Other OS functions

Date/time.
File system.
Networking.
Security.

Computers as Components

6.3 Priority based scheduling

Scheduling policies: static or dynamic

RMS: rate monotonic scheduling
static

EDF: earliest deadline first scheduling
dynamic

Scheduling modeling assumptions exist.

Computers as Components 2

Metrics

How do we evaluate a scheduling policy:
Ability to satisfy all deadlines.

CPU utilization---percentage of time devoted
to useful work.

Scheduling overhead---time required to make
scheduling decision.

Computers as Components 3

Rate monotonic scheduling

RMS (Liu and Layland): widely-used,
analyzable scheduling policy.

Analysis is known as Rate Monotonic
Analysis (RMA).

Computers as Components

RMA model

All process run on single CPU.

Assume that zero context switch time.

No data dependencies between processes.
Process execution time is constant.
Deadline is at end of period.
Highest-priority ready process runs.

Computers as Components 5

Process parameters

T. is computation time of process i; 7, is
period of process i.

period T,

computation time T;

Computers as Components

Rate-monotonic analysis

Response time: time required to finish
process.

Critical instant: scheduling state that gives
worst response time.

Critical instant occurs when all higher-
priority processes are ready to execute.

Computers as Components 7

Critical instant

Interfering processes

critical
Instant

N

v

Computers as Components

v

v

RMS priorities

Optimal (fixed) priority assignment:
shortest-period process gets highest priority;
priority inversely proportional to period;
break ties arbitrarily.

No fixed-priority scheme does better than
RMS.

Computers as Components

RMS example

P2 period
P2 _
P1 period
P1 P1 P1
| | |
0 5 10

time

Computers as Components 10

RMS CPU utilization

Utilization for n processes is

ZiTi/Ti

As number of tasks approaches infinity,
maximum utilization approaches 69%.

u=3 "t <n(2""-1)<In 2=0.6931

1=1 pi

Computers as Components

11

RMS CPU utilization,
cont’d.

RMS cannot use 100% of CPU, even with
Zzero context switch overhead.

Must keep idle cycles available to handle
worst-case scenario.

However, RMS guarantees all processes
will always meet their deadlines.

Computers as Components 12

RMS implementation

Efficient implementation:
Scan processes;

choose highest-priority active process.

Computers as Components

13

Earliest-deadline-first (EDF)

EDF: dynamic priority scheduling scheme.
Process closest to its deadline has highest
priority.

Requires recalculating processes at every
timer interrupt.

Computers as Components 14

EDF analysis

EDF can use 100% of CPU.
But EDF may fail to miss a deadline.

Computers as Components

15

EDF implementation

On each timer interrupt:
compute time to deadline;
choose process closest to deadline.

Generally considered too expensive to use
In practice.

Computers as Components 16

Fixing scheduling
problems

What if your set of processes is
unschedulable?

Change deadlines in requirements.

Reduce execution times of processes.

Get a faster CPU.

Computers as Components

17

Priority inversion

Priority inversion: low-priority process
keeps high-priority process from running.
Improper use of system resources can
cause scheduling problems:
Low-priority process grabs I/O device.
High-priority device needs I/O device, but
can't get it until low-priority process is done.

Can cause deadlock.

Computers as Components 18

Resource access protocols

Critical sections: sections of code at which
exclusive access to some resource must be guaranteed.

Can be guaranteed with semaphores S.

Task 1 Task 2 E(S) check_s. semgphore to see
Y if resource is available
and if yes, sets S to “in use”.
Exclusive : : |
P(S) * access \ P(S) | Uninterruptable operations!

§<3 to a shared [>§ If no, calling task has to wait.
V(S)

resource : 5
guarded by V(S): sets S to "available”,

S which can be used by another

~ waiting task (if any).

Computers as Components 19

V(S)

Priority inversion

Priority T, assumed to be higher than priority of T,.

If T, requests exclusive access first (at t;), T, has to wait until
T, releases the resource (time t;), thus inverting the priority:

T, P
| | [| [3‘,["
tO ’[1 t2 t3 t 4
normal execution critical section

In this example:
duration of inversion bounded by length of critical section of T,.

Computers as Components 20

Duration of priority inversion
with >2 tasks can exceed the
length of any critical section

maximum blocking time of J, = duration of J, in critical section

— unavoidable due to semantics of critical section
However: blocking time may be unbounded if there are tasks with
intermediate priority:
T normal execution
B .ritical section

4 J4 blocked

A T R S .t t,
Priority inversion occurs in interval [t t]
Computers as Components 21

Solving priority inversion

Give priorities to system resources.

Have process inherit the priority of a
resource that it requests.

Low-priority process inherits priority of
device if higher.

Computers as Components

22

MARS Pathfinder problem (1)

“But a few days into the mission,
not long after Pathfinder started
gathering meteorological data, the
spacecraft began experiencing total |
system resets, each resulting in s
losses of data. The press reported
these failures in terms such as
"software glitches" and "the
computer was trying to do too

In»

many things at once".” ...

Computers as Components 23

MARS Pathfinder problem (2)

“VxWorks provides preemptive priority scheduling of
threads. Tasks on the Pathfinder spacecraft were
executed as threads with priorities.”

“Pathfinder contained an "information bus", a

shared memory area for passing information between
different components of the spacecraft.”

A bus management task ran frequently with high
priority to move certain kinds of data in and out of the
information bus. Access to the bus was synchronized
with mutual exclusion locks (mutexes).”

Computers as Components 24

MARS Pathfinder problem (3)

The meteorological data gathering task ran as an
infrequent, low priority thread, ... When
publishing its data, it would acquire a mutex, do
writes to the bus, and release the mutex. ..

The spacecraft also contained a communications
task that ran with medium priority.”

High priority: retrieval of data from shared memory
Medium priority: communications task
Low priority: thread collecting meteorological data

Computers as Components 25

MARS Pathfinder problem (4)

Most of the time this combination worked fine.

However, very infrequently it was possible for an
interrupt to occur that caused the (medium priority)
communications task to be scheduled during the short
interval while the (high priority) information bus thread
was blocked waiting for the (low priority)
meteorological data thread.

Computers as Components 26

MARS Pathfinder problem (5)

In this case, the long-running communications task,
having higher priority than the meteorological task,
would prevent it from running, consequently preventing
the blocked information bus task from running.

After some time had passed, a watchdog timer would
go off, notice that the data bus task had not been
executed for some time, conclude that something had
gone drastically wrong, and initiate a total system

reset. This scenario is a classic case of priority
iInversion.”

Computers as Components 27

Priority inheritance protocol

A task is scheduled according to its active priority.
Tasks with the same priorities are scheduled FCFS.

A task inherits the highest priority from the tasks it
blocks.

If task T1 executes P(S) but its exclusive access was
granted to T2, then T1 will be blocked.

If priority(T2) < priority(T1), then T2 inherits the
priority of T1 so that T2 can release the shared
resource earlier by preventing medium-priority tasks

from preempting T2 and prolonging the blocking
period.

Computers as Components 28

Priority inheritance protocol

When T2 executes V(S), its original priority at the
point of entry of the critical section as restored.

Priority inheritance is transitive
Assuming that priority(T1) > priority(T2) >
priority(T3)

If T3 blocks T2 and T2 blocks T1, then T3 inherits
the priority of T1.

Computers as Components 29

PIP: Example (1)

without priority inheritance

P(S) [attempt]

-

P(S) [successful]

£ \
T1
12 — -
T ‘I 12 blocks 11
3 T
P(S) V(S)

Computers as Components

30

PIP: Example (2)

With priority inheritance

priority of T1 and
T3 resumes.

e ™
T3 inherits the

N < P(S) [attempt] ___.--P(S) [successful]
- - ,/’// : \\\\\:
T1 g
T2
‘ T2 bli.n..-r\:r i 7
T3 L— - .,
P(S) V(S) e

Computers as Components 31

PIP: Example (3)

= normal execution

B critical section direct blocking
¢ / push-through blocking

Ji /T

s/

f
i

¥

Computers as Components

Priority inversion on Mars

Priority inheritance also solved the Mars Pathfinder
problem: the VxWorks operating system used in the
pathfinder implements a flag for the calls to mutex
primitives. This flag allows priority inheritance to be
set to “on”. When the software was shipped, it was set
to “off”.

The problem on Mars was
corrected by using the
debugging facilities of VxWorks
to change the flag to “on”, while
the Pathfinder was already on
the Mars [Jones, 1997].

Computers as Components 33

Summary

Periodic scheduling
Rate monotonic scheduling
EDF

Resource access protocols
Priority inversion
The Mars pathfinder example
Priority inheritance

Computers as Components

34

Data dependencies

Data dependencies
allow us to improve
utilization.

Restrict combination
of processes that can
run simultaneously.

P1 and P2 can’t run
simultaneously.

Computers as Components

35

Context-switching time

Non-zero context switch time can push
limits of a tight schedule.

Hard to calculate effects---depends on

orc
In

er of context switches.

ractice, OS context switch overhead is

small (hundreds of clock cycles) relative to

mad

ny common task periods (ms — pus).

Computers as Components 36

7. Multiprocessors

Why multiprocessors?
CPUs and accelerators.
Multiprocessor performance analysis.

Computers as Components

37

Why multiprocessors?

Programming a single CPU is hard enough.

Why make life more difficult by adding more

Processors?

PE: processing element for computation
Whether it is programmable or not.

Multiprocessors tend to have regular

architectures

Several identical processors that can access a
uniform memory space

Computers as Components 38

Why multiprocessors?

There are a

variety of different multiprocessor

architectures

Better cost/

Match eac
(smaller, c

verformance.
N CPU to its tasks or use custom logic

neaper).

CPU cost is a non-linear function of performance.

cost Power
Performance
Cost (Area)

> performance

Computers as Components 39

Why multiprocessors?

Splitting the application across multiple
processors entails higher engineering cost and

lead times.
Better real-time performance.

Put time-critical functions on less-loaded processing
elements.

Remember RMS utilization---extra CPU cycles must
be reserved to meet deadlines.

Computers as Components 40

Why multiprocessors?

cost :
A To meet deadline w.
/ RMS scheduling overhead
To meet deadline
., performance

Computers as Components 41

Why multiprocessors?

Using specialized processors or custom logic
saves power.

Desktop processors are not power-efficient
enough for battery-powered applications.

000
—— Total Power (W)
—=— Dynamic Power (W)
Static Power (W)
100
/ Power Gap
’ /'/

1 " Sfi'? 75 mW Peak (battery)

Power

0.1 T T T T T T T T T
© © Q D D e O
. Q—’% . & ’00‘& Q;Q \}'& \&& éo Qq, e@ 0@
Q)‘Q .0‘& 0)6
? N &
Q‘f’omputers as 8omponents 42

Watt-hour

Wh=Rated Capacity(Ah) x voltage (V)

Specific Power = power to weight ratio
W/kg

Specific Energy = energy capacity to weight ratio
Wh/kg

Power Density = power to volume ratio
W/l

Energy Density = energy to capacity to volume ratio
Wh/I

Computers as Components 43

Nameplate Capacity

Name plate capacity should be determined
based on a standard set of requirements:

Discharge at C/10 (if the manufacturer
recommended rate is different from this, it should
be specified when nameplate capacity is
provided)

Ambient temp (20 +/- 2 deg C)

Charge at C/10 (or the manufacturer
recommended rate)

Computers as Components 44

Battery Capacity

Type Capacity Density

(mAh)| (Wh/kg)
Alkaline AA 2850 124
Rechargeable 1600 80
NiCd AA /50 41
NiMH AA 1100 51
Lithium ion 1200 100
Lead acid 2000 30

Computers as Components

45

Discharge Rates

Type Voltage| Peak| Optimal

Drain Drain
Alkaline 1.5 0.5C < 0.2C
NiCd 1.25 20C 1C
Nickel metal 1.25 5C < 0.5C
Lead acid 2 5C 0.2C
Lithium ion 3.6 2C < 1C

Computers as Components

46

Comparison of Battery Performance

Ttem Conventional Battery (14430G6) Nexelion (14430W1)

Anode material Graphite (Carbon) Tin based Amorphous material

Multi-stage composite cathode
Cathode material Lithium Cobalt oxide (Mixture of cobalt, manganese, nickel
oxides and Lithium Cobalt oxide)

Electrolvte Hvhbrid electrolvte Newlv developed hvbrid eletrolvte
Size Diameter 14mm x Height 43mm Diameter 14mm x Height 43mm
Capacitv(0 2CmA)Size T00mAh, 2 6Wh 900mAh, 3.1Wh diameter
Standard charging voltage 42V -3V 42V -25V

Energv Density 395Whi, 144 Whikg 478Whi, 158 Whikg

Weight 18g 20¢g

14430 is cylindrical with 14 mm dia. and 43 mm high
2010-08-30 Computers as Componénhts 47

A123 2.2 Ah high-power Lithium-

lon Cells

Charge Rate Characterization Testing
Summary of Results at - 10°C

Cell AJ 235 A123 Baseline Electrolyte
Discharge | Discharge | CN79% | Charge | Percent Pf:rj,:znt Charge | Discharge | Watt Hour
Temperature | e | current 3 EE{T:::}M {J;Tfs} Cafjgfny Cap;i? * ﬁz'f:hl}-" VE':::}.-” Em{ij:;wy
10°C CHO 0220 | 23071 |10.5323/100.00 95.71 | 7.7373 | 7.4100 | 95.77
c/5 0.aq0 | 22759 | 5.4073 | 98.65 | 94.42 | 7.7094 | 7.3225 @ 94.98
c/2 1400 | 2-2609 | 2.5739 | 98.00 | 93.79 | 7.8137 | 7.2749 | 93.10
C 2200 | 22518 | 1.7134 | 97.60 | 9342 | 7.9254 | 7.2380 | 91.33
1.5¢ 3300 | 22455 | 14711 | 97.33 | 93.16 | 7.9795 | 7.2131 | 90.40
2 4400 | 2-2298 | 1.3958 | 96.65 | 92.51 | 7.9690 | 7.1615 | 89.87
Computers as Components 48

Why multiprocessors?

May consume less energy.
May be better at streaming data.

May not be able to do all the work on
even the largest single CPU.

Computers as Components

49

Why multiprocessors?

Good for processing I/O in real-time.
May consume less energy.
May be better at streaming data.

May not be able to do all the work on
even the largest single CPU.

A thread per processor
no context switching

Computers as Components 50

Accelerated systems

Use additional computational unit
dedicated to some functions?
Hardwired logic.
Extra CPU.

Hardware/software co-design: joint
design of hardware and software
architectures.

Computers as Components 51

Accelerated system
architecture

A

request L=t 0 i)
Jadata

| Inemory

1/O

\4

Computers as Components

52

Accelerator vs. co-processor

A co-processor executes instructions with op-
code.

Instructions are dispatched by the CPU.

An accelerator appears as a device on the bus.

Its programming model interface is functionally
equivalent to an I/O device although it does not
perform input or output

is controlled by it registers.
Doe not execute intructions

Computers as Components 53

System design tasks

Design a heterogeneous multiprocessor
architecture.

Processing element (PE): CPU, coprocessor,
accelerator, etc.

Program the system.

Computers as Components

54

Accelerated system design

First, determine that the system really
needs to be accelerated.

How much faster is the accelerator on the
core function?

How much data transfer overhead?
Design the accelerator itself.
Design CPU interface to accelerator.

Computers as Components 55

Accelerator implementations

Application-specific integrated circuit.
Field-programmable gate array (FPGA).

Standard component.
Example: graphics processor.

Computers as Components 56

Accelerated system platforms

Several off-the-shelf boards are available
for acceleration in PCs:

FPGA-based core;
PC bus interface.

Computers as Components 57

Accelerator/CPU interface

Accelerator registers provide control registers
for CPU.

Data registers (buffers) can be used for small
data objects.

Accelerator may include special-purpose
read/write logic.

Especially valuable for large data transfers.

DMA to transfer a large volume of data without
intervention of CPU

Computers as Components

58

Accelerator/CPU interface

Design CPU-side interface

Application software need to talk to the
accelerator (data, instruction)

Synchronization between CPU and
accelerator

The accelerator should know when it has the
required data

The CPU should know when it has received the
designed reusilts.

Computers as Components 59

System integration/debugging

Try to debug the CPU/accelerator
interface separately from the accelerator
core.

Build scaffolding to test the accelerator.

Hardware/software co-simulation can be
useful,

Computers as Components 60

Caching problems

Main memory provides the primary data
transfer mechanism to the accelerator.

Programs must ensure that caching does
not invalidate main memory data.

CPU reads location S.

Accelerator writes location S.

CPU writes location S.

Computers as Components

61

Synchronization

As with cache, main memory writes to
shared memory may cause invalidation:

CPU reads S.
Accelerator writes S.
CPU reads S.

Computers as Components

62

Mobile Phone Trends

TABLE 1
MOBILE PHONE TRENDS IN 5-YEAR INTERVALS.

year 1995 2000 2005 2010 2015
cellular generation 2G 2.5-3G 3.5G pre-4G 4G
cellular standards GSM GPRS HSPA HSPA LTE

UMTS LTE LTE-A
downlink bitrate [Mb/s] 0.01 0.1 I 10 100
display pixels [x1000] 4 16 64 256 1024
battery energy [Wh] I 2 3 4 5
CMOS [ITRS. nm] 350 180 90 50 25
PC CPU clock|MHz] 100 1000 3000 6000 8500
PC CPU power [W] 5 20 100 200 200
PC CPU MHz/W 20 50 30 30 42
phone CPU clock| MHz] 20 100 200 500 1000
phone CPU power [W] 0.05 0.05 0.1 0.2 0.3
phone CPU MHz/W 400 2000 2000 2500 3000
workload [GOPS] 0.1 I 10 100 1000
software [MB] 0.1 I 10 100 1000
#programmable cores I 2 4 8 16

Computers as Components

Power and Battery Capacity

3w 3W = approximate limit . .
f for handheld device multimedia
power call
2W
battery capacity
GPRS
1W 1 . .
single dual tripple WCDMA voice call
band band band
GSM voice call stand-alone application
ow T T T T T T T T T T T
1999 2001 2003 2005 2007

Fig. 1. Battery capacity and power consumption at maximum output power
level in cellular transmitters, adapted from [3].

Computers as Components 64

Radio Demodulation Workload

10000

umts W H\\
"‘\.\
\\.
tdscdma \\
[[| \“\\\
1000 umts G
atsc
W gsm td-scdma \Q‘\\
0 o
hsdpa lg&mb—t tea B
100 ag02.41b O\ Wit
B02.111
dab NN uwb
10 GOPS dvbd \\
dvb-h A
10 0.1 GOPS 802.11a h
: B cellular modems
E ® broadcast modems
g_ A lan/pan modems bit rate [Mb/s]
i T T T T
0.01 0.1 1 10 100 1000

Computers as Components 65

Radio Decoding Workload

10000 N
AN
umts umts . hsdpa wimax ite te-a
[[“\\ ['Y [
" L
1000 m Buscdma “a ML go2.11n
cdma2000 wedma :802.16e A
dvb-h . dvb-¢
r A eoguedts
dab scdma 802.11p dvb4 R\BUE.‘HE{ uw b
™~
190 mgsm W gprs AN
0.1 GOPS dvd HHH
.o | —10GOPS 4 : N N
B cellulardecoders bluetooth blueray
® broadcast decoders
A connectivity decoders bit rate [Mbps]
1 T T T T
0.01 0.1 1 10 100 1000

Computers as Components

66

3.5G Workload

100%

Fig. 3.

H gfx/blending

E gh/pixelshading
\:l gtx/rasterization

gh/geometry
Bmedia/display
\;mediafcamera
media/h264enc

mediah264dec

B media/audio
O radio/protocols

radio/codec
—radio/modem

——— [radio/fronte nd

{lapplication

graphics
graphics
m edia
m edia
radio radio
application
application
m W GOPS GOPS

3.5G workload (power consumption) as fractions ol 100GOPS (I1W).

Computers as Components

67

Workload vs Energy/operation

100.0
. O fig HW
radio R conig
/codec media » DSP
O /codec uP
\ 0
0.8
v=38.1x
10.0 O \ ’
radio ™ .
frontend \\\\) O gix/pixel
radio ™
/mod h
modem \\\ © gix/vertex
. “\H
o ﬁ:e{j;a 0
.) ispla S~
2 PRY N
8 protocols x\m\ C
T + control ~
o . licati
0 media & application
energy [pJd/op] faudio
0.1
1 10 100 1000

Fig. 4. Workloads [GOPS] versus energy/operation [pl].
Computers as Components 68

Value of Programming

TABLE 11

VALUE-AFFORDABILITY OF PROGRAMMARBLE SOLUTIONS (EXAMPLES).

radio video 3D graphics
very high protocol stacks geomelry proces.
high channel estimation pixel shading
medium demodulation motion estimation
low turbo decoder entropy (de)coding

(1)f1t deblocking
very low lilters filters rasterization

scaling pixel blending

Computers as Components 69

2/2.5G Dual-core Architecture

<

D

L2 CPU DSP accel.
memaory
15 (D% PM[DM CRH (DM
1l iy 10 10
17 17 11
L2 (L3)
memaory storage display
(DRAM) (flash)

Computers as Components

70

display

storage
(flash)

L3
memory
(DRAM)

L2
cache

1L

CPU

1$ D3

10

<

L2 |
M & mory

1L

T

DSP

15 D3

PM DM

accel.

1l

1

<

Lz §
Memory

1L

T

DSP

s DS

FM DM

accel.

10

1

IK

Computers as Components

3/3.5G Multi-core Architecture

multi-
application

multi-
media

multi-
radio

Cell-phone Chips

TABLE 111
PUBLISHED INDUSTRIAL CELL-PHONE CHIPS (... DENOTES A SHARED RADIO-MEDIA CORE).

year rel source cmos total application radio media

nm # cores core(s) MHz core(s) MHz core(s) MHz
1992 [1] Philips 1000 I n.a. KISS-16-V2 20
2000 [2] Infincon 250 2 CPU 78 Oak 78
2001 [9] Samsung | 80 2 ARM9 Teaklite n.a.
2003 [6] Toshiba 130 3 n.a. n.a. 3x RISC 125
2004 [3] Nokia 130 2 CPU 50 DSP 160
2004 [10] Qualcomm 130 3 ARMY |80 DSP 95 DSP 95
2004 [11] Renesas |30 2 CPU 216 n.a. DSP 216
2005 [12] NEC 130 4 ARMO9 200 n.a. 2XARM9 + DSP 200
2006 [13] ST 130 2 ARMS 156 STI122 DSP 156
2007 [14] Infineon 90 2 ARMY 380 TEAKIite 104
2008 [15] Renesas et al 65 4 ARMII 500 ARM9 66 ARMI1 + SHX2 500
2008 [16] TI 45 5 ARMII 840 2 C55 + 7 480
2008 [17] NEC 65 3 ARMI11 500 ARMI | 250 DSP 500
2009 [I18] Panasonic 45 4 ARMII 486 ARMI | 245 2xDSP 216
2009 [19] Renesas 65 2 CPU 500 n.a. SHX?2 500

Computers as Components 72

Power Management Knobs

TABLE IV

POWER MANAGEMENT KNOBS: f~ DENOTES CLOCK FREQUENCY, Vpp
AND V3 DENOTE SUPPLY AND THRESHOLD VOLTAGE, AND P AND Fq
DENOTE DYNAMIC AND STATIC POWER CONSUMPTION.

knob throughput power
stop the clock: fo 10 — | Pp |0
[requency scaling (FS) fo l = | Pp |
voltage scaling (VS) Vbbb | = | PD l
power down Vpp O = |0 Ps | 0O
forward body bias (FBB) V4 | = Ps 1
reverse body bias (RBB) Ve T = | Peq |

Computers as Components

73

Accelerator speedup

Critical parameter is speedup: how much
faster is the system with the accelerator?
Must take into account:

Accelerator execution time.

Data transfer time.

Synchronization with the master CPU.

Computers as Components 74

Accelerator execution time

Total accelerator execution time:
taccel = tin + tx + tout

/

Data input Data output

Accelerated
computation

Lo = max {t,, t, , t,,t if pipelined

Computers as Components 75

Accelerator speedup

Assume loop is executed n times.

If the software loop is replaced with the
accelerator, compare accelerated system
to non-accelerated system:

S = n(tCPU B taccel)

= n[tCPw t + touw)]

Execution time on CPU

Computers as Components

76

Single- vs. multi-threaded

One critical factor is available parallelism:
single-threaded/blocking: CPU waits for accelerator;

multithreaded/non-blocking: CPU continues to
execute along with accelerator.

To multithread, CPU must have useful work to
do.

Synchronization: software must also support
multithreading.

Computers as Components

77

Total execution time

Single-threaded:

Accel -
cru P [R2iTRaiea]

time

Computers as Components 78

Total execution time

Multi-threaded:

Cell phones

Most popular CE
device in history;
most widely used
computing device.

1 billion sold per year.

Handset talks to cell.

Cells hand off
handset as it moves.

Computers as Components

80

Execution time analysis

Single-threaded: Multi-threaded:
Count execution time Find longest path
of all component through execution.

processes. @

o AL

P2
P

Computers as Components 81

Sources of parallelism

Overlap I/O and accelerator computation.

Perform operations in batches, read in
second batch of data while computing on first
batch.

Find other work to do on the CPU.

May reschedule operations to move work
after accelerator initiation.

Computers as Components 82

Data input/output times

Bus transactions include:

flushing register/cache values to main
memory if necessary;

time required for CPU to set up transaction;

overhead of data transfers by bus packets,
handshaking, etc.

Computers as Components 83

Scheduling and allocation

Must:

schedule operations in time;

allocate computations to processing
elements.

Scheduling and allocation interact, but
separating them helps.

(Alternatively) allocate, then schedule.

Computers as Components 84

Example: scheduling and
allocation

M1 M2
di d2
® . »

Task graph Hardware platform

Computers as Components 85

First design

Allocate P1, P2 -> M1; P3 -> M2,

M1 P1 C13 P2 C23
&

time

Computers as Components 86

Second design

Allocate P1 -> M1: P2, P3 -> M2:

M1 P1C

w

Computers as Components

time

87

Example: adjusting
messages to reduce delay

Task graph: Network:

execution time
3 3 allocation

Transmission time = Td1=Td2=4

Computers as Components 88

Initial schedule

M1 | P1
M2 P2
M3 P3
network dl d2
» Time =15
0 s|3 io 15 go time

Computers as Components

89

New design

Modify P3:
reads one packet of d1, one packet of d2
computes partial result
continues to next packet

Computers as Components

90

New schedule

M1 P1
M2 P2
M3

P3 P3 P3 P3

network d1d2d1d2d1d2d142

, Time =12

| | |
0 5 10 15

Computers as Components

20 time

91

