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ABSTRACT OF CHAP. 19

�Part E: Numerical methods provide the transition from the 

mathematical model to an algorithm, which is a detailed 

stepwise recipe for solving a problem of the indicated kind 

to be programmed on your computer.

�Chapter 19 on numerics begins with an explanation of 

some general concepts, interpolations, numerical 

integration and differentiation.

� Methods for solving equations (19.2), interpolation methods 

including splines (19.3 and 19.4), and numerical integration and 

differentiation (19.5)
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CHAP. 19.1

INTRODUCTION
Steps and important issues of numerical methods.
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STEPS IN NUMERICAL METHODS

� Methods for solving problems numerically on a computer

� Steps:  
• Modeling

• Choice of a numerical method, Programming

• Doing the computation

• Interpreting the results
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STABILITY
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ACCURACY
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ACCURACY



8
B.D. Youn

2011 Engineering Mathematics II CHAPTER 19

ERROR PROPAGATION
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HOMEWORK IN 19.1

� HW1. Problems 14
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CHAP. 19.2

SOLUTION OF EQUATIONS BY 

ITERATION
Finding solution of an equation using iterative steps.
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Nonlinear Equations in Engineering Fields

f(x) = ωn (x) − ω ≠ 0

x: bridge design variables

To design a safe bridge , 

an excitation frequency 

must be different from its 

natural frequency.

f(x) = T (x) − T* < 0

x: battery design variables

To design a safe battery, a 

temperature level must be 

smaller than a marginal 

temperature.

f(x) = σ (x) − S < 0

x: bridge gusset plate

To design a safe bridge, 

a stress level at a critical 

bridge element must be 

smaller than its strength.
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SOLUTION OF EQUATIONS BY ITERATION

� Solving equation f(x) = 0

� Methods:

• Fixed – Point Iteration

• Newton's Method

• Secant Method
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FIXED-POINT ITERATION FOR SOLVING f(x) = 0

� Idea:  transform f(x) = 0 into x = g(x)

� Steps:

1. Choose x0

2. Compute x1 = g(x0),  x2 = g(x1), …, xn+1 = g(xn)

� A solution of x = g(x) is called a fixed point

� Depending on the initial value chosen (x0), the related 

sequences may converge or diverge
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FIXED-POINT ITERATION FOR SOLVING f(x) = 0

� Example:  f(x) = x2 – 3x + 1 = 0





=
381966.0

618034.2
Solutions
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FIXED-POINT ITERATION FOR SOLVING f(x) = 0
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NEWTON'S METHOD FOR SOLVING f(x) = 0

� f must have a continuous derivative f '

� The method is simple and fast
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NEWTON'S METHOD FOR SOLVING f(x) = 0
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ALGORITHM
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NEWTON'S METHOD FOR SOLVING f(x) = 0

Example:    Find the positive solution of f(x) = 2 sin x – x = 0
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SECANT METHOD FOR SOLVING f(x) = 0

Newton’s method is powerful but disadvantageous because it 

is difficult to obtain f '.  The secant method approximates f '.
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SECANT METHOD FOR SOLVING f(x) = 0

� Newton's Method

� Secant
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SECANT METHOD FOR SOLVING f(x) = 0
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HOMEWORK IN 19.2

� HW1. Problems 2

� HW2. Problems 10

� HW3. Problems 11

� HW4. Problems 21
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CHAP. 19.3

INTERPOLATION
Finding (approximate) values of a function f(x) for an x 

between different x-values x0, x1, ! , xn at which the 

values of f(x) are given.
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INTERPOLATION

� Function f(x) is unknown

� Some values of f(x) are known (f1, f2, …, fn)

� Idea:  Find a polynomial pn(x) that is an approximation of f(x)

( ) ( ) ( ) nnn11n00n fxp ,,fxp,fxp === L

� Lagrange interpolation

• Linear

• Quadratic

• General

� Newton's interpolation

• Divided difference

• Forward difference

• Backward difference

� Splines
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LINEAR LAGRANGE INTERPOLATION

� Use 2 known values of f(x)  → f0, f1

p1 is the linear Lagrange polynomial.
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LINEAR LAGRANGE INTERPOLATION

� p1(x) = L0(x)f0 + L1(x)f1

� L0 and L1are linear polynomials (weight functions).
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LINEAR LAGRANGE INTERPOLATION

Example:  Compute ln 9.2 from ln 9.0 = 2.1972 and ln 9.5 = 2.2513 by 
linear Lagrange interpolation

Solution:
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QUADRATIC LAGRANGE INTERPOLATION

� Use of 3 known values of f(x) → f0, f1, f2

� Approximation of f(x) by a second-degree polynomial
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QUADRATIC LAGRANGE INTERPOLATION

Example:  Compute ln 9.2 for f0 (x0 = 9.0) = ln 9.0, f1 (x1 = 9.5) = ln 
9.5, f2 (x2 = 11.0) = ln 11.0

Solution:
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GENERAL LAGRANGE INTERPOLATION
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NEWTON'S INTERPOLATION

� More appropiate for computation

� Level of accuracy can be easily improved by adding 

new terms that increase the degree of the polynomial

� Divided difference

� Forward difference

� Backward difference
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Is High-Order Polynomial a Good Idea?

f(x) = 1/(1+25x^2)
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HOMEWORK IN 19.3

� HW1. Problems 3

� HW2. Problems 8
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CHAP. 19.4

SPLINE INTERPOLATION
The undesirable oscillations are avoided by the method 

of splines initiated by I.J. Schoenberg in 1946 (Applied 

Mathematics 4, pp45-99, 112-141).  This method is 

widely used in practice.  It also laid the foundation for 

much of modern CAD (Computer Aided Design).
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� Method of interpolation used to avoid numerical instability

� Idea:  given an interval [a, b] where the high-degree polynomial 

can oscillate considerable, we subdivide [a, b] in several smaller 

intervals and use several low-degree polynomials (which cannot 

oscillate much)

SPLINES
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SPLINES (cont)

� In an interval x ∈ [xj, xj+1], j = 0 , …, n – 1

where
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SPLINES (cont)

� Let (x0,f0), (x1,f1), … , (xn,fn).

� k0, kn are two given numbers.

� k1, k2, …, kn-1 are determined by a linear system of n-1 

equations:

� h is the distance between nodes

xn = x0 + nh
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SPLINES (cont)

� Clamped conditions

g'(x0) = f'(x0),    g'(xn) = f'(xn)

� Free/natural conditions

g"(x0) = 0,    g"(xn) = 0

� Example:

Interpolate f(x) = x4 on interval x ∈ [-1, 1] by cubic 
spline in partitions x0 = -1, x1 = 0, x2 = 1, satisfying 
clamped conditions

g'(-1) = f'(-1),    g'(1) = f'(1)
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SPLINES (cont)
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SPLINES (cont)



42
B.D. Youn

2011 Engineering Mathematics II CHAPTER 19

HOMEWORK IN 19.4

� HW1. Problems 11

� HW2. Problems 12
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CHAP. 19.5

NUMERICAL INTEGRATION AND 

DIFFERENTIATION
Evaluating the numerical integration.
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NUMERICAL INTEGRATION

� Numerical evaluation of integrals whose analytical evaluation is too

complicated or impossible, or that are given by recorded numerical values

� Rectangular rule

� Trapezoidal rule

� Simpson's rule

� Gauss integration
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RECTANGULAR RULE

� Approximation by n rectangular areas

where
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TRAPEZOIDAL RULE

� Approximation by n trapezoidal areas
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TRAPEZOIDAL RULE
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SIMPSON'S RULE

� Approximation by parabolas using Lagrange polynomials p2(x)

� Interval of integration [a, b] divided into an even number of subintervals
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SIMPSON'S RULE
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SIMPSON'S RULE
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ADAPTIVE INTEGRATION
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GAUSS INTEGRATION

where
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HOMEWORK IN 19.5

� HW1. Problem 5

� HW2. Problem 6

� HW3. Problem 21


