branches).

Use unsigned integer for loop counter.

Use <= to test loop counter.

Make use of compiler---global optimization,
software pipelining.

Computers as Components 75

Optimizing for program size

Goal:

reduce hardware cost of memory;

reduce power consumption of memory units.

Two opportunities:

data;

instructions.

Computers as Components 76

Data size minimization

Reuse constants, variables, data buffers in
different parts of code.

Requires careful verification of correctness.

Generate data using instructions.

Computers as Components 77

Reducing code size

Avoid function inlining.

Choose CPU with compact instructions.

Use specialized instructions where
possible.

Computers as Components 78

Program validation and

testing

But does it work?

Concentrate here on functional
verification.

Major testing strategies:

Black box doesn’t look at the source code.

Clear box (white box) does look at the
source code.

Computers as Components 79

Clear-box testing

Examine the source code to determine whether
it works:

Can you actually exercise a path?

Do you get the value you expect along a path?

Testing procedure:

Controllability: rovide program with inputs.

Execute.

Observability: examine outputs.

Computers as Components 80

Controlling and observing

programs

firout = 0.0;

for (j=curr, k=0; j<N; j++, k++)

 firout += buff[j] * c[k];

for (j=0; j<curr; j++, k++)

 firout += buff[j] * c[k];

if (firout > 100.0) firout = 100.0;

if (firout < -100.0) firout = -100.0;

Controllability:

Must fill circular buffer
with desired N values.

Other code governs
how we access the
buffer.

Observability:

Want to examine
firout before limit
testing.

Computers as Components 81

Execution paths and

testing

Paths are important in functional testing
as well as performance analysis.

In general, an exponential number of
paths through the program.

Show that some paths dominate others.

Heuristically limit paths.

Computers as Components 82

Choosing the paths to test

Possible criteria:

Execute every
statement at least
once.

Execute every branch
direction at least once.

Equivalent for
structured programs.

Not true for gotos.

not covered

Computers as Components 83

Basis paths

Approximate CDFG
with undirected
graph.

Undirected graphs
have basis paths:

All paths are linear
combinations of basis
paths.

Computers as Components 84

Cyclomatic complexity

Cyclomatic complexity
is a bound on the size
of basis sets:

e = # edges

n = # nodes

p = number of graph
components

M = e – n + 2p.

Computers as Components 85

Branch testing

Heuristic for testing branches.

Exercise true and false branches of
conditional.

Exercise every simple condition at least once.

Computers as Components 86

Branch testing example

Correct:

if (a || (b >= c)) {
printf(“OK\n”); }

Incorrect:

if (a && (b >= c)) {
printf(“OK\n”); }

Test:

a = F

(b >=c) = T

Example:

Correct: [0 || (3 >=
2)] = T

Incorrect: [0 && (3
>= 2)] = F

Computers as Components 87

Another branch testing

example

Correct:
if ((x == good_pointer) &&

x->field1 == 3)) {
printf(“got the value\n”);
}

Incorrect:
 if ((x = good_pointer) &&

x->field1 == 3)) {
printf(“got the value\n”);
}

Incorrect code
changes pointer.

Assignment returns
new LHS in C.

Test that catches
error:

(x != good_pointer)
&& x->field1 = 3)

Computers as Components 88

Domain testing

Heuristic test for
linear inequalities.

Test on each side +
boundary of
inequality.

Computers as Components 89

Def-use pairs

Variable def-use:

Def when value is
assigned (defined).

Use when used on
right-hand side.

Exercise each def-use
pair.

Requires testing
correct path.

Computers as Components 90

Loop testing

Loops need specialized tests to be tested
efficiently.

Heuristic testing strategy:

Skip loop entirely.

One loop iteration.

Two loop iterations.

iterations much below max.

n-1, n, n+1 iterations where n is max.

Computers as Components 91

Black-box testing

Complements clear-box testing.

May require a large number of tests.

Tests software in different ways.

Computers as Components 92

Black-box test vectors

Random tests.

May weight distribution based on software
specification.

Regression tests.

Tests of previous versions, bugs, etc.

May be clear-box tests of previous versions.

Computers as Components 93

How much testing is

enough?

Exhaustive testing is impractical.

One important measure of test quality---bugs
escaping into field.

Good organizations can test software to give
very low field bug report rates.

Error injection measures test quality:

Add known bugs.

Run your tests.

Determine % injected bugs that are caught.

Computers as Components 94

Program design and

analysis

Software modem.

Computers as Components 95

Theory of operation

Frequency-shift keying:

separate frequencies for 0 and 1.

time

0 1

Computers as Components 96

FSK encoding

Generate waveforms based on current bit:

bit-controlled

waveform

generator

0110101

Computers as Components 97

FSK decoding

A
/D

 c
o

n
v
er

te
r
zero filter

one filter

detector 0 bit

detector 1 bit

Computers as Components 98

Transmission scheme

Send data in 8-bit bytes. Arbitrary spacing
between bytes.

Byte starts with 0 start bit.

Receiver measures length of start bit to
synchronize itself to remaining 8 bits.

start (0) bit 1 bit 2 bit 3 bit 8 ...

Computers as Components 99

Requirements

Inputs Analog sound input, reset button.

Outputs Analog sound output, LED bit display.

Functions Transmitter: Sends data from memory
in 8-bit bytes plus start bit.
Receiver: Automatically detects bytes
and reads bits. Displays current bit on
LED.

Performance 1200 baud.

Manufacturing cost Dominated by microprocessor and
analog I/O

Power Powered by AC.

Physical
size/weight

Small desktop object.

Computers as Components 100

Specification

Line-in*

input()

Receiver

sample-in()

bit-out()

1 1

Transmitter

bit-in()

sample-out()

Line-out*

output()

1 1

Computers as Components 101

System architecture

Interrupt handlers for samples:

input and output.

Transmitter.

Receiver.

Computers as Components 102

Transmitter

Waveform generation by table lookup.

float sine_wave[N_SAMP] = { 0.0, 0.5,
0.866, 1, 0.866, 0.5, 0.0, -0.5, -0.866, -1.0, -
0.866, -0.5, 0};

time

Computers as Components 103

Receiver

Filters (FIR for simplicity) use circular
buffers to hold data.

Timer measures bit length.

State machine recognizes start bits, data
bits.

Computers as Components 104

Hardware platform

CPU.

A/D converter.

D/A converter.

Timer.

Computers as Components 105

Component design and

testing

Easy to test transmitter and receiver on
host.

Transmitter can be verified with speaker
outputs.

Receiver verification tasks:

start bit recognition;

data bit recognition.

Computers as Components 106

System integration and

testing

Use loopback mode to test components
against each other.

Loopback in software or by connecting D/A
and A/D converters.

