
Cell phone platforms

- Today's cell phones use analog front end, digital baseband processing.
 - □ Future cell phones will perform IF processing with DSP.
- **#** Baseband processing in DSP:
 - ∨oice compression.
 - Network protocol.
- **#** Other processing:
 - Multimedia functions.
 - User interface.
 - File system.
 - Applications (contacts, etc.)

Mobile Phone Trends

TABLE I Mobile phone trends in 5-year intervals.

year	1995	2000	2005	2010	2015
cellular generation	2G	2.5-3G	3.5G	pre-4G	4G
cellular standards	GSM	GPRS	HSPA	HSPA	LTE
		UMTS		LTE	LTE-A
downlink bitrate [Mb/s]	0.01	0.1	1	10	100
display pixels [$\times 1000$]	4	16	64	256	1024
battery energy [Wh]	1	2	3	4	5
CMOS [ITRS, nm]	350	180	90	50	25
PC CPU clock[MHz]	100	1000	3000	6000	8500
PC CPU power [W]	5	20	100	200	200
PC CPU MHz/W	20	50	30	30	42
phone CPU clock[MHz]	20	100	200	500	1000
phone CPU power [W]	0.05	0.05	0.1	0.2	0.3
phone CPU MHz/W	400	2000	2000	2500	3000
workload [GOPS]	0.1	1	10	100	1000
software [MB]	0.1	1	10	100	1000
#programmable cores	1	2	4	8	16

Power and Battery Capacity

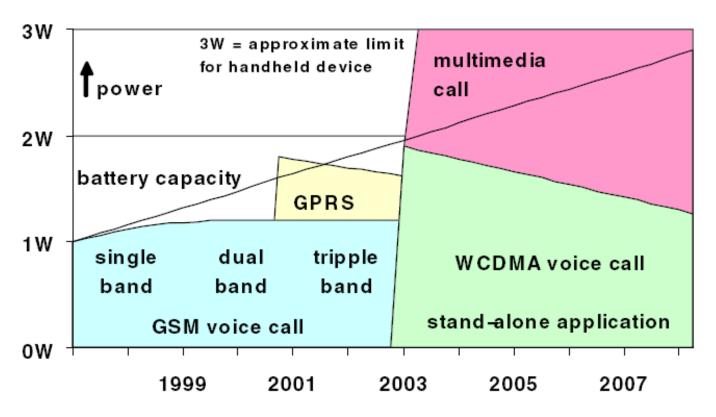
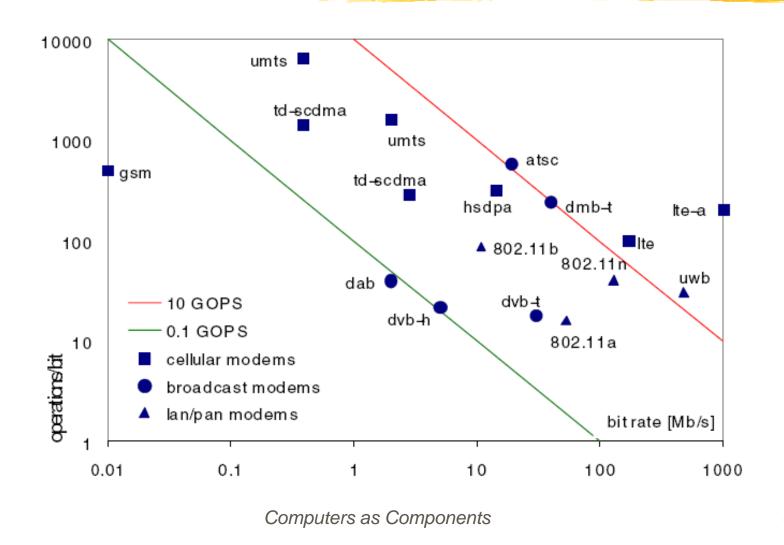
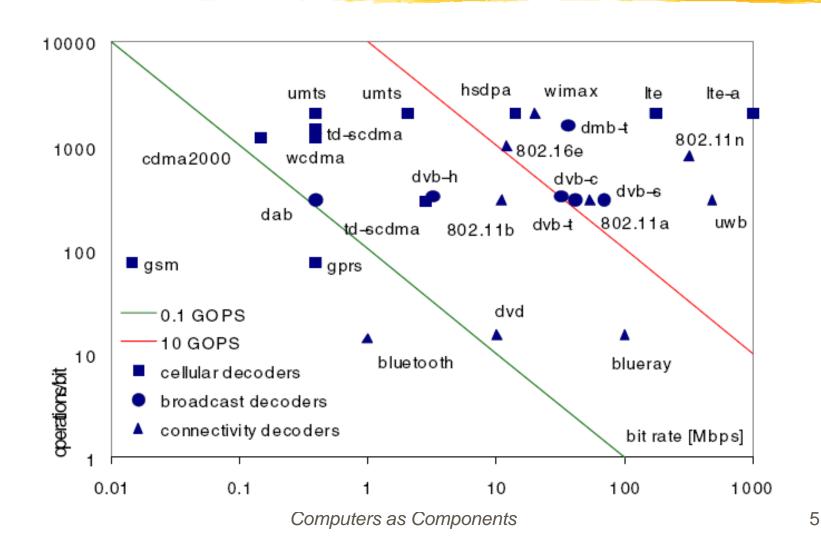




Fig. 1. Battery capacity and power consumption at maximum output power level in cellular transmitters, adapted from [3].

Radio Demodulation Workload

Radio Decoding Workload

3.5G Workload

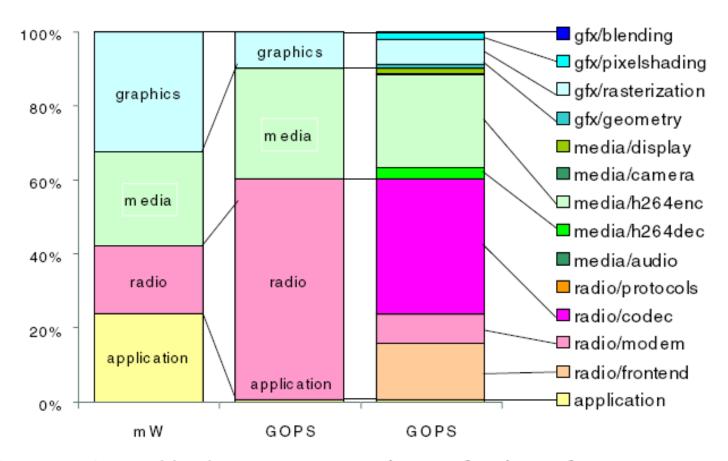
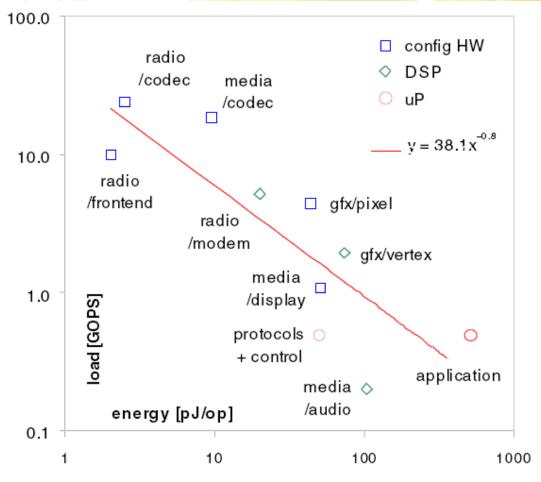
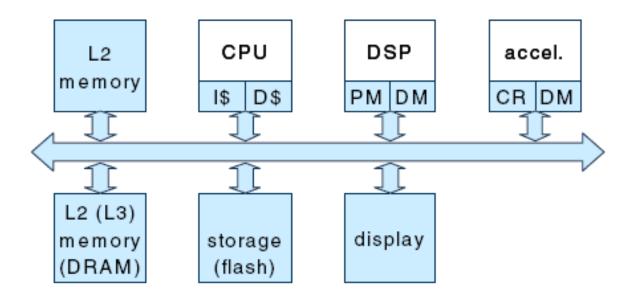


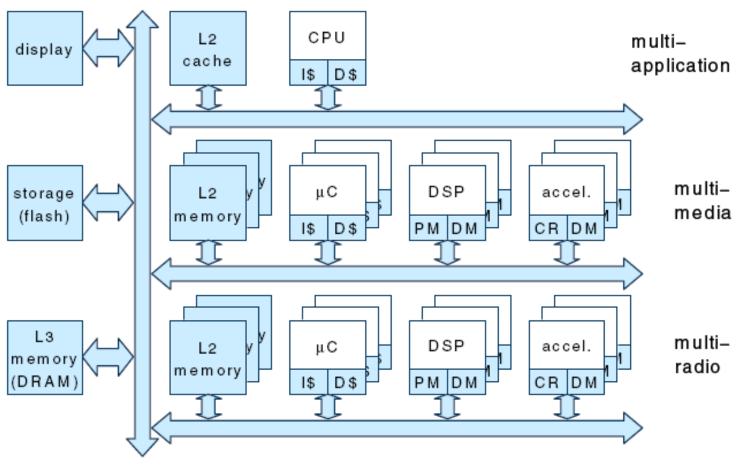
Fig. 3. 3.5G workload (power consumption) as fractions of 100GOPS (1W).

Workload vs Energy/operation




Fig. 4. Workloads [GOPS] versus energy/operation [pJ]. Computers as Components

Value of Programming


TABLE II VALUE-AFFORDABILITY OF PROGRAMMABLE SOLUTIONS (EXAMPLES).

	radio	video	3D graphics
very high	protocol stacks		geometry proces.
high	channel estimation		pixel shading
medium	demodulation	motion estimation	
low	turbo decoder	entropy (de)coding	
	(i)fft	deblocking	
very low	filters	filters	rasterization
		scaling	pixel blending

2/2.5G Dual-core Architecture

3/3.5G Multi-core Architecture

Cell-phone Chips

TABLE III
PUBLISHED INDUSTRIAL CELL-PHONE CHIPS ("..." DENOTES A SHARED RADIO-MEDIA CORE).

year	ref	source	cmos	total	applica	ation	radio		media	
			nm	# cores	core(s)	MHz	core(s)	MHz	core(s)	MHz
1992	[1]	Philips	1000	1	n.a.		KISS-16-V2			20
2000	[2]	Infineon	250	2	CPU	78	Oak			78
2001	[9]	Samsung	180	2	ARM9		Teaklite		n.a.	
2003	[6]	Toshiba	130	3	n.a.		n.a.		3x RISC	125
2004	[3]	Nokia	130	2	CPU	50	DSP			160
2004	[10]	Qualcomm	130	3	ARM9	180	DSP	95	DSP	95
2004	[11]	Renesas	130	2	CPU	216	n.a.		DSP	216
2005	[12]	NEC	130	4	ARM9	200	n.a.		2xARM9 + DSP	200
2006	[13]	ST	130	2	ARM8	156	ST122 DSP			156
2007	[14]	Infineon	90	2	ARM9	380	TEAKlite			104
2008	[15]	Renesas et al	65	4	ARM11	500	ARM9	166	ARM11 + SHX2	500
2008	[16]	TI	45	5	ARM11	840	?		C55 + ?	480
2008	[17]	NEC	65	3	ARM11	500	ARM11	250	DSP	500
2009	[18]	Panasonic	45	4	ARM11	486	ARM11	245	2xDSP	216
2009	[19]	Renesas	65	2	CPU	500	n.a.		SHX2	500

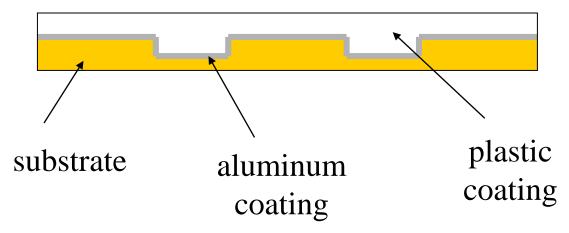
Power Management Knobs

TABLE IV

Power management knobs: f_C denotes clock frequency, V_{DD} and V_t denote supply and threshold voltage, and P_D and P_S denote dynamic and static power consumption.

	knob		throughput	power
stop the clock:	$f_C \downarrow 0$	\Rightarrow	↓ 0	$P_D \downarrow 0$
frequency scaling (FS)	$f_C \downarrow$	\Rightarrow		$P_D\downarrow$
voltage scaling (VS)	$V_{DD}\downarrow$	\Rightarrow	\	$P_D\downarrow$
power down	$V_{DD}\downarrow 0$	\Rightarrow	↓ 0	$P_S \downarrow 0$
forward body bias (FBB)	$V_t \downarrow$	\Rightarrow	↑	$P_S \uparrow$
reverse body bias (RBB)	$V_t \uparrow$	\Rightarrow	\downarrow	$P_S \downarrow$

Compact disc players


- #Device characteristics.
- #Hardware architectures.
- **Software.**

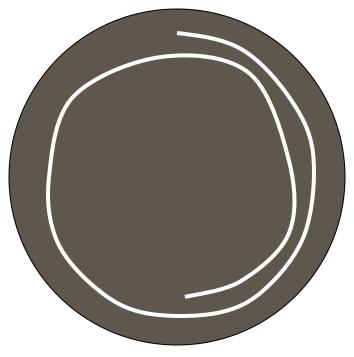
CD digital audio

- #44.1 kHz sample rate.
- **#Quantization:** 16 bit samples.
- #Pulse coded modulation (PCM)
- #Stereo (2 channels)
- ****Additional data tracks.**
- #S/N: \sim 6 dB/bit, 16 bit \rightarrow 98dB

Compact disc

- # Data stored on bottom of disc:

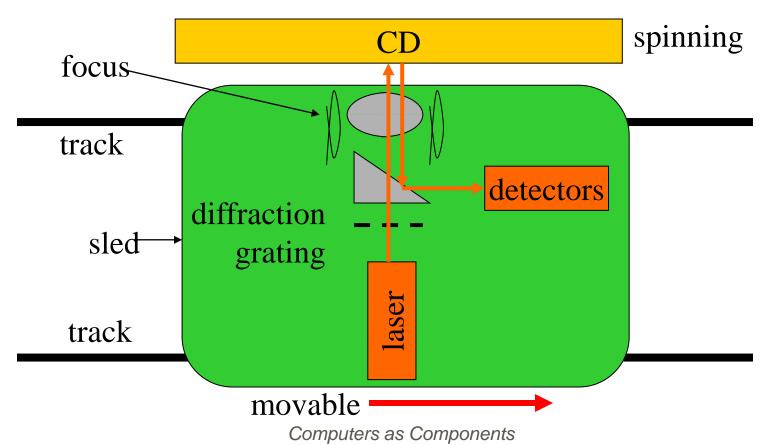
CD-DA: pits and Lands



CD medium

- **#Constant linear velocity (CLV).**
- **X**Track pitch: 1.6 microns.
- #Diameter: 120 mm.
- #Pit length: 0.8 -3 microns.
- #Pit depth: .11 microns.
- #Pit width: 0.5 microns.
- #Laser wavelength: 780 nm.

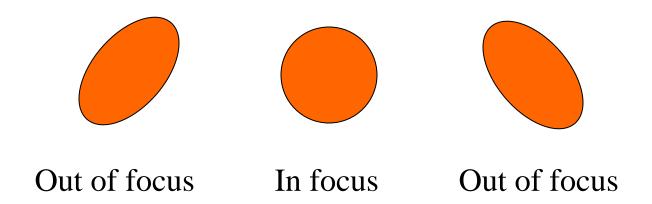
CD layout


#Data stored in spiral, not concentric circle: #One spiral with approx. 20k turns

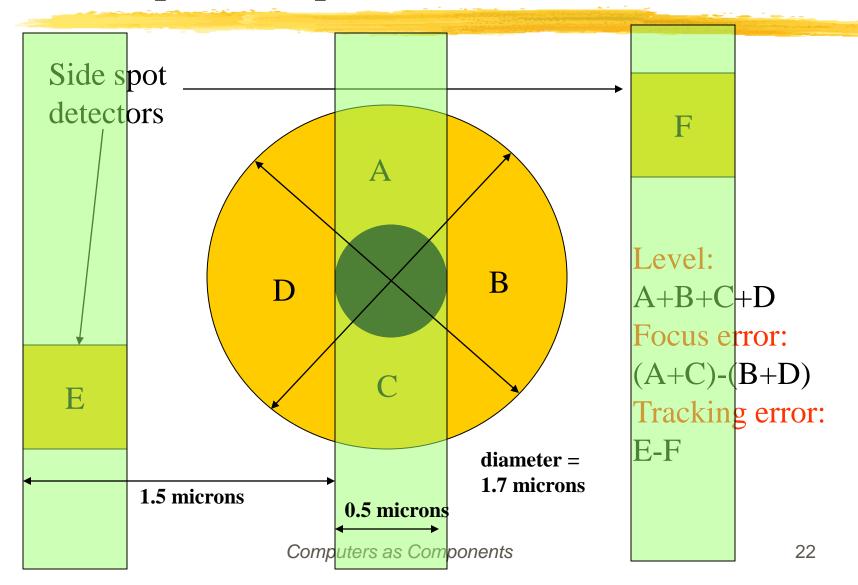
Computers as Components

CD mechanism

#Laser, lens, sled:


Laser pickup sled

- #It is movable
- #It is comprised of


 - a system of lenses,
 - a photodetector, and
 - a motor which moves the sled.

Laser focus

- #Focus controlled by vertical position of lens.
- **#**Unfocused beam causes irregular spot:

Laser pickup

Servo control

#Four main signals:

- Disc motor.

Optical pickup

EFM (Eight-to-fourteen modulation)

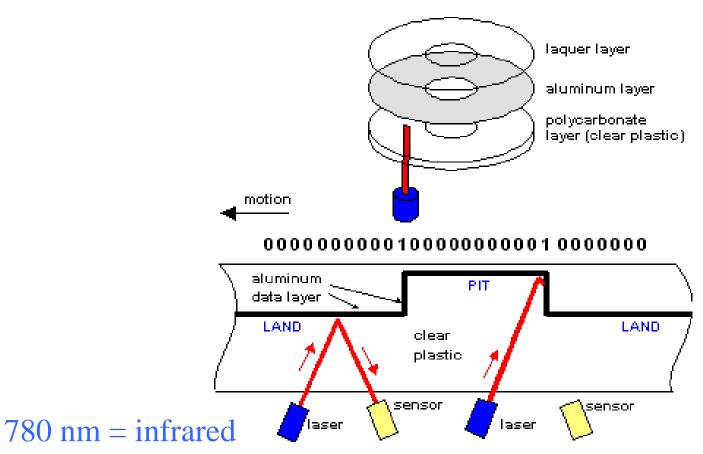
- # Fourteen-bit code guarantees a maximum distance between transitions to minimize the transition rate.
- # To guarantee pits of specific lengths, the CD standard requires that there are at least 2 and at most 10 zeroes between each pair of 1s.
- # The shortest possible pit (or land) thus represents 3 EFM bits (100), and the longest 11 EFM bits (10000000000)
- # 256 are chosen from 267 combinations that satisfies the constraints

EFM

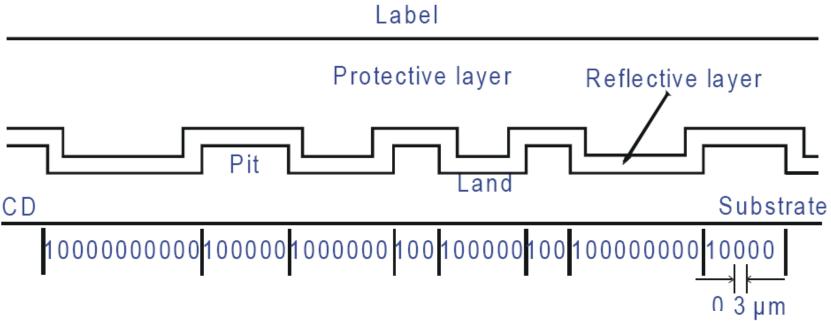
Example from the code conversion table

data bits	channel bits
00000000	01001000100000
0000001	10000100000000

Concatenation of independent 14 bit values could lead to a violation of:


- minimum distance of 2 bits between Ones
- maximum distance of 10 bits between Ones
- => three additional merging (filling) bits

CD-DA: Eight-to-Fourteen Modulation Example


Audio Bits							0	0	0	0	0	0	0	0										0	0	0	0	0	0	0	1			
Modulation Bits				0	1	0	0	1	0	0	0	1	0	0	0	0	0				1	0	0	0	0	1	0	0	0	0	0	0	0	0
Filling Bits	0	1	0															1	0	0														
Channel Bits	0	1	0	0	1	0	0	1	0	0	0	1	0	0	0	0	0	1	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0
On the CD-DA	Ι	р	р	р	I	I	I	р	р	р	р	I	I	I	I	I	Ι	р	р	р	Ι	Ι	Ι	Ι	Ι	р	р	р	р	р	р	р	р	р

CD-DA: pits and lands

From Computer Desktop Encyclopedia © 1998 The Computer Language Co. Inc.

CD-DA: pits and lands

Reading: Laser focused onto reflective layer

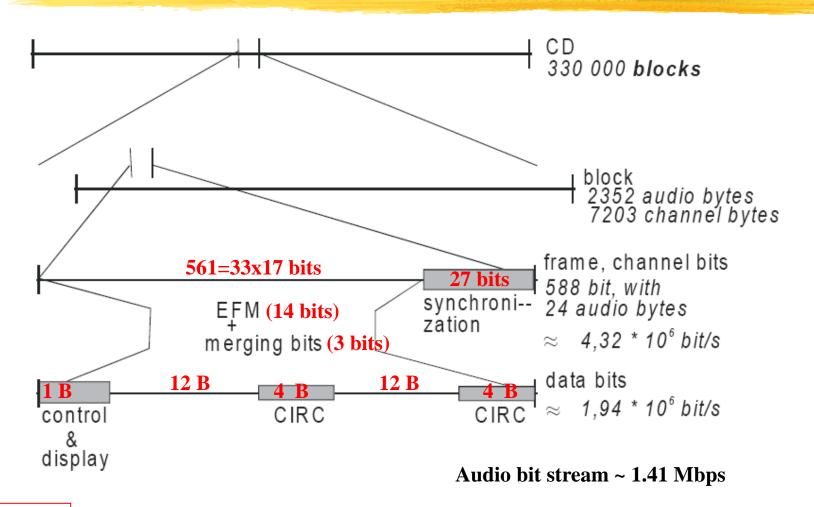
- Lands almost totally reflecting the light
- Pits scattering the light

Error correction

#CD interleaves Reed-Solomon blocks to reduce effects of large data gaps (scratches and other bursty errors).

#The time required to complete Reed-Solomon coding depends greatly on the number of erasure bits

CIRC encoding


- **#Cross-interleaved Reed-Solomon coding.**
- #Each 16-bit sample split into two 8-bit symbols.
 - Pulse coded modulation (PCM)
- ****Sample split into two symbols.**
- Six samples from each channel (=24 bytes=192 bits) are chosen to make a frame, which is encoded as a 224 bits.
- # It will be eventually encoded as 588 bits

CIRC encoding

Each frame consists of

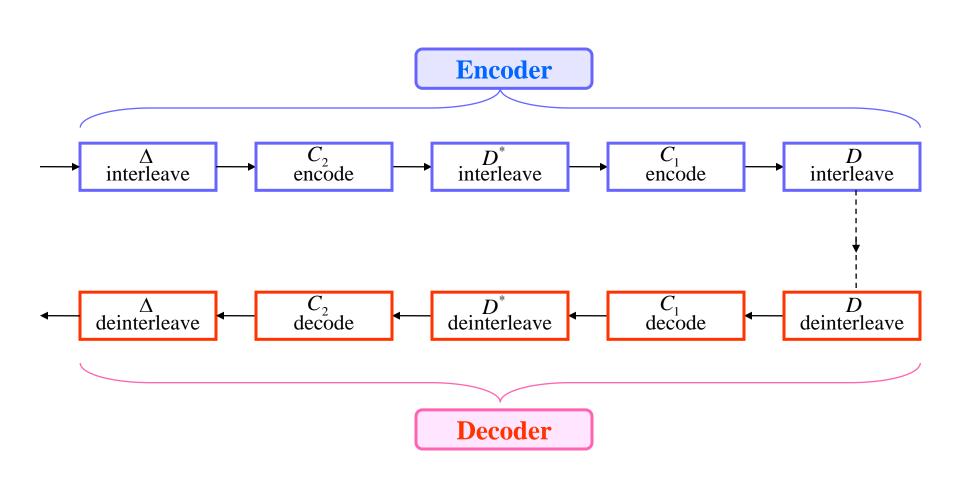
- Data
 - two groups of 12 audio data bytes each (actual data)
- Error detection and correction code
 - two groups of four parity bytes
 - Computed according to the Reed-Solomon code
- Control&display byte
 - Together with control&display bytes of other frames it forms the subchannel stream.
 - Example: subchannel byte for track start identification
- Synchronization pattern
 - Start of a frame
 - $12 \times "1" + 12 \times "0" + 3$ merging bits = 27 bits

CD ROM: Structure

CD ROM: Data Streams

Audio bit stream ~ 1.41 x 106 bit/s:

- 44,1 kHz sampling frequency ~ 1411200 bit/s
- 16-bit stereo PCM
- uniform quantization

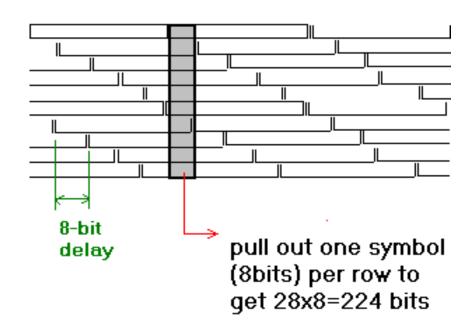

Data bit stream ~ 1.94 x 10⁶ bit/s:

- Audio bit stream
 - + parity bytes
 - + control&display byte

Channel bit stream ~ 4.32 x 10⁶ bit/s:

- Data bit stream
 - + EFM
 - + merging bits
 - + synchronization pattern

CIRC encoder



CIRC coding

- # CIRC includes the use of first C2 then C1 encoders.
- # The C1 level of CIRC is meant to correct small, random errors.
- # The C2 level corrects larger errors and burst errors.
- # Interleaving is used between the C2 (28,24) and C1 (32,28) encoders.

Interleaving to disperse errors

- Codewords of first code are stacked like bricks
- #28 rows of vectors over GF(256)
- #Extract columns and re-encode using second Reed-Solomon code

Decoding

- ## (EFM decoding) As each frame is read from the disc, it is first decoded from fourteen channel bits (the three merging bits are ignored) into eight-bit data bytes.
- ## (C1 decoding) Then, the bytes from each frame
 (twenty-four data bytes and eight error correction bytes)
 are passed to the first Reed-Solomon decoder C1, which
 uses four of the error correction bytes and is able to
 correct one byte in error out of the 32 (28+4) bytes.
- ## If there are no uncorrectable errors, the data is simply passed along. If there are errors, the data is marked as being in error at this stage of decoding.

Decoding

- (Deinterleaving) The 24 data bytes and four remaining error correction bytes are then passed through unequal delays before going through another Reed-Solomon decoder C2.
- # These unequal delays result in an interleaving of the data that spreads long error bursts among many different passes through the second decoder.
- ## The delays are such that error bursts up to 450 bytes long can be completely corrected. The second Reed-Solomon decoder uses the last four error correction bytes to correct any remaining errors in the twenty-four data bytes.
- # At this point, the data goes through a de-interleaving process to restore the correct byte order.

Error correction

- # With audio CDs, CIRC can correct burst errors up to 3874 consecutive erroneous bits or **symbols** (2.5 mm track length) and can well conceal 13,282 error bits (8.7 mm) and marginally conceal 15,500 bits.
- ## The CD standard requires a **block error rate (BLER)** [the number of data blocks that have any bad symbols at the initial C1 error correction stage] of less than 220 per second averaged over 10 seconds (50 would be typical).

What actually goes on the disc?

- **#CD** player processes 7,350 frames per second
- So CD player reads 7350x 588= 4,321,800 bits per second of music produced
- #To get 74 minutes of music, we must store 74x60x4321800 = 19,188,792,000 bits = 2.39 GB

bits of data on the compact disc!

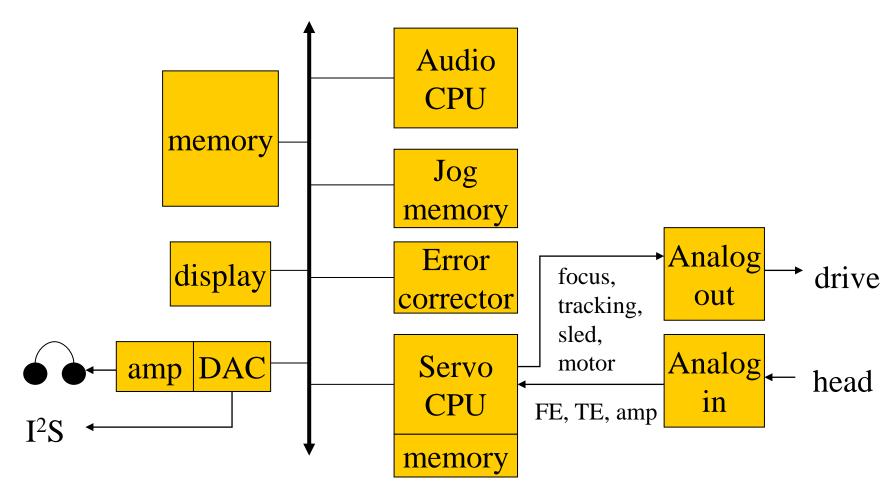
CD formats

#CD-DA: read book

#CD-ROM: yellow book

#CD-RW: orange book

MP3


- #Decoding is easier than encoding, but requires:
 - decompression;

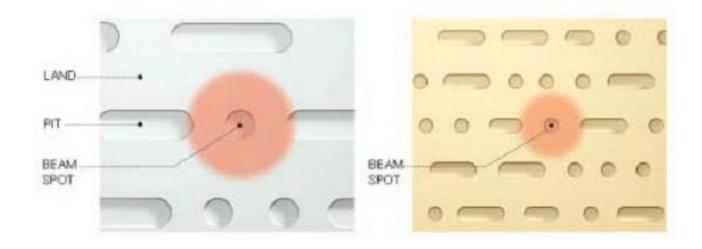
 - ~10% of ARM7 CPU
- **#Basic CD standard for data discs.**
- **No standards for MP3 disc file structure: player must understand Windows, Mac, Unix discs.

Jog/skip memory

- RAM. RAM.
- #Modern RAMs are larger than needed for reasonable jog/skip.
- **#Jog memory saves some power.**

CD/MP3 player

DVD format


- #DVD: Digital versatile disc
- #Similar to CD (IR: 780 nm), but:

 - - Spacing: 0.74 microns from 1.6 microns
 - ☑ Pit minimum: 0.4 micron from 0.83 micron
 - △EFM plus: 8 bits to 16 bits
 - two layers of data: a dual-layer disc has two layers of data, one of them semi-transparent so that the laser can focus through it and read the second layer.

CD and **DVD**

CD laser spot of 1.6 microns (µm) from 780-nanometer laser. Tracks are 1.6 µm apart.

DVD laser spot of 1.1 µm from 650-nanometer laser. Tracks are 0.74 µm apart.

Rainbow colors

Rainbow Colors Spread According to Their Wavelengths:

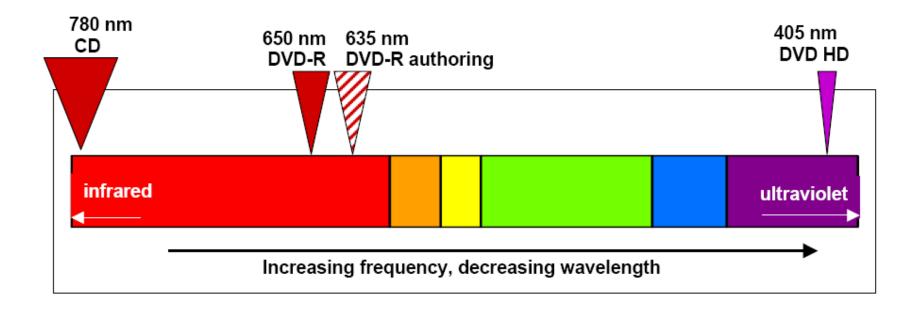
(nanometer=1 billionth of a meter)

●Red 780-622 nm

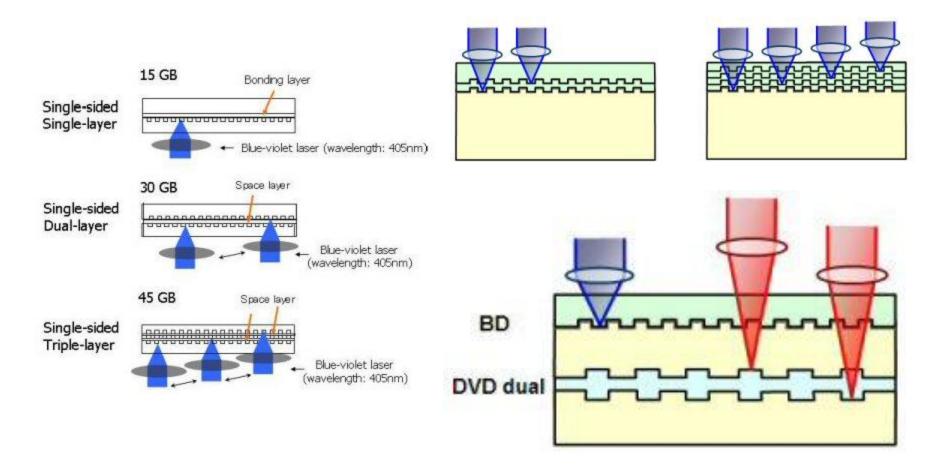
Orange 622-597 nm

•Yellow 597-577 nm Green 577-492 nm

•Blue 492-455 nm


•Violet 455-390 nm

Infrared for CD=780nm; ruby-red for DVD= 650 nm



Blue-violet laser for DVD HD = 405 nm

DVD

Multi-layer structure

Audio on DVD

#Alternatives:

- MP3 on data DVD (stereo).
- △Audio track of video DVD (5.1).
- △SACD (5.1).

MPEG audio standards

#Layer 1:

Lossless compression of subbands + optional simple masking model

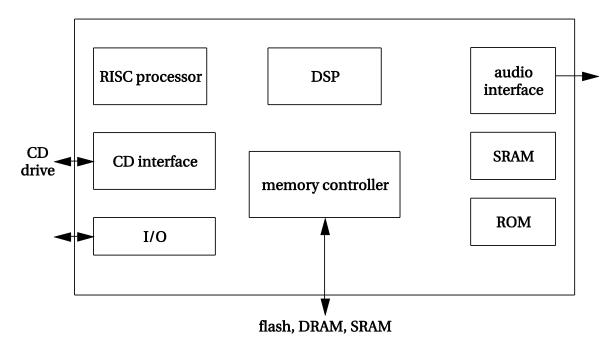
#Layer 2:

More advanced masking model.

#Layer 3:

Additional processing for lower bit rates.

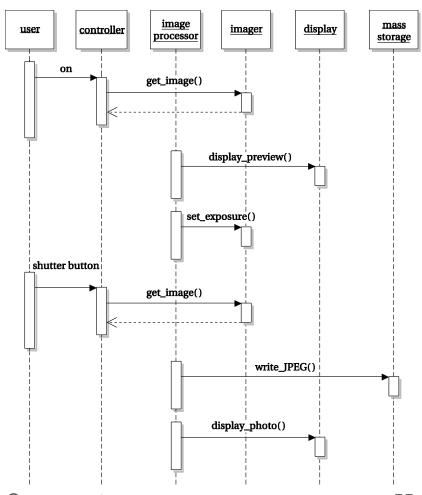
MPEG audio rates


- **#Input sampling rates:**
 - △32, 44.1, 48 kHz.
- **#Output bit rates:**
 - △23, 48, 64, 96, 112, 128, 192, 256, 384 kbits/sec.
- **#Output** can be mono, dual-channel (bilingual, etc.), stereo.

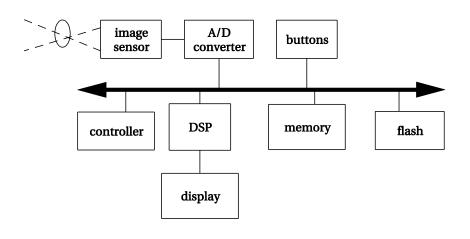
Other audio standards

- **#Dolby Digital (AC-3):**
 - Uses modified discrete cosine transform.
- **#ATRAC** (MiniDisc):
 - Uses subband + modified DCT.
- #MPEG-2 AAC.

Audio players


- # Audio players may use flash, hard disk, or CD for mass storage.
- # File system must be compatible (FAT).

Digital still cameras


- #DSC must determine exposure before taking picture.
- ****** After taking picture:

 - Compress.
 - Save as file.

Digital still camera architecture

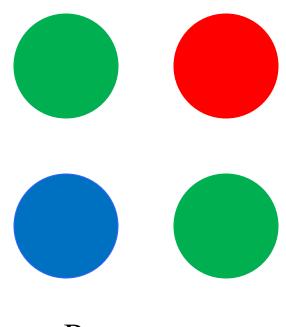

- DSC uses CPU for general-purpose processing, DSP for image processing.
- # Internal memory buffers the passes on the image.
- Display is lower resolution than image sensor.

Image capture

Before taking picture:

- □ Determine exposure.
- Determine focus.
- Optimize white balance.

Bayer pattern

Image processing

- #Must perform basic processing to get usable picture:
 - □ Bayer->RGB interpolation.
- **#DSCs** perform many functions formerly performed by photoprocessors for film:

 - Color balance.

File management

- **EXIF** standard gives format for digital pictures:
 - Format of data in a file.
 - Directory structure.
- **#EXIF** file includes:

 - △Thumbnail.
 - Metadata (camera type, date/time, etc.)