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ABSTRACT OF CHAP. 19

B.D. Youn

2011

» Part E: Numerical methods provide the transition from the
mathematical model to an algorithm, which is a detailed
stepwise recipe for solving a problem of the indicated kind
to be programmed on your computer.

» Chapter 19 on numerics begins with an explanation of
some general concepts, interpolations, numerical
integration and differentiation.

= Methods for solving equations (19.2), interpolation methods
including splines (19.3 and 19.4), and numerical integration and
differentiation (19.5)
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CHAP. 191
INTRODUCTION

Steps and important issues of numerical methods.
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STEPS IN NUMERICAL METHODS

» Methods for solving problems numerically on a computer

> Steps:
e Modeling

e Choice of a numerical method, Programming

* Doing the computation

e Interpreting the results

Algorithm

Numeric methods can be formulated as algorithms. An algorithm is a step-by-step procedure that states
a numeric method in a form (a “pseudocode’) understandable to humans. (Turn pages to see what
algorithms look like.) The algorithm is then used to write a program in a programming language that the
computer can understand so that it can execute the numeric method. Important algorithms follow in the
next sections. For routine tasks your CAS or some other software system may contain programs that you
can use or include as parts of larger programs of your own.
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STABILITY

Stability

Stability. To be useful, an algorithm should be stable; that is. small changes in the initial data should

cause only small changes in the final results. However, if small changes in the initial data can produce
large changes in the final results. we call the algorithm unstable.

This “numeric instability, ” which in most cases can be avoided by choosing a better algorithm, must be
distinguished from “mathematical instability” of a problem. which is called “ill-conditioning, ” a
concept we discuss in the next section.

Some algorithms are stable only for certain initial data. so that one must be careful in such a case.

D UEIND

Sl

) Y

B.D. Youn . . . Y vmn ¥

2011 Engineering Mathematics Il CHAPTER 19 5 RRUE T
DN



ACCURACY

Errors of Numeric Results

Fmal results ot computations of unknown quantities generally are approximations; that is. they are not
exact but involve errors. Such an error may result from a combination of the following effects.
Roundoff errors result from rounding, as discussed on p. 782. Experimental errors are errors of given
data (probably arising from measurements). Truncating errors result from truncating (prematurely
breaking off). for instance. if we replace a Taylor series with the sum of its first few terms. These errors
depend on the computational method used and must be dealt with individually for each method.

[“Truncating™ is sometimes used as a term for chopping off (see before), a terminology that is not
recommended. |

Formulas for Errors. If 4 is an approximate value of a quantity whose exact value is a, we call the
difference

(_1') [y ] E
the error of 4. Hence
(4%) a=a-+c, True value = Approzimation -+ Error .
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ACCURACY

The relative error = _of 4 is defined by

(5) . _c_a—a _ _ Eror g0

" @ True value ( )
This looks useless because a 1s unknown. But if || is much less than |4| . then we can use 4 instead of a
and get

SR

This still looks problematic because  1s unknown—if it were known. we could get @ = a + < from (4)
and we would be done. But what one often can obtain in practice is an error bound for 4. that is. a
number [ such that

= 3.

=l = 4, hence a—a

This tells us how far away from our computed @ the unknown a can at most lie. Similarly. for the
relative error, an error bound is a number p . such that

S
A

[ =gy hence @ —

B.D. Youn . . . 5@ ¥
2011 Engineering Mathematics Il CHAPTER 19 7 ¥ ‘



ERROR PROPAGATION

Error Propagation

This 1s an important matter. It refers to how errors at the beginning and 1in later steps (roundoff, for
example) propagate into the computation and affect accuracy, sometimes very drastically. We state here
what happens to error bounds. Namely. bounds for the error add under addition and subtraction,
whereas bounds for the relative error add under multiplication and division. You do well to keep this in

mind.

THEOREM 1

a. In addition and subtraction, an error bound for the results is given by the sum of the error
bounds for the terms.

b. In multiplication and division, an error bound for the relative error of the results is given
(approximately) by the sum of the bounds for the relative errors of the given numbers.
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HOMEWORK IN 19.1

B.D. Youn
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» HW1. Problems 14
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CHAP. 19.2
SOLUTION OF EQUATIONS BY
ITERATION

Finding solution of an equation using iterative steps.
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Nonlinear Equations in Engineering Fields

BRI A

f(x)=Tx)—-T*<0
x: battery design variables

To design a safe battery, a

f(x)= (x)—®#0 temperature level mustbe f(x)=0(x)-S<0

x: bridge design variables smaller than a marginal x: bridge gusset plate
temperature.

To design a safe bridge , To design a safe bridge,

a stress level at a critical
bridge element must be
smaller than its strength.

an excitation frequency
must be different from its
natural frequency.
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SOLUTION OF EQUATIONS BY ITERATION

» Solving equation f(x) =0
» Methods:
* Fixed — Point Iteration
e Newton's Method
e Secant Method

B.D. Youn . . .
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FIXED-POINT ITERATION FOR SOLVING f(x) =0

» Idea: transform f(x) = 0 into x = g(X)

> Steps:
1. Choose x,

2. Compute X; = 2(Xy), X, =8g(X{), --vr Xppq = &(X,)
» A solution of x = g(x) is called a fixed point

» Depending on the initial value chosen (x,), the related
sequences may converge or diverge

B.D. Youn . . .
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FIXED-POINT ITERATION FOR SOLVING f(x) =0

» Example: f(x)=x>-3x+1=0

2.618034

Solutions =
0.381966

The equation may be written
(4) x=@®=1G 41, s Fep= @R D)
If we choose x, = 1. we obtain the sequence (Fig. 423a: computed with 6S and then rounded)

xp = 1.000, xy=0.667, x, = 0481, x;=0411, xy=0.390,
which seems to approach the smaller solution. If we choose x, = 2. the situation is similar. If we choose

x, = 3. we obtain the sequence (Fig. 423a, upper part)

xp = 3.000, x; = 3.333, x,=4.037, x3 = 5766, xy= 11415, -
which diverges.
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FIXED-POINT ITERATION FOR SOLVING f(x) =0

Our equation may also be written (divide by x)

(4b) x=g() =3-1,  tus  xp=3--
H
and if we choose x, = 1, we obtain the sequence (Fig. 423b)
xo = 1.000, x;=2.000, x,=2.500, xy=2.600, xy=2.615, -
which seems to approach the larger solution. Similarly, if we choose x, = 3. we obtain the sequence
(Fig. 423b)
xo = 3.000, x=2667, Xy =2.625, x3=2.619, xy=2.618, -
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NEWTON'S METHOD FOR SOLVING f(x) =0

» f must have a continuous derivative '
» The method is simple and fast

tanB=f"(xq)= (o)
X — X1
U :
_ _f(XO) / %
XI_XO f'(XO) 2 1

Fig. 425. Newton's method
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NEWTON'S METHOD FOR SOLVING f(x) =0

X = X — f(Xl)
2 f'(Xl)
X —x — f(Xn)
n+l n f,(Xn)

B.D. Youn . . .
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ALGORITHM

ALGORITHM NEWTON (f. f'. xo, € N)
This algorithm computes a solution of f{x) = 0 given an initial approximation x, (starting  value of the iteration). Here the function
f(x) is continuous and has a continuous derivative f'(x).

INPUT: f. f', initial approximation x,. tolerance € = 0, maximum number of iterations N.

OUTPUT: Approximate solution x,, (n = N) or message of failure.

Forn=0,1,2,---,N—=1do
1 Compute f "),
2 If f'(x,) = 0 then OUTPUT “Failure”. Stop.
[Procedure completed unsuccessfully)

3 Else compute

o T
(5) tel ==

£ x,)

- If [x,,.; — x.| = €lx,,| then OUTPUT x,,, ,. Stop.

[Procedure completed successfully]

End
5 OUTPUT “Failure™. Stop.
[Procedure completed unsuccessfully after N iterations]

End NEWTON

B.D. Youn . . .
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NEWTON'S METHOD FOR SOLVING f(x) =0

Example: Find the positive solution of f(x) =2 sinx —x=0
Solution:

Setting fix) =x — 2 sin x, we have f(x) =1 — 2 cos x, and (5) gives
Xy=—2sinx, _ 2(sinxy —xycosxy) N,
1 —2cosxy, 1 —Z2cosxy, D

From the graph of f'we conclude that the solution is near x, = 2. We compute:

ny1—=&n—
n

n Y N n D n Yn+1

0 2.00000 3.48318 1.83229 1.90100
1 1.90100 3.12470 1.64847 1.89552
2 1.89552 3.10500 1.63809 1.89550
1.89550 3.10493 1.63806 1.89549

fad

X, = 1.89549 1s exact to 5D since the solution to 6D 15 1.895 494,

SEE
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SECANT METHOD FOR SOLVING f(x) =0

B.D. Youn
2011

Newton’s method is powerful but disadvantageous because it
1s difficult to obtain f'. The secant method approximates f .

—Jf(xn1)

Xy —Ap—

Fig. 426.

Secant method
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SECANT METHOD FOR SOLVING f(x) =0

» Newton's Method

» Secant

fr{?f;n:l ~ Jxp) = (1)

Xy —Ap—

Ay — K

Int1=2Xn—JF %) Filxn)— Flx,—1)
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SECANT METHOD FOR SOLVING f(x) =0

Find the positive solution of fix) =x — 2 sin x = 0 by the secant method, starting from x, =2.x, = 1.9.

Solution:

Here. (10) 1s

Intr1=&n=— =Xn=

(xp = 25i0Xy) (X = Xp—_1) _ Ny
Kp—ZXp_+ 2(sinx, | — sinx,) Dy

Numerical values are:

n X X N D X

X -
n—1 i 1 H ntl i

1 2.000 000 1.900 000 —0.000 740 —0.174 005 —0.004 253
2 1.900 000 1.895747 —0.000 002 —0.006 986 —0.000 252
1.895 747 1.895 494 0 0

b

vy = 1.895 494 is exact to 6D. See Example 4.
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HOMEWORK IN 19.2

» HW1. Problems 2

» HW2. Problems 10
» HW3. Problems 11
» HW4. Problems 21
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CHAP. 193

INTERPOLATION
Finding (approximate) values of a function f(x) for an x
between different x-values x,, x,, ..., x, at which the

values of f(x) are given.
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INTERPOLATION

» Function f(x) is unknown
» Some values of f(x) are known (f, f,, ..., f,)
» Idea: Find a polynomial p, (x) that is an approximation of f(x)

pn(XO):fO’pn(Xl):fla""pn(Xn):fn

» Lagrange interpolation
e Linear
e (Quadratic
e General

» Newton's interpolation
e Divided difference
 Forward difference
 Backward difference

> Splines
“!‘_‘1.--;_3
e
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LINEAR LAGRANGE INTERPOLATION

» Use 2 known values of f(x) — f,,

Fig. 428. Linear interpolation

p, 18 the linear Lagrange polynomial.
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LINEAR LAGRANGE INTERPOLATION

> p,(x) =L,(xf, + L,(xf]
» L, and L,are linear polynomials (weight functions).

1 1if x=xg 01f x=x
Lo(x)=1 Li(x)=1
0 1f x=x; 1 if x=x
y L L _ XX _ X7 X0
| I . Ly(x)= , Lx)=
S X0~ Xy X1 = Xp
Ol 1'..I '-|_ | |
99295 10 1% Y —x X
_ M )
Fig. 429. L;and L., in Example 1 P ()C)— fO fl
Xo — X X1~ Xo
B.D. Youn
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LINEAR LAGRANGE INTERPOLATION

Example: Compute In 9.2 from In 9.0 =2.1972 and In 9.5 =2.2513 by
linear Lagrange interpolation

Solution:
X0 =9.0, x;=9.5 f,=1In9.0, f;=1In9.5
Ly(9.2)= 323:322 =06 L,09.2)= z:z:z:g =04
In9.2 = p,(9.2)
=L,(9.2)f, +L,(9.2)f,
=0.6(2.1972)+ 0.4(2.2513)
=2.2188

Error: In9.2-p;(9.2)=2.2192-2.2188 = 0.0004
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QUADRATIC LAGRANGE INTERPOLATION

» Use of 3 known values of f(x) — f, f, f,
» Approximation of f(x) by a second-degree polynomial

pa(x)=Lo(x)fy +L;(x)f; + L, (x)f,

B.D. Youn . . .
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Solution:
2 | Ly
Ly(x)=x*>—20.5x+104.5 Y| :
1 ) 1 "‘ —————————— ?-_..___(I}_'_-____'_';-_._._.____._Q'
x)=——\x" —20x+99 ol
L) 0.75( ) 1/ 3 i
1 —i e L
Lz(x):—( 2—18.5x+85.5) | /9  95-.10
3 s
In9.2 = p,(9.2)=2.2192 Fig. 430. L, L, L, in Example 2
B.D. Youn
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QUADRATIC LAGRANGE INTERPOLATION

Example: Compute In 9.2 for f, (x,=9.0)=1n 9.0, f;, (x;, =9.5)=1n

9.5,f, (x,=11.0)=1In 11.0




GENERAL LAGRANGE INTERPOLATION
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NEWTON'S INTERPOLATION

» More appropiate for computation

» Level of accuracy can be easily improved by adding
new terms that increase the degree of the polynomial

» Divided difference
» Forward difference

» Backward difference

B.D. Youn . . .
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Is High-Order Polynomial a Good Idea?

f(x) = 1/(1425x"2)

Funges Phenomena Revisited Funges Phenomena Revisited
12 T T R 9 T T T
2 Data points 2 Data points
* F'olly.nnmml Int.erpnlatlcnn g +  Palynamial Interpalation E
1k +  Original Function : +  Original Function 4
3 i
ti f‘
ke |
= :§ g:
b #
a¥ § % &
L3 34
~ s 4 9
b #
3r 1
A *
51 =)
A &
02 ' ' '

-1 05 0 05 1
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HOMEWORK IN 19.3

» HW1. Problems 3
» HW?2. Problems 8
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CHAP. 19.4
SPLINE INTERPOLATION

The undesirable oscillations are avoided by the method
of splines initiated by I.J. Schoenberg in 1946 (Applied
Mathematics 4, pp45-99, 112-141). This method is
widely used in practice. It also laid the foundation for
much of modern CAD (Computer Aided Design).

B.D. Youn . . .
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SPLINES

» Method of interpolation used to avoid numerical instability

P, (x) y

-5

5 X

Fig. 421. Runge's example f(x) = 1/(1 + x*) and interpolating polynomial P, 5(x)

» Idea: given an interval [a, b] where the high-degree polynomial
can oscillate considerable, we subdivide [a, b] in several smaller

intervals and use several low-degree polynomials (which cannot
oscillate much)

‘[.--h
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SPLINES (cont)

» Inaninterval x € [Xj, xj+1],j =0,...,n-1

pj(X)zajO +aj1(X—Xj)+aj2(X—X

Pra, (x—xf

J
where

aj,=p;(x;) =1
a; = pj(x;) =k,

1, 3 1
aj, =§pj(xj)=h_2(fj+1 _fj)_;(kjﬂ +2kj)

2 1
aj, :F(fj _fj+1)+?(kj+l +kj)

B.D. Youn
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SPLINES (cont)

» Let (Xy.fy), (x,f)), ..., (X,,f).
> k,, k, are two given numbers.

>k, ky, 0 k

.1 are determined by a linear system of n-1
equations:

3
kj—1+4kj +kj+1 :Z(fjﬂ_fj—l)

P (xj):kj, P (xj+1):ijrl (j=0,1,...,n-1)

> h is the distance between nodes

X, = X, + nh

B.D. Youn . . .
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SPLINES (cont)

» Clamped conditions
g'(xg) =f(x),  g'(x,) =1(xy)

» Free/natural conditions
g"'(x9)=0, g"(x)=0

» Example:

Interpolate f(x) = x* on interval x € [-1, 1] by cubic
spline 1n partitions x, = -1, x; =0, X, = 1, satistying
clamped conditions

g-D=1¢-D, gl)=1)

B.D. Youn . . .
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SPLINES (cont)

the given data are f, = fi-1) = 1. f; = fl0) = 0. /, = A1) = 1.

golx) =ag + anlx + 1) + aglx 4 1)2 Fagz(x 1)3 (=1=2x=20)
g1(x) =ayp +anx +apx® +apx’

0=zx=1)
kg +dky 4y =3(F1—F0).
Here f, = f, = 1 (the value of x* at the ends) and ko=—4Fk,=4
444k +4=3(1-1)=0, k=0
oo =Jo= L ag = ky=—4
am=%ul—fu)—%cm F2k) =3(0=1)=(0-8)= 5

au:%uu—m | f—y&h i) =2(1=0) 4 (0—4) = =2

D UEIND
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SPLINES (cont)

Similarly, for the coefficients of ¢, we obtain from (13) the values a,,=f; =0.a,, =k, =0, and

apn=3(f1—S1) -l +2k)=3(1-0)-(4+0)= -1
ap=2(/1—-S)+ Kk +k)=200-1)+(@4+0)=2.
This gives the polynomials of which the spline g(x) consists, namely.

- go(x)=1=4(x+D+5x+1D*=2x+ 1= =x*=2x> f —=1=x=0
X)l=
. g1(x) = —x? + 2x°

f 0=zx=1.
Figure 433 shows f{x) and this spline. Do you see that we could have saved over half of our work by
using symmetry?

x
g(x)
Fig. 433. Function f{x) = x* and cubic spline g(x) in Example 1
Y
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HOMEWORK IN 19.4

» HW1. Problems 11
» HW?2. Problems 12
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CHAP. 19.5

NUMERICAL INTEGRATION AND
DIFFERENTIATION

Evaluating the numerical integration.

J = f:f (x)dx

B.D. Youn . . .
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NUMERICAL INTEGRATION

» Numerical evaluation of integrals whose analytical evaluation is too
complicated or impossible, or that are given by recorded numerical values

b

jf(x)dx

a

» Rectangular rule
» Trapezoidal rule

» Simpson's rule

» Gauss integration

B.D. Youn

Fig. 437.
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Geometric interpretation of a definite integral
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RECTANGULAR RULE

» Approximation by n rectangular areas

J :i f)de =nlfxx )+ flex)++ fx*,)]

where 5
h b—a
n
)(1:::)(0 4‘11
I I I
G x* - Ay - diel x
Fig. 438. Rectangular rule
‘6--&
K
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TRAPEZOIDAL RULE

B.D. Youn
2011

» Approximation by n trapezoidal areas

b

a

1

=] £ds=h) 3 7@+ 75} £li) o £, )+

+§f

o )}

AN

Fig. 439.
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TRAPEZOIDAL RULE

1 2
Evaluate J 2/ ¢ " dx by means of (2) with n = 10.
0

Solution:

J=0.1(0.5-1.367 879 + 6.778 167) = 0.746 211 from Table 19.3.

TABLE 19.3  Computations in Example 1

J Y .Tj-?‘ e—.xf J Y .*rj-z e_l;a'z

0 0 0 1.000000 6 0.6 0.36 0.697 676

1 0.1 0.01 0.990 050 7 0.7 049 0.612 626

2 02004 0.960 789 & 0.8 0.64 0.527 292

3 03 0.09 0.913 931 9 09 0.81 0.444 858

4 04 0.16 0.852 144 10 1.0 1.00 0.367 879

5 05025 0.778 801 Sums 1.367 879 6.778 167
por,  —_—eeEee— ——"—"——""" s
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SIMPSON'S RULE

» Approximation by parabolas using Lagrange polynomials p,(X)

» Interval of integration [a, b] divided into an even number of subintervals
_b-a
2m

=

f,=f(x,) x,=a+h x,=x+h

£ (x)dx = g(fo FAf 42y A ALyt 2o+ A Lo s+ fon)

?‘\ Qe

= f(xj ) y First parabola
W Second parabola

¢ X X % X, Xomz Zomqb -

Fig. 440. Simpson's rule
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SIMPSON'S RULE

g

4
Evaluate J = ] 2 " dx by Simpson's rule with 2m = 10 and estimate the error.

0
Solution:

Since 47 =0.1. Table 19.5 gives

J:@%(I.EGT afF -+ 4-37740 266 + 2-3.057 901) =0.746 825

TABLE 19.5  Computations in Example 3

; U2 2 ; L2 2

JF ‘Tj X J— 2 X ki JF .Tj ."llj- 2 Xj

0 0 0 1000000 6 0.6 036 0.697 676

1 0.1 0.0l 0.990 050 07 049 0.612 626

303 0.09 0.913 931 5 09 081 0.444 253

; 5 A
404016 0852144 19 1.0 1.00 0.367 879
5 05 025 0.778 801
Sums 1.367 879 3.740 266 3.037 901

B.D. Youn o _ V-E Y
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SIMPSON'S RULE

ALGORITHM SIMPSON (a. b, mii. fo. f1. "+« fom)

This algorithm computes the integral J = [} f(x) dx from given values f 5 = flx;) at
equidistant xo = a, x; = X + M -+, Xg,, = X + 2mh = b by Simpson’s rule (7),

where it = (b — a)/(2m).
INPUT: a.b.m, fo.** . fom
OUTPUT: Approximate value J of J
Compute sy = fo + fam
si=fh+tfst Tt fama
Ss=fat+ fat+t '+ fama

hh=1({b—a)/2m
~ h
J = ; [_.'!l'u + 4.‘!-1 + 2.\'2}

OUTPUT J. Stop.
End SIMPSON

B.D. Youn
2011
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ADAPTIVE INTEGRATION

flx)

1.5 A

1.0 ’ \

0.5 '

S

Fig. 441. Adaptive integration in Example 6
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GAUSS INTEGRATION

TABLE 19.7  Gauss Integration: Nodes i} and Coefficients Aj

oo n Nodes t Coefficients AJT. Degree of Precision
jf(X)dX — jf(t)dt ~ E A.f. —0.57735 02692 1

=1 0.57735 02692 1

—0.77459 66692 0.55555 55556

0 0.88888 88889
where 0.77459 66692 0.55555 55556

—0.86113 63116 0.34785 48451
—0.33998 10436 0.65214 51549

X = l [a(t _ 1)_|_ b(t + 1)] 0.33998 10436 0.65214 51549
9) 0.86113 63116 0.34785 48451

Al S ens An — coefficients —0.90617 98459 0.23692 68851
—0.53846 93101 0.47862 86705
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0 0.56888 88889 9
0.53846 93101 0.47862 86705
0.90617 98459 0.23692 68851

B.D. Youn o . Y, @
2011 Engineering Mathematics Il CHAPTER 19 52 Y &



B.D. Youn
2011

HOMEWORK IN 19.5

» HWI1. Problem 5
» HW2. Problem 6
» HW3. Problem 21

Engineering Mathematics Il CHAPTER 19

53



