Electronic Transitions

Reading: Atkins, Ch. 14

The Solid State

Ch 20. (pp.723-728)

- Electronic spectroscopy: visible or UV spectroscopy
- Absorption spectroscopy

at normal temperature

 $N_2/N_1 = \exp(-\Delta E/kT)$, at 300 K kT~200 cm⁻¹, ΔE ~16000 cm⁻¹ = exp(-80) ~ 0

at 3000 K, kT~2000 cm⁻¹,

 $N_2/N_1 = \exp(-8) \sim 3.4 \times 10^{-4}$

 \rightarrow almost ground states: "absorption"

- Emission spectroscopy: "luminescence" fluorescence, phosphorescence, chemiluminescence - **Parity** : g or u, symmetry, antisymmetry

behavior under inversion (i) $x, y, z \rightarrow -x, -y, -z$

- same sign: g (gerade, even in German)
- opposite sign: u (ungerade)

 $i1s \sigma \rightarrow 1s \sigma$: g $i1s\sigma^* \rightarrow -1s \sigma^*$: u

- Term symbols (for molecules)

 $\Lambda \hbar$, component of total orbital angular momentum about the internuclear axis $|\Lambda| \qquad \Sigma, \Pi, \Delta, \Phi, \dots$ for $|\Lambda| = 0, 1, 2, 3 \dots$

 Λ : the sum of λ for the individual electrons in a molecule

e.g., single electron in σ orbital: $\lambda = 0 \rightarrow \Lambda = 0$ (term symbol of H_2^+ is Σ)

• Selection rules

Removal of the center of symmetry: vibronically allowed transition (e.g., d-d transition)

• Vibrational transitions accompanied by electronic excitation

- Franck-Condon Principle

"Because the nuclei are so much more massive than the electrons, an electronic transition takes place very much faster than the nuclei can respond"

Electronic transition + vibrational lines: spectral band

No minimum of excited state: Dissociation of molecule: Continuous absorption band e.g., 17.1

The electronic spectra of polyatomic molecules

Chromophore: groups with characteristic optical absorptions

- d-d transitions

- Charge-transfer transitions

electron transfer from the ligands into the d orbitals of central atom Electron transfer from d orbitals of central atom into the ligand

 \rightarrow intense absorption

LMCT (ligand-to-metal charge transfer transition) MLCT (metal-to-ligand charge transfer transition)

The fates of electronically excited states

$$\tau_{\rm vib} \sim 10^{-13}$$
 sec, $\tau_{\rm rot} \sim 10^{-12}$ sec,
 $\tau_{\rm electronic} \sim 10^{-15}$ sec (much faster than vib/rot)

 $R_e' > R_e$ (more antibonding character)

- •Fluorescence (형광) & phosphorescence (인광): emission
- -<u>Fluorescence</u>: spontaneously emitted radiation ceases immediately after the exciting radiation is extinguished
- -<u>Phosphorescence</u>: spontaneous emission may persist for long period

- <u>Fluorescence</u>: immediate conversion of absorbed radiation into re-emitted energy

(emissive transition occurs after some vibrational energy discarded)

- <u>Phosphorescence</u>: the storage of energy in a reservoir from which it slowly leaks \Rightarrow triplet excited state existed

intersystem crossing: singlet \rightarrow triplet triplet \rightarrow singlet: spin forbidden, however, not totally forbidden because spin-orbit coupling (heavy atom effect (heavy atom favorable)) \Rightarrow emission slowly and continuously

- <u>Chemiluminescence</u>: excited molecule \rightarrow chemical reaction
- <u>Dissociation and predissociation</u>: excited molecule \rightarrow breaking of bonds

- Laser (light amplification by stimulated emission of radiation) <u>Requirements</u>:
- 1) existence of a metastable excited state (excited state with a long enough lifetime)
- 2) greater population in the metastable state than in the lower state \rightarrow "<u>population</u> <u>inversion</u>" needed:
- $N_2 > N_1$ (more molecules more molecules in the upper state than in the lower state) at equilibrium: $N_2/N_1 \ll 1 \Rightarrow$ by pumping: electric discharge
- three or four system
- three-level system:
 - ineffective population inversion

- four-level system: higher population inversion

- laser action

ex. solid crystal (Ruby), SC, solution(dye), gas

 \Rightarrow "cavity": particle-in-a box, n x (1/2) $\lambda = L$, n = 1,2,..., L: length of cavity: constructive, all other wavelengths destructive "resonant mode"

spontaneous emission → stimulated emission

coherent: no phase difference monochromatic, intense, directional (parallel) - <u>Q-switching</u>: pulse of laser (~ ns)

ex. saturable dye: many molecules excited by radiation: transparent

-<u>mode locking</u>: pulse of < ps

mode superimposing sharp pulse peak

- Examples of lasers

efficient laser

1) solid state lasers

- active lasing medium: single crystal or glass
- 1960 Ruby: $Al_2O_3 + Cr^{3+}$ ion: three level laser: 694 nm radiation, pulse,

continuous available

- neodymium, Nd:YAG: Nd³⁺ + yttrium aluminum garnet ($Y_3Al_5O_{12}$), four level laser, 1064 nm (IR) & 532 nm (after frequency doubling)

- Glass: cheap, weak, pulse only

cf. Nonlinear optical effects with lasers

dielectric medium (nonconductor (no free electron), optically transparent)

polarization (molecular distortion) of valence electron of molecules of medium

polarization $P = \alpha E$, α : constant, E: electric field "linear"

At high radiation intensities (e.g., laser) ($E \rightarrow$ binding energy of the electron)

 $P = \alpha E + \beta E^2 + \gamma E^3 + \dots \quad \alpha > \beta > \gamma$ "nonlinear optical effect"

If considering two terms,

 $P = \alpha E_m \sin \omega t + \beta E_m^2 \sin^2 \omega t$ $E_m : max. amplitude$ Using $\sin^2 \omega t = (1/2)(1 - \cos 2\omega t)$

 $\therefore \mathbf{P} = \alpha \mathbf{E}_{\mathbf{m}} \sin \omega t + (\beta \mathbf{E}_{\mathbf{m}}^2/2)(1 - \cos 2\omega t)$ normal linear term at high intensity $\Rightarrow 2\omega$ (double) frequency radiation (low intensity)

: frequency double process: producing <u>shorter wavelength</u> e.g., 1064 nm Nd:YAG \rightarrow 532 nm (through dielectrics, potassium dihydrogen phosphate, 30 % yield) \rightarrow 266 nm (UV) through ammonium dihydrogen phosphate

2) gas lasers

- 4 types:
 - a) neutral atom lasers, He-Ne
 - b) ion lasers, Ar⁺, Kr⁺
 - c) molecular lasers, CO_2 , N_2
 - d) eximer

-He-Ne laser: He+Ne (5:1), 632.8 nm , continuous

- Ar⁺ ion laser: ~ 1atm Ar, four-level, 488 to 514 nm

- Kr⁺ ion laser: wide range, 647 nm (red)

- molecular lasers

CO₂ laser: 1060 nm (900-1100 cm⁻¹)

from vibrational transitions

N₂ laser: 337 nm (UV), pulse

3) Excimer lasers (Exciplex laser): gases mixture of He,
F, one of rare gases (Ar, Kr, Xe)
rare gas excited & react with F to form excited ions
(ArF⁺, KrF⁺, XeF⁺) "excimer"

→ stable only in the excited state 351 nm (XeF), 248 nm (KrF), 193 nm (ArF), pulse 4) Dye lasers

- broad spectral characteristics (solvent broadens the vibrational structure)
- e.g., Rhodamine 6G in methanol

- light emitting diodes & semiconductor lasers

p-n junction \rightarrow light emitting diodes

-Si: largely in the form of heat

(indirect band gap (different linear momentum)) need to transfer momentum to the lattice: heat

→ GaAs: direct band gap (same linear momentum) : emit light GaAs: IR, GaAs + phosphorous (GaAs_{0.6}P_{0.4}: red light) Ga_{1-x}Al_xAs: CD player

- Applications of lasers

Time-resolved spectroscopy

• Photoelectron spectroscopy

measure the ionization energies of molecules when electrons are ejected from different orbitals

photoelectron, ejected electron

- <u>UPS</u> (ultraviolet photoelectron spectroscopy) detect valence electron: ionization energy of molecules from valence orbitals radiation source: He(I) line, $1s^{1}2p^{1} \rightarrow 1s^{2}$, 58.43 nm (21.22 eV)

UPS of HBr, valence orbital (molecular orbital)

-XPS (X-ray): core electron
→ core orbital , surface sensitive, chemical shift...
"ESCA" (electron spectroscopy for chemical analysis)

NaN₃

The band theory of solids (Ch.20)

- Extreme case of delocalization: solid
- Two type of solids
- i) Metallic conductor: T $\uparrow \rightarrow$ conductivity \downarrow
- ii) Semiconductor: T $\uparrow \rightarrow$ conductivity \uparrow

SC with very low electrical conductivities: insulator