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NUMERICAL METHODS

Ø Methods for solving problems numerically on a computer

Ø Steps:  
• Modeling, 
• Choice of a numerical method, Programming,  
• Doing the computation, 
• Interpreting the results

Ø Solution of equations by iteration

Ø Interpolation

Ø Numerical integration and differentiation
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Nonlinear Equations in Engineering Fields

f(x) = wn (x) - w = 0
x: bridge design variables

To design a safe bridge , 
a natural frequency must 
be higher than that of an 
external loading.

f(x) = T (x) - T* = 0
x: battery design variables

To design a safe battery, a 
temperature level must be 
smaller than a marginal 
temperature.

f(x) = s (x) - S = 0
x: bridge gusset plate

To design a safe bridge, 
a stress level at a critical 
bridge element must be 
smaller than its strength.
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SOLUTION OF EQUATIONS BY ITERATION

Ø Solving equation f(x) = 0
Ø Methods:

• Fixed – Point Iteration
• Newton's Method
• Secant Method
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FIXED-POINT ITERATION FOR SOLVING f(x) = 0

Ø Idea:  transform f(x) = 0 into x = g(x)

Ø Steps:
1. Choose x0
2. Compute x1 = g(x0),  x2 = g(x1), ¼, xn+1 = g(xn)

Ø A solution of x = g(x) is called a fixed point

Ø Depending on the initial value chosen (x0), the related 
sequences may converge or diverge
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FIXED-POINT ITERATION FOR SOLVING f(x) = 0

Ø Example:  f(x) = x2 – 3x + 1 = 0
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381966.0
618034.2

Solutions
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FIXED-POINT ITERATION FOR SOLVING f(x) = 0
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NEWTON'S METHOD FOR SOLVING f(x) = 0

Ø f must have a continuous derivative f '
Ø The method is simple and fast
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NEWTON'S METHOD FOR SOLVING f(x) = 0
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NEWTON'S METHOD FOR SOLVING f(x) = 0

Example:    Find the positive solution of f(x) = 2 sin x – x = 0
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SECANT METHOD FOR SOLVING f(x) = 0

Newton’s method is powerful but disadvantageous because it 
is difficult to obtain f '.  The secant method approximates f '.
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SECANT METHOD FOR SOLVING f(x) = 0

Ø Newton's Method

Ø Secant
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SECANT METHOD FOR SOLVING f(x) = 0
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진정성이 마음을 움직인다.

송나라범관, 계산행려도
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INTERPOLATION

Ø Function f(x) is unknown
Ø Some values of f(x) are known (f1, f2, ¼, fn)
Ø Idea:  Find a polynomial pn(x) that is an approximation of f(x)

( ) ( ) ( ) nnn11n00n fxp ,,fxp,fxp === L

Ø Lagrange interpolation
• Linear
• Quadratic
• General

Ø Newton's interpolation
• Divided difference
• Forward difference
• Backward difference

Ø Splines
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LINEAR LAGRANGE INTERPOLATION

Ø Use 2 known values of f(x)  ® f0, f1

p1 is the linear Lagrange polynomial.
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LINEAR LAGRANGE INTERPOLATION

Ø p1(x) = L0(x)f0 + L1(x)f1

Ø L0 and L1are linear polynomials (weight functions).
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LINEAR LAGRANGE INTERPOLATION

Example:  Compute ln 9.2 from ln 9.0 = 2.1972 and ln 9.5 = 2.2513 by 
linear Lagrange interpolation

Solution:
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QUADRATIC LAGRANGE INTERPOLATION

Ø Use of 3 known values of f(x) ® f0, f1, f2

Ø Approximation of f(x) by a second-degree polynomial
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QUADRATIC LAGRANGE INTERPOLATION

Example:  Compute ln 9.2 for f0 (x0 = 9.0) = ln 9.0, f1 (x1 = 9.5) = ln 
9.5, f2 (x2 = 11.0) = ln 11.0

Solution:
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GENERAL LAGRANGE INTERPOLATION
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NEWTON'S INTERPOLATION

Ø More appropiate for computation

Ø Level of accuracy can be easily improved by adding 
new terms that increase the degree of the polynomial

Ø Divided difference

Ø Forward difference

Ø Backward difference
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Is High-Order Polynomial a Good Idea?

f(x) = 1/(1+25x^2)
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Ø Method of interpolation used to avoid numerical instability

Ø Idea:  given an interval [a, b] where the high-degree polynomial 
can oscillate considerable, we subdivide [a, b] in several smaller 
intervals and use several low-degree polynomials (which cannot 
oscillate much)

SPLINES
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SPLINES (cont)

Ø In an interval x Î [xj, xj+1], j = 0 , ¼, n – 1

where
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SPLINES (cont)

Ø Let (x0,f0), (x1,f1), … , (xn,fn).
Ø k0, kn are two given numbers.
Ø k1, k2, ¼, kn-1 are determined by a linear system of n-1 

equations:

Ø h is the distance between nodes
xn = x0 + nh
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SPLINES (cont)

Ø Clamped conditions
g'(x0) = f'(x0),    g'(xn) = f'(xn)

Ø Free/natural conditions
g"(x0) = 0,    g"(xn) = 0

Ø Example:
Interpolate f(x) = x4 on interval x Î [-1, 1] by cubic 
spline in partitions x0 = -1, x1 = 0, x2 = 1, satisfying 
clamped conditions

g'(-1) = f'(-1),    g'(1) = f'(1)
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SPLINES (cont)
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SPLINES (cont)
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NUMERICAL INTEGRATION

Ø Numerical evaluation of integrals whose analytical evaluation is too
complicated or impossible, or that are given by recorded numerical values

Ø Rectangular rule
Ø Trapezoidal rule
Ø Simpson's rule
Ø Gauss integration
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RECTANGULAR RULE

Ø Approximation by n rectangular areas
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TRAPEZOIDAL RULE

Ø Approximation by n trapezoidal areas
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TRAPEZOIDAL RULE
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SIMPSON'S RULE

Ø Approximation by parabolas using Lagrange polynomials p2(x)
Ø Interval of integration [a, b] divided into an even number of subintervals
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SIMPSON'S RULE



36
B.D. Youn
2010 Engineering Mathematics II Module 5

SIMPSON'S RULE
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ADAPTIVE INTEGRATION
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GAUSS INTEGRATION

where
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