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1. COMMON PROBABILITY DISTRIBUTIONS IN ENGINEERING 
 

1.1 Objectives 

· To understand probability distributions relevant to engineering applications 

· To investigate statistical fundamentals of probability distributions 

· To make use of Matlab statistical toolbox 

 

1.2 Types of Probability Distributions 

Let X be a random variable in an engineering application.  The probability density 

function (pdf) and cumulative distribution function (cdf) of X are denoted by  and X Xf F , 

respectively. 

 

1.2.1 Normal Distribution 
2

2
( )

21( ; , ) ( )
2

m
sm s

s p

-
-

= =
x

Xy x f x e  

>> x=[-10:0.1:10]; 
>> y=normpdf(x,0,1); 
>> plot(x,y) 

 

· Symmetric distribution, skewness=0, kurtosis=3 
· Central limit theorem states that any 

distribution with finite mean and standard 
deviation tends to follow normal distribution 

· Special case of chi-squared distribution and 
gamma distribution 

· Dimension of fabricated part 
 

1.2.2 Lognormal Distribution 
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>> x=[-10:0.1:10]; 
>> y=lognpdf(x,0,1); 
>> plot(x,y) 
 

 

· Limited to a finite value at the lower limit 
· Positively skewed 
· Strengths of materials, fracture toughness 

 

1.2.3 Weibull Distribution 
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>> x=[0:0.1:10]; 
>> y=weibpdf(x,1,2); 
>> plot(x,y) 
 

 

· Originally proposed for fatigue life 
· Used in analysis of systems with weakest link 
· Wear, fatigue, and fracture 

 

1.2.4 Exponential Distribution 
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>> x=[0:0.1:10]; 
>> y=exppdf(x,1); 
>> plot(x,y) 

 

· Amount of time between occurrences 
· Called as “memoryless random distribution” 
· Continuous version of Poisson distribution to 

describe the number of occurrences per unit 
time 

· Mean time between failures 
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1.2.5 Poisson Distribution (Discrete) 

( ; ) ( )
!

lll -= =
x

Xy x f x e
x

 

>> x=[0:0.1:10]; 
>> y=poisspdf(x,1); 
>> plot(x,y) 

 

· An event occurrence in a given interval 
· The occurrences are independent 
· Average number of occurrence is fixed 
· Product defections in a given batch 

 

1.2.6 Uniform Distribution 
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>> x=[0:0.1:10]; 
>> y=unifpdf(x,3,7); 
>> plot(x,y) 
 

 

· Symmetric, skewness=0 
· Equal occurrence 
· Random number generator 

 

1.2.7 Beta Distribution 
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>> x=[-10:0.1:10]; 
>> y=betapdf(x,3,6); 
>> plot(x,y) 
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· Bounded distributions 
· Related to Gamma distribution 
· Manufacturing tolerance 
 

1.2.8 Other Distributions in Engineering 

Rayleigh distribution, Gamma distribution, Extreme Type I, II distributions, etc.  Refer to 

http://mathworld.wolfram.com/topics/ProbabilityandStatistics.html. 

 

Perform a parametric study for normal, lognormal, and Weibull distributions! (Homework) 

 

1.3 Multi-variate Random Vector 

Suppose X1 and X2 are jointly distributed, and joint event is defined as 1 1  and£X x  

2 2£X x .  The corresponding bi-variate distribution of random vector is defined as 
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Assume that two random variables are normally distributed.  To define the joint PDF of a 

multivariate distribution, five parameters are required, namely, the mean values of X and Y, 

1 2
 and m mX X , their standard deviations 

1 2
 and s sX X , and the correlation coefficient 

1 2
rX X .  The 

PDF of the bivariate normal distribution can be expressed as 
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If X1 and X2 are correlated, namely,
1 2

0r ¹X X , 
1 2 1 2( , )X Xf x x  is not symmetry. 
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>> [x1,x2]=meshgrid(-5:0.1:5); 
>> f=1/(2*pi)*exp(-(x1.^2+(x2.).^2)./2); 
>> mesh(x1,x2,f) 

>> [x1,x2]=meshgrid(-5:0.1:5); 
>> f=1/(2*pi*sqrt(1-0.8^2))*exp(-(x1.^2-
1.6*x1.*x2+x2.^2)./(2*(1-0.8^2)^2)); 
>> mesh(x1,x2,f) 

 

Bivariate distribution of random vector can be generalized for n-dimensional random vector, 

:W®X nR .  Joint CDF and PDF for n-dimensional random vector are written as 
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A multi-variate normal random vector is distributed as 

 ( ) ( ) ( )
1
22 11( ) 2 exp
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X X X X Xx Σ x μ Σ x μ
n Tf  (4) 

where Xμ  and XΣ  are mean and covariance matrix of X. 

 

2. MOMENTS OF A RANDOM VECTOR 
 

2.1 Objectives 

· To extend statistical moments of a random variable to a random vector 

· To apply statistical moments to an uncertain response 

· To prepare an uncertainty propagation through system in Section 3 
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2.2 Definition of Moments of a Random Vector 

Let { }1, ,= L T
nX XX  be an n-dimensional random vector and ( )g X  be a function of X.  

In general, the Nth statistical moment of ( )g X  is defined as 

 [ ]( ) ( ) ( )
W

º ò
N NE g g f dXX x x x  (5) 

where ( )fX x  is the joint PDF of X and W  is a random space. 

 

2.3 Statistical Moments of a Random Vector 

First, one special case is considered to find out statistical moments of input random 

variable, that is, ( ) , 1, ,= = Lig X i nX . 

 

2.3.1 Mean of a Random Vector 

Let 1( ) =g XX  and set N=1.  The first moment of random variable X1 is defined as 
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2.3.2 Covariance of a Random Vector 

Let ( ) ( )( )m m= - -i i j jg X XX .  The statistical moment is defined as 
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where ( , )
i jX X i jf x x  and Sij  are the joint PDF and the covariance matrix of  and i jX X , 

respectively. 

When =i j , the diagonal terms in the covariance matrix are obtained as 
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If ¹i j , the off-diagonal terms in the covariance matrix are obtained as 
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The covariance matrix is written as 
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2.3.3 Properties of Covariance Matrix, XΣ  

· XΣ  is symmetric, i.e., = T
X XΣ Σ :  Prove this property! (Homework) 

· Variance of Xi is the ith diagonal element of XΣ , i.e., 2s = S
iX ii  

· XΣ  is a positive semi-definite matrix, i.e., 0,³ " ÎT nRXA Σ A A  

 

2.3.4 Correlation Coefficient, rij  

The correlation coefficient rij  is defined as 
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The correlation coefficient rij  is a degree of correlation between two random variables.  Note 

that r s sS =ij ij i j  represents the off-diagonal elements of covariance matrix, XΣ . 

· If  and i jX X  are independent (i.e., 
1 2 1 21 2 1 2( , ) ( ) ( )=X X X Xf x x f x f x ), then  and i jX X  are 

uncorreleated (i.e. 0r =ij ), but vice versa is not true. 

· 1 1r- £ £ +ij  

· If  = +i jX aX b , 1 sgn( )r = ± =ij a : Prove this property! (Homework) 

 

3. UNCERTAINTY PROPAGATION IN ENGINEERING APPLICATIONS 
 

3.1 Objectives 

· To understand a mechanism of uncertainty propagation through an engineering system 

· To survey methods to identify and manage the mechanism of uncertainty 

· To apply the probabilistic approach to design, instead of a safety factor approach 

 

3.2 What is “Uncertainty Propagation”? 

· Types of Uncertainty: 

1. “Physical Uncertainty” is the actual variability of physical quantities, such as 

loads, material properties, and dimensions 

2. “Statistical Uncertainty” arises solely as a result of lack of statistical information 

3. “Model Uncertainty” occurs as a result of simplifying assumptions, approximate 

mathematical modeling, unknown boundary conditions, etc. 

 

In all engineering applications, uncertainties in inputs are propagated through a system to 

uncertainties in outputs, as shown Fig. 1. 
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Figure 1. Uncertainty Propagation through Physical System 
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Figure 2. Uncertainty Propagation of V6 Gasoline Engine System 

 

One example of uncertainty propagation is shown in Fig 2.  To identify and manage 

uncertainty propagation in an engineering system, the mechanism of uncertainty propagation 

must be thoroughly understood.  Uncertainty propagation in engineering applications will be 

discussed in the following sections. 
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3.3 Uncertainty Propagation for Linear System 

Let the response variable Y be linearly related to input random vector { }1, ,= L T
nX XX , 

i.e., 

 1 1 or= + + + = +L T
n nY a X a X b Y ba X  (11) 

where { }1, ,= L T
na aa  is an n-dimensional coefficient vector. 
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Variance of Y 
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Generalization 

Let Î mRY  be a random response vector of interest, which is related to input Î nRX .  

The linear system is given in the following equation. 

 = +TY A X B  

where Î ´n mR RA  and Î mRB  are coefficient matrix and vector, respectively.  Let 

 and Î Î ´m m mR R RY Yμ Σ  be the mean vector and covariance matrix of output Y.  Then, 
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Example 1: Cantilever Beam 
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Assume P1 and P2 are uncorrelated.  Calculate mean, standard deviation, and coefficient of 

variation (COV) of maximum moment at the fixed end. 

Solution: At fixed end, the maximum moment is expressed as 

 max 1 210 20 10000= + + = +TM P P ba X  

where 
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Coefficient of Variation (COV) of Mmax 

 standard deviation 1414.2COV 0.047 or 4.7%
mean 30000

º = =  

 

 

3.4 Uncertainty Propagation for Nonlinear System 

Let the response variable Y be nonlinearly related to input random vector 

{ }1, ,= L T
nX XX , i.e., 

 ( ),  where  and = Î Î nY g Y R RX X  (13) 

where ( )g X  is a nonlinear response.  For the nonlinear response ( )g X , it is very difficult or 

almost impossible to determine the mean and variance of Y exactly.  There are several 

approximate methods available to identify uncertainty propagation for nonlinear system. 

 

3.4.1 Sampling Method: Monte Carlo simulation 

· Simple but numerically expensive 

· Seldom used due to its computational intensiveness, but used for a benchmark study 

· To estimate a failure rate, 

No of Failed Simulation 

                     :   No of Total Simulation

,   : = fN
f fN N

N

p  

 

Random Number Generator 
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>> m=[2 3]; 
>> s=[1 0;0 3]; 
>> r=mvnrnd(m,s,1000); 
>> plot(r(:,1),r(:,2),'+') 

>> m=[2 3]; 
>> s=[1 1.5;1.5 3]; 
>> r=mvnrnd(m,s,1000); 
>> plot(r(:,1),r(:,2),'+') 

 

Monte Carlo Simulation: Example 1 
>> p1=normrnd(1000,100,10000,1); 
>> p2=normrnd(500,50,10000,1); 
>> Mmax=10*p1+20*p2+10000; 
>> cdfplot(Mmax) 
>> mean(Mmax) 
ans = 
  3.0006e+004 
>> std(Mmax) 
ans = 
  1.4271e+003 

 

 

3.4.3 First-Order Second Moment (FOSM) Method or Moment Matching Method 

Using the first-order Taylor series expansion, a nonlinear response ( )=Y g X  can be 

linearized as 
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Assume that the first-order expansion is adequate for approximating Y, i.e., 
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where { }1, ,a a= L T
nα  is a vector of gradients evaluated at mean of X.  From a linear 

transformation theory in Section 3.3, 
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Even if this method is easy to use, it has a drawback of numerical accuracy.  Therefore, an 

advanced first-order second moment (AFOSM) method has recently been developed to identify 

the mechanism of uncertainty propagation. 

 

3.4.4 Advanced First-Order Second Moment (AFOSM) Method 

Hasofer and Lind (1978) introduced a rotationally invariant reliability measure, which 

allows identifying uncertainty propagation more accurately.  This is called a first-order reliability 

method (FORM) or an asymptotic second-order reliability method (asymptotic SORM).  FORM 

or asymptotic SORM requires a transformation of any random space to a standard normal space.  

Uncertainty propagation of the nonlinear response (pubic force) in side impact crash is 

accurately identified using FORM, as depicted in Fig. 3.  More detail descriptions will be 

presented in Lecture 6. 
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Figure 3. PDF and CDF of pubic force in side impact crash 
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Homework 

Consider the following simply supported beam subject to a uniform load, as illustrated in Fig. 4. 

 

 

 

 

 

 

 

 

Figure 4. Simply Supported Beam 
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The maximum deflection of the beam is shown as 
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Using Monte Carlo simulation and FOSM, identify uncertainty propagation to the maximum 

deflection by plotting PDF or CDF, and estimating mean and standard deviation of the maximum 

deflection. 
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