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Linking 

Combines several object modules into a 
single executable module. 

Jobs: 

put modules in order; 

resolve labels across modules. 
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Module ordering 

Code modules must be placed in absolute 
positions in the memory space. 

Load map or linker flags control the order 
of modules. 

module1 

module2 

module3 
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Module ordering 

Code modules must be placed in absolute 
positions in the memory space. 

Load map or linker flags control the order 
of modules. 

module1 

module2 

module3 
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Linker and Loader 

The linker does the symbol resolution 

The loader does the program loading  

Either of them can do the relocation. 
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Static shared library and DLL 
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Dynamic Linking 

Only link/load library procedure when it is 
called 

Shares one copy of library among all 
executing programs; 

Requires procedure code to be relocatable 

Automatically picks up new library versions 
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Loading a Program 

 Load from image file on disk into memory 

1. Read header to determine segment sizes 

 Validation: permission, memory requirement 

2. Create virtual address space 

3. Copy text and initialized data into memory 

 Or set page table entries so they can be faulted in 

4. Copy command line arguments on stack 

5. Initialize registers (including $sp, $fp) 

6. Jump to startup routine 
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5.4 Basic compilation techniques 

Compilation flow. 

Basic statement translation. 

Basic optimizations. 

Interpreters and just-in-time compilers. 
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Compilation 

Compilation strategy (Wirth): 

compilation = translation + optimization 

Compiler determines quality of code: 

use of CPU resources; 

memory access scheduling; 

code size. 
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Basic compilation phases 

HLL 

parsing, symbol table 

machine-independent 

optimizations 

machine-dependent 

optimizations 

assembly 
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Statement translation and 

optimization 

Source code is translated into 
intermediate form such as CDFG. 

CDFG is transformed/optimized. 

CDFG is translated into instructions with 
optimization decisions. 

Instructions are further optimized. 
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Arithmetic expressions 

a*b + 5*(c-d) 

expression 

DFG 

* - 

* 

+ 

a b c d 

5 
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2 

3 

4 

1 

Arithmetic expressions 

ADR r4,a 

MOV r1,[r4] 

ADR r4,b 

MOV r2,[r4] 

ADD r3,r1,r2 

DFG 

* - 

* 

+ 

a b c d 

5 

ADR r4,c 

MOV r1,[r4] 

ADR r4,d 

MOV r5,[r4] 

SUB r6,r4,r5 

MUL r7,r6,#5 

ADD r8,r7,r3 

code 
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Control code generation 

if (a+b > 0) 

 x = 5; 

else 

 x = 7; 

a+b>0 x=5 

x=7 
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3 

2 1 

Control code generation 

 ADR r5,a 

 LDR r1,[r5] 

 ADR r5,b 

 LDR r2,b 

 ADD r3,r1,r2 

 BLE label3 

a+b>0 x=5 

x=7 
 LDR r3,#5 

 ADR r5,x 

 STR r3,[r5] 

 B label4 

label3       LDR r3,#7 

       ADR r5,x 

            STR r3,[r5] 

label4        ... 
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Procedure linkage 

Need code to: 

call and return; 

pass parameters and results. 

Parameters and returns are passed on 
stack. 

Procedures with few parameters may use 
registers. 
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Procedure stacks 

proc1 
Stack growth 

proc1(…) { 

 proc2(…); 

} 

proc2 

SP 

stack pointer 

end of current frame 

FP 

frame pointer 

end of last frame 

accessed relative to SP 
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ARM procedure linkage 

APCS (ARM Procedure Call Standard): 

r0-r3 pass parameters into procedure. Extra 
parameters are put on stack frame. 

r0 holds return value. 

r4-r7 hold register values. 

r11 is frame pointer, r13 is stack pointer. 

r10 holds limiting address on stack size to 
check for stack overflows. 
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Data structures 

Different types of data structures use 
different data layouts. 

Some offsets into data structure can be 
computed at compile time, others must be 
computed at run time. 
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One-dimensional arrays 

C array name points to 0th element: 

a[0] 

a[1] 

a[2] 

a 

 *(a + 2x4) 



Computers as Components 21 

Two-dimensional arrays 

Row-major layout: 

a[0,0] 

a[0,1] 

a[1,0] 

a[1,1] = a[i*M+j] 

... 

M 
Inner variable j varies 

more quickly 

Array size: a[N,M] 

a[i,j] 
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Two-dimensional arrays 

Column-major layout:               FORTRAN 

a[0,0] 

a[1,0] 

a[0,1] 

a[1,1] = a[i+j*N] 

... 

N 

Array size: a[N,M] 

a[i,j] 
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Structures 

Fields within structures are static offsets: 

field1 

field2 

aptr 
struct { 

   int field1; 

   char field2; 

} mystruct; 

 

struct mystruct a, *aptr = &a; 

 

4 bytes 

*(aptr+4) 
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Expression simplification 

Machine independent transformation 

Constant folding: 

8+1 = 9 

Expression simplification: 

a*b + a*c = a*(b+c) 

Strength reduction: 

a*2 = a<<1 



Computers as Components 25 

Dead code elimination 

Dead code:  code that never be executed 

difficult to identify in general 

Can be eliminated by analysis of control 
flow. 

a special case   
#define DEBUG 0 

if (DEBUG) dbg(p1); 

0 

dbg(p1); 

1 

0 
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Procedure inlining 

Eliminates procedure linkage overhead: 

Increase code size  

 

int foo(a,b,c) { return a + b - c;} 

z = foo(w,x,y); 

 

z = w + x + y; 
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Loop transformations 

Goals: 

reduce loop overhead; 

increase opportunities for pipelining; 

Reduce pipeline stalls 

improve memory system performance. 
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Loop unrolling 

Reduces loop overhead, enables some 
other optimizations. 

Expose parallelism 

 
for (i=0; i<4; i++) 

 a[i] = b[i] * c[i]; 

 
for (i=0; i<2; i++) { 

 a[i*2] = b[i*2] * c[i*2]; 

 a[i*2+1] = b[i*2+1] * c[i*2+1]; 

} 
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Loop fusion and distribution 

Fusion combines two loops into one: 
for (i=0; i<N; i++) a[i] = b[i] * 5; 
for (j=0; j<N; j++) w[j] = c[j] * d[j]; 
 
 for (i=0; i<N; i++) { 

    a[i] = b[i] * 5;  
      w[i] = c[i] * d[i]; 
  } 

Loop distribution breaks one loop into 
two. 
Both changes optimizations within loop 

body. 
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Loop tiling 

Breaks one loop into a nest of loops. 

Changes order of accesses within array. 

Changes cache behavior: why? 
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Loop tiling example 

for (i=0; i<N; i++) 

  for (j=0; j<N; j++) 

  c[i] = a[i,j]*b[i]; 

for (i=0; i<N; i+=k) 

   for (j=0; j<N; j+=k) 

       for (ii=0; ii<min(i+k,n); ii++) 

          for (jj=0; jj<min(j+k,N); jj++) 

  c[ii] = a[ii,jj]*b[ii]; 

3N 3n 
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Array padding 

Add array elements to change mapping 
into cache, which reduces conflict: 
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Register allocation 

Goals: 

choose register to hold each variable; 

determine lifespan of variable in the register. 

Basic case: within basic block. 

Spilling registers: problematic 
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Register lifetime graph 

w = a + b; 

x = c + w; 

y = c + d; 

time 

a 

b 

c 

d 

w 

x 

y 

1 2 3 

t=1 

t=2 

t=3 

Register assignment 

a r0; b r1; c r2; d r0; w r3; x r0; y r3 
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Conflict graph 

time 

a 

b 

c 
d 
w 
x 
y 

1 2 3 

Register assignment 

a r0; b r1; c r2; d r0; w r3; x r0; y r3 

a b 

x 

w 

y 

c 

d 

Conflict graph 

Minimum coring problem 
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Instruction scheduling 

Non-pipelined machines do not need 
instruction scheduling: any order of 
instructions that satisfies data 
dependencies runs equally fast. 

In pipelined machines, execution time of 
one instruction depends on the nearby 
instructions: opcode, operands. 
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Reservation table 

A reservation table 
relates 
instructions/time to 
CPU resources. 

Resource   A B 

instr1  X 

instr2  X X 

instr3  X 

instr4   X 

time 
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Software pipelining 

Schedules instructions across loop 
iterations. 

Reduces instruction latency in iteration i 
by inserting instructions from iteration 
i+1. 
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Instruction selection 

May be several ways to implement an 
operation or sequence of operations. 

Represent operations as graphs, match 
possible instruction sequences onto 
graph. 

* 

+ 

expression templates 

* + 

* 

+ 

MUL ADD 

MADD 
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Using your compiler 

Understand various optimization levels (-
O1, -O2, etc.) 

Look at mixed compiler/assembler output.   

Modifying compiler output requires care: 

correctness; 

loss of hand-tweaked code. 
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Interpreters and JIT 

compilers 

Interpreter: translates and executes 
program statements on-the-fly. 

JIT compiler: compiles small sections of 
code into instructions during program 
execution. 
Eliminates some translation overhead. 

Often requires more memory. 

Javascript: script executed in web 
browser 
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5.6 Program level 

performance analysis 

Optimizing for: 

Execution time. 

Energy/power. 

Program size. 

Program validation and testing. 
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Program-level performance 

analysis 

 Need to understand 
performance in detail: 

Real-time behavior, not 
just typical. 

On complex platforms. 

 Program performance  
CPU performance: 

Pipeline, cache are 
windows into program. 

We must analyze the entire 
program. 
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Complexities of program 

performance 

Varies with input data: 

Different-length paths. 

Cache effects. 

Instruction-level performance variations: 

Pipeline interlocks. 

Fetch times. 
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How to measure program 

performance 

Simulate execution of the CPU. 

Makes CPU state visible. 

Measure on real CPU using timer. 

Requires modifying the program to control 
the timer. 

Measure on real CPU using logic analyzer. 

Requires events visible on the pins. 
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Program performance 

metrics 

Average-case execution time. 

Typically used in application programming. 

Worst-case execution time. 

A component in deadline satisfaction. 

Best-case execution time. 

Task-level interactions can cause best-case 
program behavior to result in worst-case 
system behavior. 
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Elements of program 

performance 

Basic program execution time formula: 

execution time = program path + instruction timing 

Solving these problems independently helps 
simplify analysis. 

Easier to separate on simpler CPUs. 

Accurate performance analysis requires: 

Assembly/binary code. 

Execution platform. 
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Data-dependent paths in 

an if statement 

if (a || b) { /* T1 */ 

 if ( c ) /* T2 */ 

  x = r*s+t; /* A1 */ 

 else y=r+s; /* A2 */ 

 z = r+s+u; /* A3 */ 

 } 

else { 

 if ( c ) /* T3 */ 

  y = r-t; /* A4 */ 

} 

a b c path 

0 0 0 T1=F, T3=F: no assignments 

0 0 1 T1=F, T3=T: A4 

0 1 0 T1=T, T2=F: A2, A3 

0 1 1 T1=T, T2=T: A1, A3 

1 0 0 T1=T, T2=F: A2, A3 

1 0 1 T1=T, T2=T: A1, A3 

1 1 0 T1=T, T2=F: A2, A3 

1 1 1 T1=T, T2=T: A1, A3 
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Paths in a loop 

for (i=0, f=0; i<N; i++)  

 f = f + c[i] * x[i]; 

i=0 

f=0 

i=N 

f = f + c[i] * x[i] 

i = i + 1 

N 

Y 
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Instruction timing 

 Not all instructions take the same amount of time. 

Multi-cycle instructions. 

Fetches. 

 Execution times of instructions are not independent. 

Pipeline interlocks. 

Cache effects. 

 Execution times may vary with operand value. 

Floating-point operations. 

Some multi-cycle integer operations. 
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Mesaurement-driven 

performance analysis 

Not so easy as it sounds: 

Must actually have access to the CPU. 

Must know data inputs that give worst/best 
case performance. 

Must make state visible. 

Still an important method for performance 
analysis. 
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Feeding the program 

Need to know the desired input values. 

May need to write software scaffolding to 
generate the input values. 

Software scaffolding may also need to 
examine outputs to generate feedback-
driven inputs. 
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Trace-driven measurement 

Trace-driven: 

Instrument the program. 

Save information about the path. 

Requires modifying the program. 

Trace files are large. 

Widely used for cache analysis. 
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Physical measurement 

In-circuit emulator allows tracing. 

Affects execution timing. 

Logic analyzer can measure behavior at pins. 

Address bus can be analyzed to look for events. 

Code can be modified to make events visible. 

Particularly important for real-world input 
streams. 
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CPU simulation 

Some simulators are less accurate. 

Cycle-accurate simulator provides 
accurate clock-cycle timing. 

Simulator models CPU internals. 

Simulator writer must know how CPU works. 
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SimpleScalar FIR filter 

simulation 

int x[N] = {8, 17, … }; 

int c[N] = {1, 2, … }; 

main() { 

 int i, k, f; 

 for (k=0; k<COUNT; k++) 

  for (i=0, f=0 ; i<N; i++) 

   f += c[i]*x[i]; 

} 

N total sim 
cycles 
 

sim cycles 
per filter 
execution 

100 25854 259 

1,000 155759 156 

1,0000 1451840 145 

Loop set up: 1 

Loop test:     N+1 
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Performance optimization 

motivation 

Embedded systems must often meet 
deadlines. 

Faster may not be fast enough. 

Need to be able to analyze execution 
time. 

Worst-case, not typical. 

Need techniques for reliably improving 
execution time. 
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Programs and performance 

analysis 

Best results come from analyzing 
optimized instructions, not high-level 
language code: 

non-obvious translations of HLL statements 
into instructions; 

code may move; 

cache effects are hard to predict. 
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Loop optimizations 

Loops are good targets for optimization 

Why? 

Basic loop optimizations: 

code motion; 

induction-variable elimination; 

strength reduction (x*2 -> x<<1). 
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Code motion 

for (i=0; i<N*M; i++) 

 z[i] = a[i] + b[i]; 

i<N*M 

i=0; 

z[i] = a[i] + b[i]; 

i = i+1; 

N 

Y 

i<X 

i=0; X = N*M 

Performed (NM-1) times 
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Induction variable elimination 

 Induction variable: its value is derived form the loop 
index. 

 Consider loop: 

for (i=0; i<N; i++) 

 for (j=0; j<M; j++) 

  z[i,j] = b[i,j]; 

 Rather than recompute i*M+j for each array in each 
iteration, share induction variable between arrays, 
increment at end of loop body. 
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Strength reduction 

for (i=0; i<N; i++) 

 for (j=0; j<M; j++) 

   zbinduct = i*M + j; 

  *(zptr + zbinduct) = *(bptr + zbinduct); 

 Better code with strength reduction 

     xbinduct = 0; 

for (i=0; i<N; i++) 

 for (j=0; j<M; j++) { 

    *(zptr + zbinduct) = *(bptr + zbinduct); 

      zbinduct++; 

   } 

} 



Computers as Components 63 

Cache analysis 

Loop nest: set of loops, one inside other. 

Perfect loop nest: no conditionals in nest. 

Because loops use large quantities of 
data, cache conflicts are common. 
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Array conflicts in cache 

a[0,0] 

b[0,0] 

main memory cache 

1024 4099 

... 

1024 

4099 
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Array conflicts, cont’d. 

Array elements conflict because they are 
in the same line, even if not mapped to 
same location. 

Solutions: 

move one array; 

pad array. 
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Performance optimization 

hints 

Use registers efficiently. 

Use page mode memory accesses. 

Analyze cache behavior: 

instruction conflicts can be handled by 
rewriting code, rescheudling; 

conflicting scalar data can easily be moved; 

conflicting array data can be moved, padded. 
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Energy/power optimization 

Energy: ability to do work. 

Most important in battery-powered systems. 

Power: energy per unit time. 

Important even in wall-plug systems---power 
becomes heat. 
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Overheads for Computers as 

Components 2nd ed. 

Measuring energy 

consumption 

Execute a small loop, measure current: 

while (TRUE) 

a(); 

I 
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Sources of energy 

consumption 

Relative energy per operation (Catthoor et 
al): 

memory transfer: 33 

external I/O: 10 

SRAM write: 9 

SRAM read: 4.4 

multiply: 3.6 

add: 1 
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Cache behavior is 

important 

Energy consumption has a sweet spot as 
cache size changes: 

cache too small: program thrashes, burning 
energy on external memory accesses; 

cache too large: cache itself burns too much 
power. 
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Cache sweet spot 

[Li98] ©  1998 IEEE 
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Optimizing for energy 

First-order optimization: 

high performance = low energy. 

Not many instructions trade speed for 
energy. 
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Optimizing for energy, 

cont’d. 

Use registers efficiently. 

Identify and eliminate cache conflicts. 

Moderate loop unrolling eliminates some 
loop overhead instructions. 

Eliminate pipeline stalls. 

Inlining procedures may help: reduces 
linkage, but may increase cache 
thrashing. 
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Efficient loops 

General rules: 

Don’t use function calls. 

Keep loop body small to enable local repeat 
(only forward branches). 

Use unsigned integer for loop counter. 

Use <= to test loop counter. 

Make use of compiler---global optimization, 
software pipelining. 
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Optimizing for program size 

Goal: 

reduce hardware cost of memory; 

reduce power consumption of memory units. 

Two opportunities: 

data; 

instructions. 
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Data size minimization 

Reuse constants, variables, data buffers in 
different parts of code. 

Requires careful verification of correctness. 

Generate data using instructions. 
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Reducing code size 

Avoid function inlining. 

Choose CPU with compact instructions. 

Use specialized instructions where 
possible. 
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Program validation and 

testing 

But does it work? 

Concentrate here on functional 
verification. 

Major testing strategies: 

Black box doesn’t look at the source code. 

Clear box (white box) does look at the 
source code. 
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Clear-box testing 

Examine the source code to determine whether 
it works: 

Can you actually exercise a path? 

Do you get the value you expect along a path? 

Testing procedure: 

Controllability: rovide program with inputs. 

Execute. 

Observability: examine outputs. 
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Controlling and observing 

programs 

firout = 0.0; 

for (j=curr, k=0; j<N; j++, k++)  

 firout += buff[j] * c[k]; 

for (j=0; j<curr; j++, k++) 

 firout += buff[j] * c[k]; 

if (firout > 100.0) firout = 100.0; 

if (firout < -100.0) firout = -100.0; 

Controllability: 

Must fill circular buffer 
with desired N values. 

Other code governs 
how we access the 
buffer. 

Observability: 

Want to examine 
firout before limit 
testing. 
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Execution paths and 

testing 

Paths are important in functional testing 
as well as performance analysis. 

In general, an exponential number of 
paths through the program. 

Show that some paths dominate others. 

Heuristically limit paths. 
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Choosing the paths to test 

Possible criteria: 

Execute every 
statement at least 
once. 

Execute every branch 
direction at least once. 

Equivalent for 
structured programs. 

Not true for gotos. 

not covered 
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Basis paths 

Approximate CDFG 
with undirected 
graph. 

Undirected graphs 
have basis paths: 

All paths are linear 
combinations of basis 
paths. 
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Cyclomatic complexity 

Cyclomatic complexity 
is a bound on the size 
of basis sets: 

e = # edges 

n = # nodes 

p = number of graph 
components 

M = e – n + 2p. 
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Branch testing 

Heuristic for testing branches. 

Exercise true and false branches of 
conditional. 

Exercise every simple condition at least once. 
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Branch testing example 

Correct: 

if (a || (b >= c)) { 
printf(“OK\n”); } 

Incorrect: 

if (a && (b >= c)) { 
printf(“OK\n”); } 

Test: 

a = F 

(b >=c) = T 

Example: 

Correct: [0 || (3 >= 
2)] = T 

Incorrect: [0 && (3 
>= 2)] = F 
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Another branch testing 

example 

Correct: 
if ((x == good_pointer) && 

x->field1 == 3)) { 
printf(“got the value\n”); 
} 

Incorrect: 
 if ((x = good_pointer) && 

x->field1 == 3)) { 
printf(“got the value\n”); 
} 

Incorrect code 
changes pointer. 

Assignment returns 
new LHS in C. 

Test that catches 
error: 

(x != good_pointer) 
&& x->field1 = 3) 
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Domain testing 

Heuristic test for 
linear inequalities. 

Test on each side + 
boundary of 
inequality. 
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Def-use pairs 

Variable def-use: 

Def when value is 
assigned (defined). 

Use when used on 
right-hand side. 

Exercise each def-use 
pair. 

Requires testing 
correct path. 
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Loop testing 

Loops need specialized tests to be tested 
efficiently. 

Heuristic testing strategy: 

Skip loop entirely. 

One loop iteration. 

Two loop iterations. 

# iterations much below max. 

n-1, n, n+1 iterations where n is max. 
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Black-box testing 

Complements clear-box testing. 

May require a large number of tests. 

Tests software in different ways. 
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Black-box test vectors 

Random tests. 

May weight distribution based on software 
specification. 

Regression tests. 

Tests of previous versions, bugs, etc. 

May be clear-box tests of previous versions. 
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How much testing is 

enough? 

Exhaustive testing is impractical. 

One important measure of test quality---bugs 
escaping into field. 

Good organizations can test software to give 
very low field bug report rates. 

Error injection measures test quality: 

Add known bugs. 

Run your tests. 

Determine % injected bugs that are caught. 
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Program design and 

analysis 

Software modem. 
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Theory of operation 

Frequency-shift keying: 

separate frequencies for 0 and 1. 

time 

0 1 
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FSK encoding 

Generate waveforms based on current bit: 

bit-controlled 

waveform 

generator 

0110101 
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FSK decoding 

A
/D

 c
o

n
v
er

te
r 
zero filter 

one filter 

detector 0 bit 

detector 1 bit 
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Transmission scheme 

Send data in 8-bit bytes. Arbitrary spacing 
between bytes. 

Byte starts with 0 start bit. 

Receiver measures length of start bit to 
synchronize itself to remaining 8 bits. 

start (0) bit 1 bit 2 bit 3 bit 8 ... 
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Requirements 

Inputs Analog sound input, reset button. 

Outputs Analog sound output, LED bit display. 

Functions Transmitter: Sends data from memory 
in 8-bit bytes plus start bit. 
Receiver: Automatically detects bytes 
and reads bits. Displays current bit on 
LED. 

Performance 1200 baud. 

Manufacturing cost Dominated by microprocessor and 
analog I/O 

Power Powered by AC. 

Physical 
size/weight 

Small desktop object. 
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Specification 

Line-in* 

input() 

Receiver 

sample-in() 

bit-out() 

1 1 

Transmitter 

bit-in() 

sample-out() 

Line-out* 

output() 

1 1 
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System architecture 

Interrupt handlers for samples: 

input and output. 

Transmitter. 

Receiver. 
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Transmitter 

Waveform generation by table lookup. 

float sine_wave[N_SAMP] = { 0.0, 0.5, 
0.866, 1, 0.866, 0.5, 0.0, -0.5, -0.866, -1.0, -
0.866,  -0.5, 0}; 

time 
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Receiver 

Filters (FIR for simplicity) use circular 
buffers to hold data. 

Timer measures bit length. 

State machine recognizes start bits, data 
bits. 
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Hardware platform 

CPU. 

A/D converter. 

D/A converter. 

Timer. 
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Component design and 

testing 

Easy to test transmitter and receiver on 
host. 

Transmitter can be verified with speaker 
outputs. 

Receiver verification tasks: 

start bit recognition; 

data bit recognition. 
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System integration and 

testing 

Use loopback mode to test components 
against each other. 

Loopback in software or by connecting D/A 
and A/D converters. 


