
Computers as Components 1

Other OS functions

Date/time.

File system.

Networking.

Security.

Computers as Components 2

6.3 Priority based scheduling

Scheduling policies: static or dynamic

RMS: rate monotonic scheduling

static

EDF: earliest deadline first scheduling

dynamic

Scheduling modeling assumptions exist.

Computers as Components 3

Metrics

How do we evaluate a scheduling policy:

Ability to satisfy all deadlines.

CPU utilization---percentage of time devoted
to useful work.

Scheduling overhead---time required to make
scheduling decision.

Computers as Components 4

Rate monotonic scheduling

RMS (Liu and Layland): widely-used,
analyzable scheduling policy.

Analysis is known as Rate Monotonic
Analysis (RMA).

Computers as Components 5

RMA model

All process run on single CPU.

Assume that zero context switch time.

No data dependencies between processes.

Process execution time is constant.

Deadline is at end of period.

Highest-priority ready process runs.

Computers as Components 6

Process parameters

Ti is computation time of process i; ti is
period of process i.

period ti

Pi

 computation time Ti

Computers as Components 7

Rate-monotonic analysis

Response time: time required to finish
process.

Critical instant: scheduling state that gives
worst response time.

Critical instant occurs when all higher-
priority processes are ready to execute.

Computers as Components 8

Critical instant

P4

P3

P2

P1

critical

instant

P1 P1 P1 P1

P2 P2

P3

interfering processes

Computers as Components 9

RMS priorities

Optimal (fixed) priority assignment:

shortest-period process gets highest priority;

priority inversely proportional to period;

break ties arbitrarily.

No fixed-priority scheme does better than
RMS.

Computers as Components 10

RMS example

time

0 5 10

P2 period

P1 period

P1

P2

P1 P1

Computers as Components 11

RMS CPU utilization

Utilization for n processes is

S i Ti / ti

As number of tasks approaches infinity,
maximum utilization approaches 69%.

6931.02ln)12(/1

1




n
n

i i

i n
p

c


Computers as Components 12

RMS CPU utilization,

cont’d.

RMS cannot use 100% of CPU, even with
zero context switch overhead.

Must keep idle cycles available to handle
worst-case scenario.

However, RMS guarantees all processes
will always meet their deadlines.

Computers as Components 13

RMS implementation

Efficient implementation:

scan processes;

choose highest-priority active process.

Computers as Components 14

Earliest-deadline-first (EDF)

EDF: dynamic priority scheduling scheme.

Process closest to its deadline has highest
priority.

Requires recalculating processes at every
timer interrupt.

Computers as Components 15

EDF analysis

EDF can use 100% of CPU.

But EDF may fail to miss a deadline.

Computers as Components 16

EDF implementation

On each timer interrupt:

compute time to deadline;

choose process closest to deadline.

Generally considered too expensive to use
in practice.

Computers as Components 17

Fixing scheduling

problems

What if your set of processes is
unschedulable?

Change deadlines in requirements.

Reduce execution times of processes.

Get a faster CPU.

Computers as Components 18

Priority inversion

Priority inversion: low-priority process
keeps high-priority process from running.

Improper use of system resources can
cause scheduling problems:

Low-priority process grabs I/O device.

High-priority device needs I/O device, but
can’t get it until low-priority process is done.

Can cause deadlock.

Computers as Components 19

Resource access protocols

Critical sections: sections of code at which
exclusive access to some resource must be guaranteed.

Can be guaranteed with semaphores S.

P(S)

V(S)

P(S)

V(S)

P(S) checks semaphore to see

if resource is available

and if yes, sets S to “in use”.

Uninterruptable operations!

If no, calling task has to wait.

V(S): sets S to “available”,

which can be used by another

waiting task (if any).

Exclusive

access

to a shared

resource

guarded by

S

Task 1 Task 2

Computers as Components 20

Priority inversion

Priority T1 assumed to be higher than priority of T2.

If T2 requests exclusive access first (at t0), T1 has to wait until
T2 releases the resource (time t3), thus inverting the priority:

In this example:

duration of inversion bounded by length of critical section of T2.

Computers as Components 21

Duration of priority inversion

with >2 tasks can exceed the

length of any critical section

Computers as Components 22

Solving priority inversion

Give priorities to system resources.

Have process inherit the priority of a
resource that it requests.

Low-priority process inherits priority of
device if higher.

Computers as Components 23

MARS Pathfinder problem (1)

“But a few days into the mission,
not long after Pathfinder started
gathering meteorological data, the
spacecraft began experiencing total
system resets, each resulting in
losses of data. The press reported
these failures in terms such as
"software glitches" and "the
computer was trying to do too
many things at once".” …

Computers as Components 24

MARS Pathfinder problem (2)

“VxWorks provides preemptive priority scheduling of
threads. Tasks on the Pathfinder spacecraft were
executed as threads with priorities.”

“Pathfinder contained an "information bus", a

shared memory area for passing information between
different components of the spacecraft.”

A bus management task ran frequently with high
priority to move certain kinds of data in and out of the
information bus. Access to the bus was synchronized
with mutual exclusion locks (mutexes).”

Computers as Components 25

MARS Pathfinder problem (3)

The meteorological data gathering task ran as an
infrequent, low priority thread, … When

publishing its data, it would acquire a mutex, do
writes to the bus, and release the mutex. ..

The spacecraft also contained a communications
task that ran with medium priority.”

High priority: retrieval of data from shared memory

Medium priority: communications task

Low priority: thread collecting meteorological data

Computers as Components 26

MARS Pathfinder problem (4)

Most of the time this combination worked fine.

However, very infrequently it was possible for an
interrupt to occur that caused the (medium priority)
communications task to be scheduled during the short
interval while the (high priority) information bus thread
was blocked waiting for the (low priority)
meteorological data thread.

Computers as Components 27

MARS Pathfinder problem (5)

In this case, the long-running communications task,
having higher priority than the meteorological task,
would prevent it from running, consequently preventing
the blocked information bus task from running.

After some time had passed, a watchdog timer would
go off, notice that the data bus task had not been
executed for some time, conclude that something had
gone drastically wrong, and initiate a total system
reset. This scenario is a classic case of priority
inversion.”

Computers as Components 28

Priority inheritance protocol

A task is scheduled according to its active priority.
Tasks with the same priorities are scheduled FCFS.

A task inherits the highest priority from the tasks it
blocks.

• If task T1 executes P(S) but its exclusive access was
granted to T2, then T1 will be blocked.

• If priority(T2) < priority(T1), then T2 inherits the
priority of T1 so that T2 can release the shared
resource earlier by preventing medium-priority tasks
from preempting T2 and prolonging the blocking
period.

Computers as Components 29

Priority inheritance protocol

• When T2 executes V(S), its original priority at the
point of entry of the critical section as restored.

• Priority inheritance is transitive

• Assuming that priority(T1) > priority(T2) >
priority(T3)

• If T3 blocks T2 and T2 blocks T1, then T3 inherits
the priority of T1.

Computers as Components 30

PIP: Example (1)

without priority inheritance

Computers as Components 31

PIP: Example (2)

T3 inherits the

priority of T1 and

T3 resumes.

With priority inheritance

V(S)

Computers as Components 32

PIP: Example (3)

Computers as Components 33

Priority inversion on Mars

 Priority inheritance also solved the Mars Pathfinder
problem: the VxWorks operating system used in the
pathfinder implements a flag for the calls to mutex
primitives. This flag allows priority inheritance to be
set to “on”. When the software was shipped, it was set
to “off”.

The problem on Mars was

corrected by using the

debugging facilities of VxWorks

to change the flag to “on”, while

the Pathfinder was already on

the Mars [Jones, 1997].

Computers as Components 34

Summary

Periodic scheduling

Rate monotonic scheduling

EDF

Resource access protocols

Priority inversion

The Mars pathfinder example

Priority inheritance

Computers as Components 35

Data dependencies

Data dependencies
allow us to improve
utilization.

Restrict combination
of processes that can
run simultaneously.

P1 and P2 can’t run
simultaneously.

P1

P2

Computers as Components 36

Context-switching time

Non-zero context switch time can push
limits of a tight schedule.

Hard to calculate effects---depends on
order of context switches.

In practice, OS context switch overhead is
small (hundreds of clock cycles) relative to
many common task periods (ms – s).

Computers as Components 37

7. Multiprocessors

Why multiprocessors?

CPUs and accelerators.

Multiprocessor performance analysis.

Computers as Components 38

Why multiprocessors?

Programming a single CPU is hard enough.

Why make life more difficult by adding more
processors?

PE: processing element for computation
Whether it is programmable or not.

Multiprocessors tend to have regular
architectures
Several identical processors that can access a

uniform memory space

Computers as Components 39

Why multiprocessors?

There are a variety of different multiprocessor
architectures

Better cost/performance.

Match each CPU to its tasks or use custom logic
(smaller, cheaper).

CPU cost is a non-linear function of performance.

cost

performance

Power

Performance

Cost (Area)

Computers as Components 40

Why multiprocessors?

Splitting the application across multiple
processors entails higher engineering cost and
lead times.

Better real-time performance.

Put time-critical functions on less-loaded processing
elements.

Remember RMS utilization---extra CPU cycles must
be reserved to meet deadlines.

Computers as Components 41

Why multiprocessors?

cost

performance

To meet deadline

To meet deadline w.

RMS scheduling overhead

Computers as Components 42

Why multiprocessors?

Using specialized processors or custom logic
saves power.

Desktop processors are not power-efficient
enough for battery-powered applications.

(battery)

Computers as Components 43

Watt-hour

Wh=Rated Capacity(Ah) x voltage (V)

Specific Power = power to weight ratio
W/kg

Specific Energy = energy capacity to weight ratio
Wh/kg

Power Density = power to volume ratio
W/l

Energy Density = energy to capacity to volume ratio
Wh/l

Computers as Components 44

Nameplate Capacity

Name plate capacity should be determined
based on a standard set of requirements:

Discharge at C/10 (if the manufacturer
recommended rate is different from this, it should
be specified when nameplate capacity is
provided)

Ambient temp (20 +/- 2 deg C)

Charge at C/10 (or the manufacturer
recommended rate)

Computers as Components 45

Battery Capacity

Type Capacity
(mAh)

Density
(Wh/kg)

Alkaline AA 2850 124

Rechargeable 1600 80

NiCd AA 750 41

NiMH AA 1100 51

Lithium ion 1200 100

Lead acid 2000 30

Computers as Components 46

Discharge Rates

Type Voltage Peak
Drain

Optimal
Drain

Alkaline 1.5 0.5C < 0.2C

NiCd 1.25 20C 1C

Nickel metal 1.25 5C < 0.5C

Lead acid 2 5C 0.2C

Lithium ion 3.6 2C < 1C

Computers as Components 47

Comparison of Battery Performance

14430 is cylindrical with 14 mm dia. and 43 mm high
2010-08-30 47

Computers as Components 48

A123 2.2 Ah high-power Lithium-

Ion Cells

Computers as Components 49

Why multiprocessors?

May consume less energy.

May be better at streaming data.

May not be able to do all the work on
even the largest single CPU.

Computers as Components 50

Why multiprocessors?

Good for processing I/O in real-time.

May consume less energy.

May be better at streaming data.

May not be able to do all the work on
even the largest single CPU.

A thread per processor

 no context switching

Computers as Components 51

Accelerated systems

Use additional computational unit
dedicated to some functions?

Hardwired logic.

Extra CPU.

Hardware/software co-design: joint
design of hardware and software
architectures.

Computers as Components 52

Accelerated system

architecture

CPU

accelerator

memory

I/O

request

data
result
data

Computers as Components 53

Accelerator vs. co-processor

A co-processor executes instructions with op-
code.

Instructions are dispatched by the CPU.

An accelerator appears as a device on the bus.

Its programming model interface is functionally
equivalent to an I/O device although it does not
perform input or output

 is controlled by it registers.

Doe not execute intructions

Computers as Components 54

System design tasks

Design a heterogeneous multiprocessor
architecture.

Processing element (PE): CPU, coprocessor,
accelerator, etc.

Program the system.

Computers as Components 55

Accelerated system design

First, determine that the system really
needs to be accelerated.

How much faster is the accelerator on the
core function?

How much data transfer overhead?

Design the accelerator itself.

Design CPU interface to accelerator.

Computers as Components 56

Accelerator implementations

Application-specific integrated circuit.

Field-programmable gate array (FPGA).

Standard component.

Example: graphics processor.

Computers as Components 57

Accelerated system platforms

Several off-the-shelf boards are available
for acceleration in PCs:

FPGA-based core;

PC bus interface.

Computers as Components 58

Accelerator/CPU interface

Accelerator registers provide control registers
for CPU.

Data registers (buffers) can be used for small
data objects.

Accelerator may include special-purpose
read/write logic.

Especially valuable for large data transfers.

 DMA to transfer a large volume of data without
intervention of CPU

Computers as Components 59

Accelerator/CPU interface

Design CPU-side interface

Application software need to talk to the
accelerator (data, instruction)

Synchronization between CPU and
accelerator

The accelerator should know when it has the
required data

The CPU should know when it has received the
designed reuslts.

Computers as Components 60

System integration/debugging

Try to debug the CPU/accelerator
interface separately from the accelerator
core.

Build scaffolding to test the accelerator.

Hardware/software co-simulation can be
useful.

Computers as Components 61

Caching problems

Main memory provides the primary data
transfer mechanism to the accelerator.

Programs must ensure that caching does
not invalidate main memory data.

CPU reads location S.

Accelerator writes location S.

CPU writes location S.

Computers as Components 62

Synchronization

As with cache, main memory writes to
shared memory may cause invalidation:

CPU reads S.

Accelerator writes S.

CPU reads S.

Computers as Components 63

Mobile Phone Trends

Computers as Components 64

Power and Battery Capacity

Computers as Components 65

Radio Demodulation Workload

Computers as Components 66

Radio Decoding Workload

Computers as Components 67

3.5G Workload

Computers as Components 68

Workload vs Energy/operation

Computers as Components 69

Value of Programming

Computers as Components 70

2/2.5G Dual-core Architecture

Computers as Components 71

3/3.5G Multi-core Architecture

Computers as Components 72

Cell-phone Chips

Computers as Components 73

Power Management Knobs

Computers as Components 74

Accelerator speedup

Critical parameter is speedup: how much
faster is the system with the accelerator?

Must take into account:

Accelerator execution time.

Data transfer time.

Synchronization with the master CPU.

Computers as Components 75

Accelerator execution time

Total accelerator execution time:

taccel = tin + tx + tout

taccel = max {tin , tx , tout } if pipelined

Data input

Accelerated

computation

Data output

Computers as Components 76

Accelerator speedup

Assume loop is executed n times.

If the software loop is replaced with the
accelerator, compare accelerated system
to non-accelerated system:

S = n(tCPU - taccel)

 = n[tCPU - (tin + tx + tout)]

Execution time on CPU

Computers as Components 77

Single- vs. multi-threaded

One critical factor is available parallelism:

single-threaded/blocking: CPU waits for accelerator;

multithreaded/non-blocking: CPU continues to
execute along with accelerator.

To multithread, CPU must have useful work to
do.

Synchronization: software must also support
multithreading.

Computers as Components 78

Total execution time

Single-threaded:

P2

P1

A1

P3

P4 time

CPU

Accel

P1

A1

P2 P3 P4

Computers as Components 79

Total execution time

Multi-threaded:

P2

P1

A1

P3

P4 time

CPU

Accel

P1

A1

P2 P3 P4

Computers as Components 80

Cell phones

Most popular CE
device in history;
most widely used
computing device.

1 billion sold per year.

Handset talks to cell.

Cells hand off
handset as it moves.

Computers as Components 81

Execution time analysis

Single-threaded:

Count execution time
of all component
processes.

Multi-threaded:
Find longest path

through execution.

P2

P1

A1

P3

P4

Computers as Components 82

Sources of parallelism

Overlap I/O and accelerator computation.

Perform operations in batches, read in
second batch of data while computing on first
batch.

Find other work to do on the CPU.

May reschedule operations to move work
after accelerator initiation.

Computers as Components 83

Data input/output times

Bus transactions include:

flushing register/cache values to main
memory if necessary;

time required for CPU to set up transaction;

overhead of data transfers by bus packets,
handshaking, etc.

Computers as Components 84

Scheduling and allocation

Must:

schedule operations in time;

allocate computations to processing
elements.

Scheduling and allocation interact, but
separating them helps.

(Alternatively) allocate, then schedule.

Computers as Components 85

Example: scheduling and

allocation

P1 P2

P3

d1 d2

Task graph Hardware platform

M1 M2

Computers as Components 86

First design

Allocate P1, P2 -> M1; P3 -> M2.

time

M1

M2

P1 P2

P3

C13 C23

Computers as Components 87

Second design

Allocate P1 -> M1; P2, P3 -> M2:

M1

M2

P1

P2 P3

P1C

time

Computers as Components 88

Example: adjusting

messages to reduce delay

Task graph: Network:

P1 P2

P3

d1 d2

M1 M2 M3

allocation 3

4

3
execution time

Transmission time = Td1=Td2=4

Computers as Components 89

Initial schedule

time

M1

M2

M3

network

0 20 10 5 15

P1

P2

d1 d2

P3

Time = 15

Computers as Components 90

New design

Modify P3:

reads one packet of d1, one packet of d2

computes partial result

continues to next packet

Computers as Components 91

New schedule

time

M1

M2

M3

network

0 20 10 5 15

P1

P2

d1

P3

d2 d1

P3

d2 d1

P3

d2 d1

P3

d2

Time = 12

