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ABSTRACT OF CHAP. 12

�PDEs in Chap. 12 are models of various physical and 

geometrical problems (the solutions) depend on two or 

more variables, usually on time t and one or several space 

variables.

� We concentrate on the most important PDEs of applied mathematics, 

the wave equations governing the vibrating string (Sec. 12.2) and 

vibrating membrane (Sec. 12.7), the heat equation (12.5), and 

Laplace equation (Secs. 12.5 and 12.10).

� We derive these PDEs from physics and consider methods for 

solving initial and boundary value problems, that is, methods of 

obtaining solutions satisfying conditions that are given by the 

physical situation.
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CHAP. 12.1

BASIC CONCEPTS
Classes of the PDEs.
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EXAMPLES OF PDE

One-D Wave equation

One-D Heat equation

Two-D Laplace equation

Two-D Wave Equation

Two-D Poisson equation

Three-D Laplace Equation
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A PDE is an equation involving one or more partial derivatives of a function.



5B.D. Youn Engineering Mathematics II CHAPTER 12

Fundamental Theorem
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EXAMPLE OF WAVE EQUATION

� Problem, as a solution to the wave equation
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EXAMPLE OF HEAT EQUATION
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EXAMPLE OF LAPLACE EQUATION
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HOMEWORK IN 12.1

� HW1. Problems 1, 3, 5

� HW2. Problems 14, 15

� HW3. Problems 18, 19

� HW4. Problem 23
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CHAP. 12.2

MODELING: VIBRATING STRING, 

WAVE EQUATION
Modeling the wave equation.
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VIBRATING STRING AND THE WAVE EQUATION

� General assumptions for vibrating string problem:

� mass per unit length is constant; string is perfectly elastic and no resistance 

to bending.

� tension in string is sufficiently large so that gravitational forces may be 

neglected.

� string oscillates in a plane; every particle of string moves vertically only; 

and, deflection and slope at every point are small in terms of absolute value.

Deflected string at fixed time t
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DERIVATION OF WAVE EQUATION

Deflected string at fixed time t

T1, T2 = tension in string at point P and Q

T1 cos α = T2 cos β = T, a constant (as string does not move in horizontal 

dir.)

Vertical components of tension:

– T1 sin α and   T2 sin β
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DERIVATION OF WAVE EQUATION (Cont.)
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DERIVATION OF WAVE EQUATION (Cont.)
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CHAP. 12.3

SOLUTION BY SEPARATING 

VARIABLES.  USE OF FOURIER 

SERIES
Solving the PDEs using separating variables and 

Fourier series and interpreting the solution.
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Solution by Separating Variables
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Solution by Separating Variables
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Solution by Separating Variables
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Solution by Separating Variables
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Solution by Separating Variables
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Solution by Separating Variables
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Physical Interpretation

Let us consider when the initial velocity g(x) be identically zero.
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The first term represents a wave that 

is traveling to the right as t increases.

The second is a wave that is traveling 

to the left as t increases.
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EXAMPLE 1
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EXAMPLE 1
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HOMEWORK IN 12.3

� HW1. Problem 1

� HW2. Problems 11, 12

� HW3. Problems 15, 16
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CHAP. 12.5

HEAT EQUATION: SOLUTION BY 

FOURIER SERIES
Also called the diffusion equation.
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From prior work the heat equation is:

In one dimension (laterally insulated):  

Some boundary conditions at each end:

u(0, t) = u(L, t) = 0, 

for all t

Initial Condition:

u(x, 0) = f(x), 

specified    0 ≤ x ≤ L

HEAT EQUATION
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HEAT EQUATION
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HEAT EQUATION
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HEAT EQUATION
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EXAMPLE 1
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EXAMPLE 2
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EXAMPLE 3
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EXAMPLE 4



35B.D. Youn Engineering Mathematics II CHAPTER 12

HOMEWORK IN 12.5

� HW1. Problems 5,7
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CHAP. 12.6

HEAT EQUATION: SOLUTION BY 

FOURIER INTEGRALS AND 

TRANSFORMS
Extension to bars of infinite length.
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INTRODUCTION
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USE OF FOURIER INTEGRALS
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USE OF FOURIER INTEGRALS

Using the inner integral and variable transformation
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EXAMPLE1
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EXAMPLE1
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HOMEWORK IN 12.6

� HW1. Problems 3,5
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CHAP. 12.7

MODELING: MEMBRANE, TWO-

DIMENSIONAL WAVE EQUATION
Extension to bars of infinite length.
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VIBRATING MEMBRANE AND

THE TWO-DIMENSIONAL WAVE EQUATION

Three Assumptions:

� The mass of the membrane is constant, the membrane is perfectly 

flexible, and offers no resistance to bending;

� The membrane is stretched and then fixed along its entire boundary 

in the x-y plane.  Tension per unit length (T) which is caused by 

stretching is the same at all points and in the plane and does not 

change during the motion;

� The deflection of the membrane u(x,y,t) during vibratory motion is 

small compared to the size of the membrane, and all angles of 

inclination are small
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GEOMETRY OF VIBRATING "DRUM"

Vibrating Membrane
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NOW FOR NEWTON'S LAW

Divide by ρ∆x∆y:

Take limit as  ∆x → 0, ∆y → 0  

This is the two-dimensional wave equation       
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WAVE EQUATION

� In Laplacian form:

where 

c2 = T/ρ

� Some boundary conditions:  u = 0 along all edges of the 

boundary.

� Initial conditions could be the initial position and the initial 

velocity of the membrane

� As before, the solution will be broken into separate functions 

of x,y, and t.

� Subscripts will indicate variable for which derivatives are 

taken.
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SOLUTION OF 2-D WAVE EQUATION

Let 

u(x, y, t) = F(x, y)G(t)

substitute into wave equation:

divide by c2FG, to get:

This gives two equations, one in time and one in space.  For time, 

where λ = cν, and, what is called the amplitude function:

also known as the Helmholtz equation.
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SEPARATION OF THE HELMHOLTZ EQUATIONS

Let                                    F(x, y)=H(x)Q(y)

and, substituting into the Helmholtz:

Here the variables may be separated by dividing by HQ:

Note:  p2 = ν2 – k2

As usual, set each side equal to a constant, -k2 .  This leads to two ordinary 

linear differential equations:
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