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Other OS functions 

Date/time. 

File system. 

Networking. 

Security. 



Computers as Components 2 

6.3 Priority based scheduling 

Scheduling policies: static  or dynamic 

RMS: rate monotonic scheduling 

static 

EDF: earliest deadline first scheduling 

dynamic 

Scheduling modeling assumptions exist. 
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Metrics 

How do we evaluate a scheduling policy: 

Ability to satisfy all deadlines. 

CPU utilization---percentage of time devoted 
to useful work. 

Scheduling overhead---time required to make 
scheduling decision. 
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Rate monotonic scheduling 

RMS (Liu and Layland): widely-used, 
analyzable scheduling policy. 

Analysis is known as Rate Monotonic 
Analysis (RMA). 
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RMA model 

All process run on single CPU. 

Assume that zero context switch time. 

No data dependencies between processes. 

Process execution time is constant. 

Deadline is at end of period. 

Highest-priority ready process runs. 
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Process parameters 

Ti is computation time of process i; ti is 
period of process i. 

period ti 

Pi 

 computation time Ti 
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Rate-monotonic analysis 

Response time: time required to finish 
process. 

Critical instant: scheduling state that gives 
worst response time. 

Critical instant occurs when all higher-
priority processes are ready to execute. 
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Critical instant 
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RMS priorities 

Optimal (fixed) priority assignment: 

shortest-period process gets highest priority; 

priority inversely proportional to period; 

break ties arbitrarily. 

No fixed-priority scheme does better than 
RMS. 



Computers as Components 10 

RMS example 
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RMS CPU utilization 

Utilization for n processes is 

S i Ti / ti 

As number of tasks approaches infinity, 
maximum utilization approaches 69%. 
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RMS CPU utilization, 

cont’d. 

RMS cannot use 100% of CPU, even with 
zero context switch overhead. 

Must keep idle cycles available to handle 
worst-case scenario. 

However, RMS guarantees all processes 
will always meet their deadlines. 
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RMS implementation 

Efficient implementation: 

scan processes; 

choose highest-priority active process. 
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Earliest-deadline-first (EDF) 

EDF: dynamic priority scheduling scheme. 

Process closest to its deadline has highest 
priority. 

Requires recalculating processes at every 
timer interrupt. 
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EDF analysis 

EDF can use 100% of CPU. 

But EDF may fail to miss a deadline. 
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EDF implementation 

On each timer interrupt: 

compute time to deadline; 

choose process closest to deadline. 

Generally considered too expensive to use 
in practice. 
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Fixing scheduling 

problems 

What if your set of processes is 
unschedulable? 

Change deadlines in requirements. 

Reduce execution times of processes. 

Get a faster CPU. 
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Priority inversion 

Priority inversion: low-priority process 
keeps high-priority process from running. 

Improper use of system resources can 
cause scheduling problems: 

Low-priority process grabs I/O device. 

High-priority device needs I/O device, but 
can’t get it until low-priority process is done. 

Can cause deadlock. 
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Resource access protocols 

Critical sections: sections of code at which 
exclusive access to some resource must be guaranteed. 

Can be guaranteed with semaphores S. 

P(S) 

V(S) 

P(S) 

V(S) 

P(S) checks semaphore to see 

if resource is available  

and if yes, sets S to  “in use”. 

Uninterruptable operations! 

If no, calling task has to wait. 

V(S): sets S to “available”, 

which can be used by another 

waiting task (if any). 
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Priority inversion 

Priority T1 assumed to be higher than priority of T2. 

If T2 requests exclusive access first (at t0), T1 has to wait until 
T2 releases the resource (time t3), thus inverting the priority: 

In this example: 

duration of inversion bounded by length of critical section of T2. 
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Duration of priority inversion 

with >2 tasks can exceed the 

length of any critical section 
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Solving priority inversion 

Give priorities to system resources. 

Have process inherit the priority of a 
resource that it requests. 

Low-priority process inherits priority of 
device if higher. 
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MARS Pathfinder problem (1) 

“But a few days into the mission, 
not long after Pathfinder started 
gathering meteorological data, the 
spacecraft began experiencing total 
system resets, each resulting in 
losses of data. The press reported 
these failures in terms such as 
"software glitches" and "the 
computer was trying to do too 
many things at once".” … 
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MARS Pathfinder problem (2) 

“VxWorks provides preemptive priority scheduling of 
threads. Tasks on the Pathfinder spacecraft were 
executed as threads with priorities.” 

“Pathfinder contained an "information bus", a 

shared memory area for passing information between 
different components of the spacecraft.” 

A bus management task ran frequently with high 
priority to move certain kinds of data in and out of the 
information bus. Access to the bus was synchronized 
with mutual exclusion locks (mutexes).”  
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MARS Pathfinder problem (3) 

The meteorological data gathering task ran as an 
infrequent, low priority thread, … When 

publishing its data, it would acquire a mutex, do 
writes to the bus, and release the mutex. .. 

The spacecraft also contained a communications 
task that ran with medium priority.” 

High priority:      retrieval of data from shared memory 

Medium priority: communications task 

Low priority:       thread collecting meteorological data 
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MARS Pathfinder problem (4) 

Most of the time this combination worked fine.  

 

However, very infrequently it was possible for an 
interrupt to occur that caused the (medium priority) 
communications task to be scheduled during the short 
interval while the (high priority) information bus thread 
was blocked waiting for the (low priority) 
meteorological data thread.  
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MARS Pathfinder problem (5) 

In this case, the long-running communications task, 
having higher priority than the meteorological task, 
would prevent it from running, consequently preventing 
the blocked information bus task from running.  

After some time had passed, a watchdog timer would 
go off, notice that the data bus task had not been 
executed for some time, conclude that something had 
gone drastically wrong, and initiate a total system 
reset. This scenario is a classic case of priority 
inversion.” 
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Priority inheritance protocol 

A task is scheduled according to its active priority. 
Tasks with the same priorities are scheduled FCFS. 

A task inherits the highest priority from the tasks it 
blocks. 

• If task T1 executes P(S) but its exclusive access was 
granted to T2, then  T1 will be blocked. 

• If priority(T2) < priority(T1), then T2 inherits the 
priority of T1 so that T2 can release the shared 
resource earlier by preventing medium-priority tasks 
from preempting T2 and prolonging the blocking 
period.  
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Priority inheritance protocol 

• When T2 executes  V(S), its original priority at the 
point of entry of the critical section as restored.  

• Priority inheritance is transitive 

• Assuming that priority(T1) > priority(T2) > 
priority(T3) 

• If T3 blocks T2 and T2 blocks T1, then T3 inherits 
the priority of T1. 
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PIP: Example (1) 

without priority inheritance 
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PIP: Example (2) 

T3 inherits the 

priority of T1 and 

T3 resumes. 

With priority inheritance 

V(S) 
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PIP: Example (3) 
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Priority inversion on Mars 

 Priority inheritance also solved the Mars Pathfinder 
problem: the VxWorks operating system used in the 
pathfinder implements a flag for the calls to mutex 
primitives. This flag allows priority inheritance to be 
set to “on”. When the software was shipped, it was set 
to “off”.  

The problem on Mars was 

corrected by using the 

debugging facilities of VxWorks 

to change the flag to “on”, while 

the Pathfinder was already on 

the Mars [Jones, 1997]. 
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Summary 

Periodic scheduling 

Rate monotonic scheduling 

EDF 

Resource access protocols 

Priority inversion 

The Mars pathfinder example 

Priority inheritance 
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Data dependencies 

Data dependencies 
allow us to improve 
utilization. 

Restrict combination 
of processes that can 
run simultaneously. 

P1 and P2 can’t run 
simultaneously. 

P1 

P2 



Computers as Components 36 

Context-switching time 

Non-zero context switch time can push 
limits of a tight schedule. 

Hard to calculate effects---depends on 
order of context switches. 

In practice, OS context switch overhead is 
small (hundreds of clock cycles) relative to 
many common task periods (ms – s). 
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7. Multiprocessors 

Why multiprocessors? 

CPUs and accelerators. 

Multiprocessor performance analysis. 
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Why multiprocessors? 

Programming a single CPU is hard enough. 

Why make life more difficult by adding more 
processors? 

PE: processing element for computation 
Whether it is programmable or not. 

Multiprocessors tend to have regular 
architectures 
Several identical processors that can access a 

uniform memory space 
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Why multiprocessors? 

There are a variety of different multiprocessor 
architectures 

Better cost/performance. 

Match each CPU to its tasks or use custom logic 
(smaller, cheaper). 

CPU cost is a non-linear function of performance. 

cost 

performance 

Power 

Performance 

Cost (Area) 
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Why multiprocessors?  

Splitting the application across multiple 
processors entails higher engineering cost and 
lead times. 

Better real-time performance. 

Put time-critical functions on less-loaded processing 
elements. 

Remember RMS utilization---extra CPU cycles must 
be reserved to meet deadlines. 
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Why multiprocessors?  

cost 

performance 

To meet deadline 

To meet deadline w. 

RMS scheduling overhead 
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Why multiprocessors?  

Using specialized processors or custom logic 
saves power. 

Desktop processors are not power-efficient 
enough for battery-powered applications. 

(battery) 
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Watt-hour 

Wh=Rated Capacity(Ah) x voltage (V) 

Specific Power = power to weight ratio 
W/kg  

Specific Energy = energy capacity to weight ratio  
Wh/kg 

Power Density = power to volume ratio  
W/l 

Energy Density = energy to capacity to volume ratio  
Wh/l  
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Nameplate Capacity 

Name plate capacity should be determined 
based on a standard set of requirements: 

Discharge at C/10 (if the manufacturer 
recommended rate is different from this, it should 
be specified when nameplate capacity is 
provided) 

Ambient temp (20 +/- 2 deg C) 

Charge at C/10 (or the manufacturer 
recommended rate) 
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Battery Capacity 

Type Capacity 
(mAh) 

Density 
(Wh/kg) 

Alkaline AA 2850 124 

Rechargeable 1600 80 

NiCd AA 750 41 

NiMH AA 1100 51 

Lithium ion 1200 100  

Lead acid 2000 30 
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Discharge Rates 

Type Voltage Peak 
Drain 

Optimal 
Drain 

Alkaline 1.5 0.5C < 0.2C 

NiCd 1.25 20C 1C 

Nickel metal 1.25 5C < 0.5C 

Lead acid 2 5C 0.2C 

Lithium ion 3.6 2C < 1C 



Computers as Components 47 

Comparison of Battery Performance 

14430 is  cylindrical with 14 mm dia. and 43 mm high 
2010-08-30 47 
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A123 2.2 Ah high-power Lithium-

Ion Cells 
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Why multiprocessors?  

May consume less energy. 

May be better at streaming data. 

May not be able to do all the work on 
even the largest single CPU. 
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Why multiprocessors?  

Good for processing I/O in real-time. 

May consume less energy. 

May be better at streaming data. 

May not be able to do all the work on 
even the largest single CPU. 

A thread per processor 

 no context switching 
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Accelerated systems 

Use additional computational unit 
dedicated to some functions? 

Hardwired logic. 

Extra CPU. 

Hardware/software co-design: joint 
design of hardware and software 
architectures. 
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Accelerated system 

architecture 

CPU 

accelerator 

memory 

I/O 

request 

data 
result 
data 
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Accelerator vs. co-processor 

A co-processor executes instructions with op-
code. 

Instructions are dispatched by the CPU. 

An accelerator appears as a device on the bus. 

Its programming model interface is functionally 
equivalent to an I/O device although it does not 
perform  input or output 

 is controlled by it registers. 

Doe not execute intructions 
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System design tasks 

Design a heterogeneous multiprocessor 
architecture. 

Processing element (PE): CPU, coprocessor, 
accelerator, etc. 

Program the system. 
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Accelerated system design 

First, determine that the system really 
needs to be accelerated. 

How much faster is the accelerator on the 
core function? 

How much data transfer overhead? 

Design the accelerator itself. 

Design CPU interface to accelerator. 
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Accelerator implementations 

Application-specific integrated circuit. 

Field-programmable gate array (FPGA). 

Standard component. 

Example: graphics processor. 
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Accelerated system platforms 

Several off-the-shelf boards are available 
for acceleration in PCs: 

FPGA-based core; 

PC bus interface. 
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Accelerator/CPU interface 

Accelerator registers provide control registers 
for CPU. 

Data registers (buffers) can be used for small 
data objects. 

Accelerator may include special-purpose 
read/write logic. 

Especially valuable for large data transfers. 

 DMA to transfer a large volume of data without 
intervention of CPU 
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Accelerator/CPU interface 

Design CPU-side interface 

Application software need to talk to the 
accelerator (data, instruction) 

Synchronization between CPU and 
accelerator 

The accelerator should know when it has the 
required data 

The CPU should know when it has received the 
designed reuslts. 
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System integration/debugging 

Try to debug the CPU/accelerator 
interface separately from the accelerator 
core. 

Build scaffolding to test the accelerator. 

Hardware/software co-simulation can be 
useful. 
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Caching problems 

Main memory provides the primary data 
transfer mechanism to the accelerator. 

Programs must ensure that caching does 
not invalidate main memory data. 

CPU reads location S. 

Accelerator writes location S. 

CPU writes location S. 
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Synchronization 

As with cache, main memory writes to 
shared memory may cause invalidation: 

CPU reads S. 

Accelerator writes S. 

CPU reads S. 
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Mobile Phone Trends 
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Power and Battery Capacity 
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Radio Demodulation Workload 
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Radio Decoding Workload 
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3.5G Workload 
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Workload vs Energy/operation 
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Value of Programming 
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2/2.5G Dual-core Architecture 
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3/3.5G Multi-core Architecture 
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Cell-phone Chips 
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Power Management Knobs 
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Accelerator speedup 

Critical parameter is speedup: how much 
faster is the system with the accelerator? 

Must take into account: 

Accelerator execution time. 

Data transfer time. 

Synchronization with the master CPU. 
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Accelerator execution time 

Total accelerator execution time: 

taccel = tin + tx + tout 

 

 

 

 

 

 

 

 

taccel = max {tin , tx , tout } if pipelined 

 

Data input 

Accelerated 

computation 

Data output 
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Accelerator speedup 

Assume loop is executed n times. 

If the software loop is replaced with the 
accelerator, compare accelerated system 
to non-accelerated system: 

S = n(tCPU - taccel) 

      = n[tCPU - (tin + tx + tout)] 

Execution time on CPU 
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Single- vs. multi-threaded 

One critical factor is available parallelism: 

single-threaded/blocking: CPU waits for accelerator; 

multithreaded/non-blocking: CPU continues to 
execute along with accelerator. 

To multithread, CPU must have useful work to 
do. 

Synchronization: software must also support 
multithreading. 
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Total execution time 

Single-threaded: 

P2 

P1 

A1 

P3 

P4 time 

CPU 

Accel 

P1 

A1 

P2 P3 P4 
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Total execution time 

Multi-threaded: 

P2 

P1 

A1 

P3 

P4 time 

CPU 

Accel 

P1 

A1 

P2 P3 P4 
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Cell phones 

Most popular CE 
device in history; 
most widely used 
computing device. 

1 billion sold per year. 

Handset talks to cell. 

Cells hand off 
handset as it moves. 
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Execution time analysis 

Single-threaded: 

Count execution time 
of all component 
processes. 

Multi-threaded: 
Find longest path 

through execution. 

P2 

P1 

A1 

P3 

P4 
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Sources of parallelism 

Overlap I/O and accelerator computation. 

Perform operations in batches, read in 
second batch of data while computing on first 
batch. 

Find other work to do on the CPU. 

May reschedule operations to move work 
after accelerator initiation. 
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Data input/output times 

Bus transactions include: 

flushing register/cache values to main 
memory if necessary; 

time required for CPU to set up transaction; 

overhead of data transfers by bus packets, 
handshaking, etc. 
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Scheduling and allocation 

Must: 

schedule operations in time; 

allocate computations to processing 
elements. 

Scheduling and allocation interact, but 
separating them helps. 

(Alternatively) allocate, then schedule. 
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Example: scheduling and 

allocation 

P1 P2 

P3 

d1 d2 

Task graph Hardware platform 

M1 M2 
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First design 

Allocate P1, P2 -> M1; P3 -> M2. 

time 

M1 

M2 

P1 P2 

P3 

C13 C23 
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Second design 

Allocate P1 -> M1; P2, P3 -> M2: 

M1 

M2 

P1 

P2 P3 

P1C 

time 
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Example: adjusting 

messages to reduce delay 

Task graph: Network: 

P1 P2 

P3 

d1 d2 

M1 M2 M3 

allocation 3 

4 

3 
execution time 

Transmission time = Td1=Td2=4 
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Initial schedule 

time 

M1 

M2 

M3 

network 

0 20 10 5 15 

P1 

P2 

d1 d2 

P3 

Time = 15 
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New design 

Modify P3: 

reads one packet of d1, one packet of d2 

computes partial result 

continues to next packet 
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New schedule 

time 
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M3 
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