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ABSTRACT OF CHAP. 11

�Fourier Analysis in Chap. 11 concerns periodic 

phenomena—thinking of rotating parts of machines, 

alternating electric currents, or the motion of planets.  

However, the underlying ideas can also be extended to non-

periodic phenomena.

� Fourier series: Infinite series designed to represent general periodic 

functions in terms of simple ones (e.g., sines and cosines).

� Fourier series is more general than Taylor series because many 

discontinuous periodic functions of practical interest can be 

developed in Fourier series.

� Fourier integrals and Fourier Transforms extend the ideas and 

techniques of Fourier series to non-periodic functions and have basic 

applications to PDEs.
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CHAP. 11.1

FOURIER SERIES
Infinite series designed to represent general periodic 

functions in terms of simple ones like cosines and sines. 
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PERIODIC FUNCTIONS

� The smallest period is called a fundamental period.
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PERIODIC FUNCTIONS
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FOURIER SERIES
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EXAMPLE
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EXAMPLE
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CONVERGENCE AND SUM OF FOURIER SERIES

Proof: For continuous f(x) with continuous first and second order

derivatives.
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Repeating the process:

Since f" is continuous on [– π, π ]

CONVERGENCE AND SUM OF FOURIER SERIES (cont)
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Similarly for

Hence

which converges.

CONVERGENCE AND SUM OF FOURIER SERIES (cont)
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HOMEWORK IN 11.1

� HW1. Problem 9

� HW2. Problem 15
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CHAP. 11.2

FUNCTIONS OF ANY PERIOD P=2L
general periodic functions with P=2L. 
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FUNCTIONS OF ANY PERIOD
P = 2L
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EXAMPLE
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FUNCTIONS OF ANY PERIOD (cont)
P = 2L
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Proof: Result obtained easily through change of scale.

Same for a0, bn
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ANY INTERVAL (a, a + P)
P = PERIOD = 2L
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HOMEWORK IN 11.2

� HW1. Problem 3

� HW2. Problem 5
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CHAP. 11.3

EVEN AND ODD FUNCTIONS.  HALF-

RANGE EXPANSIONS
Take advantage of function properties. 
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Examples:     x4, cos x

f(x) is an even function of x, if f(-x) = f(x).  For example, f(x) = x sin(x), then 

f(- x) = - x sin (- x) = f(x)

and so we can conclude that x sin (x) is an even function.

EVEN AND ODD FUNCTIONS
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Properties

1. If g(x) is an even function

2. If h(x) is an odd function

3. The product of an even and odd function is odd
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THEOREMS
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EXAMPLE
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HOMEWORK IN 11.3

� HW1. Problem 11

� HW2. Problem 15
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CHAP. 11.5

FORCED OSCILLATIONS
Connections with ODEs and PDEs. 
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Forced Oscillations
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Forced Oscillations
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Forced Oscillations
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Forced Oscillations
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Forced Oscillations
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HOMEWORK IN 11.5

� HW1. Problem 6
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CHAP. 11.6

APPROXIMATION BY 

TRIGONOMETRIC POLYNOMIALS
Useful in approximation theory. 
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Consider a function f(x), periodic of period 2π.  Consider an 

approximation of f(x),

The total square error of F

is minimum when F's coefficients are the Fourier coefficients.

APPROXIMATION BY
TRIGONOMETRIC POLYNOMIALS 
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PARSEVAL'S THEOREM 
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The square error, call it E*, is

where an = An and bn = Bn.

Parseval’s theorem:
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HOMEWORK IN 11.6

� HW1. Problem 2
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CHAP. 11.7

FOURIER INTEGRAL
Extension of the Fourier series method to non-periodic 

functions. 
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FOURIER INTEGRALS

Since many problems involve functions that are nonperiodic and are of

interest on the whole x-axis, we ask what can be done to extend the method

of Fourier series to such functions.  This idea will lead to “Fourier integrals.”
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FOURIER INTEGRALS
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FOURIER INTEGRALS
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FOURIER COSINE AND SINE INTEGRALS
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FOURIER COSINE AND SINE INTEGRALS
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FOURIER COSINE AND SINE INTEGRALS

( ) ( ) ( )
0

f x   cos sin dA x B xω ω ω ω ω
∞

 = + ∫

( )

( )

( )

0

1

2

1
cos

1
sin

n

n

a  = f x dx

a  = f x nx dx

b  = f x nx dx

π

π

π

π

π

π

π

π

π

−

−

−

⋅

⋅

∫

∫

∫

( ) ( )f x = a + a cos nx + b sin nx0 n n
n = 1

∞

∑

( ) ( ) ( )

( ) ( ) ( )

1
 cos d

1
 sin d

A f v v v

B f v v v

ω ω
π

ω ω
π

∞

−∞

∞

−∞

=

=

∫

∫



44B.D. Youn Engineering Mathematics II CHAPTER 11

THEOREM1: EXISTENCE

If f(x) is piecewise continuous in every finite interval and has a right hand 

and left hand derivative at every point and if

exists, then f(x) can be represented by the Fourier integral.

The F.I. equals the average of the left-hand and right-hand limit of f(x) 

where f(x) is discontinuous.
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For an even or odd function the F.I. becomes much simpler.

If f(x) is even

If f(x) is odd
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EXAMPLE

Consider

Evaluate the Fourier cosine integral A(ω) and sine integral B(ω).

( ) 0 k   0,     x           e  xf  kx >>= −

Integration by parts gives

For Fourier cosine integral,

Fourier cosine integral is
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EXAMPLE

Integration by parts gives

For Fourier sine integral,

Fourier sine integral is

Laplace integrals
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HOMEWORK IN 11.7

� HW1. Problem 1

� HW2. Problem 7
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CHAP. 11.8

FOURIER COSINE AND SINE 

TRANSFORMS
An integral transform is a transformation in the form of 

an integral that produces from given functions new 

functions depending on a different variable. 



50B.D. Youn Engineering Mathematics II CHAPTER 11

FOURIER SINE AND COSINE TRANSFORMS

For an even function, the Fourier integral is the Fourier cosine integral
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FOURIER SINE AND COSINE TRANSFORMS (cont)

Similarly for odd function
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NOTATION AND PROPERTIES
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TRANSFORMS OF DERIVATIVES
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FOURIER TRANSFORM
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The F.I. is:

Replacing
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FOURIER TRANSFORM
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FOURIER TRANSFORM (cont)
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NOTATION AND PROPERTIES
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