Spring Semester, 2011 Energy Engineering 에너지공학

Thermal Energy

Ref. Textbook (AJ), Ch. 2

1. Heat & temperature

Temperature: a characteristic of the thermal energy of a body due to the internal motion of molecules.

Thermal equilibrium: both at the same temperature

Heat ΔQ required to raise T of unit mass of a material by an amount of ΔT $\Delta Q = c \Delta T$

c: specific heat (independent of T)

-Units of thermal energy: 1 cal ~ 4.2 J

Change of phase of a material: heat is absorbed & T remains constant $\Delta Q = L$ (L: latent heat)

latent heat of evaporation (from liquid to gas) is one or two order larger than latent heat of fusion (from solid to liquid)

2. Heat transfer: conduction, convection, radiation

(1) Conduction (열전도): transfer of thermal energy within a body due to the random motion of molecules

A bar: length d, cross-sectional area A, one end T_1 , the other end T_2 ($T_1 > T_2$)

<u>Fourier's law of heat conduction</u> (In the <u>steady-state</u>, the rate of flow of heat is constant along the length of the bar.)

$$Q = kA[(T_1 - T_2)/d]$$

k: thermal conductivity

(e.g. 2.1)

In practice, it takes time to establish a steady-state T distribution \rightarrow For unsteady heat conduction, the characteristic time (t) to establish a steady-state for an isotherm to diffuse a distance x

$$t \sim x^2/\kappa$$

thermal diffusivity $\kappa = k/\rho c \text{ (m}^2 \text{s}^{-1})$

(e.g. 2.2)

(2) Convection(열대류): transport of heat due to the bulk motion of a fluid

A fluid of density ρ and T moving with velocity $u \to \text{mass flow per unit area per second} = \rho u$ & the thermal energy per unit mass = cT

The rate of flow of heat per unit area by convection

$$Q/A = (\rho u)(cT) = \rho ucT$$

In forced convection (cold fluid flows over a hot surface) \rightarrow higher rate of heat transfer than that in stationary fluid (열전도보다 월씬 큼 (Nu 배만큼)) $Q/A = Nu[k(T_s - T_\infty)/L]$

 T_s : T of surface, T_∞ : T of fluid, L: a characteristic length, Nu: Nusselt number (dimensionless parameter)

Nu = f(Pr, Re), $Pr = c\mu/k$ (Prandtl number), $Re = \rho u L/\mu$ (reynolds number) μ : coefficient of dynamic viscosity

Prandtl number: depends only on the properties of material Reynolds number: depends on the velocity of the fluid

(e.g. 2.3) pipe의 turbulent flow에서 단순 열전도보다 40배 더 높은 열전달!

맨틀의 운동, 기류, 조류..

(3) Radiation(복사): transport of energy by electromagnetic wave

A fluid of The energy radiated per unit area per second (i.e., power per unit area) from a surface at T (Stefan-Boltzmann law)

$$P_e = \varepsilon \sigma T^4$$

 ϵ : emissivity of the surface, dimensionless, $0 \sim 1$ depending the nature of the surface $\sigma \sim 5.67 \times 10^{-8} \text{ Wm}^{-2}\text{K}^{-4}$ (Stefan-Boltzmann constant)

Net rate of emission per unit area per second

$$P = P_e - P_a = \varepsilon \sigma (T^4 - T_o^4)$$

P_a: rate of adsorption

Black body: a surface that absorbs all incident radiation

Examples of radiation: sun radiation, dominant heat transfer in the furnace

(e.g. 2.4) 지표상의 총태양에너지
$$P_s \sim 3.9 \times 10^{26} \, \mathrm{W}$$
 적도 상의 단위면적당 에너지 $\sim 1.37 \, \mathrm{kW/m^2}$ (solar constant) (한국 $\sim 1 \, \mathrm{kW/m^2}$)

Greenhouse effect: 대기권의 복사 → 지표면 온도에 영향

Incident solar radiation : 1.37 kW/m² (solar constant))

Fraction of incident radiation ("albedo"): reflected by clouds & earth surface into outer space \rightarrow albedo $\sim 30\%$

The radiation is absorbed by an area πR^2 (cross-section facing the Sun, R: radius of Earth)

(i) <u>대기가 incident solar radiation과 지표면으로부터 열(IR)을 흡수 안할 경우</u> Albedo: A, incident solar intensity: S,

assume emissivity ~ 1 (like a black body), equilibrium at T on Earth surface $(1 - A)S \pi R^2 = 4\pi R^2 \sigma T^4$

(radiation is emitted by the whole of the Earth's surface (area = $4\pi R^2$))

$$A = 0.3$$
, $S = 1.37 \text{ kWm-2} \rightarrow T = 255 \text{ K} = -18^{\circ}\text{C}$

(ii) <u>대기가 incident light은 흡수 안하면서 지표면으로부터 열은 흡수할 경우</u> \rightarrow 대기는 온도 T_a 까지 증가

$$(1 - A)S \pi R^2 = 4\pi R^2 \sigma T_a^4$$

ightarrow T_a = T(지표면 온도) = 255 K 대기가 지구표면과 지구 밖으로 동일한 양을 복사하게 됨 ightarrow 지표면 온도는

이 대기로부터 열을 받아 T_E 로 올라감

$$(1-A)S \pi R^2 + 4\pi R^2 \sigma T_a^{\ 4} = 4\pi R^2 \sigma T_E^{\ 4}$$
 $4\pi R^2 \sigma T_a^{\ 4}$ 에 대해 앞쪽 마지막 식을 대입하면,

$$T_E^4 = 2T^4 \rightarrow T_E = 303 \text{ K} = 30 \text{ }^{\circ}\text{C}$$

Rise in surface temperature due to IR(열) 복사 흡수 → "greenhouse effect"(온실 효과)

3. 1st law of thermodynamics & the efficiency of a thermal power plant

1st law of thermodynamics: energy conservation

$$Q - W = \Delta U$$

(Q & W are positive if heat flows into the system and work is done by the system)

The maximum possible efficiency of a thermal power plant can be obtained from this law

4. Closed cycle for a steam power plant

- (1) **compressor** (boiler feed pump): work W_{com} done on the system to compress cold water from subatmospheric pressure to high pressure
- (2) Boiler: heat Q_1 added to the system to convert cold water into system
- (3) **Turbine**: work W_t done by the system (i.e. by steam) on the turbine blades
- (4) Condenser: heat Q_2 lost from the system to the environment in converting steam back to cold water

After each complete cycle, the working fluid has the same internal energy, $U \rightarrow$ net change in internal energy is zero, $\Delta U = 0$

$$(Q_1 - Q_2) - (W_t - W_{com}) = 0$$

The efficiency of the process

$$\eta = [\text{net work output}]/[\text{heat input}] = (W_t - W_{com})/Q_1 = (Q_1 - Q_2)/Q_1 = 1 - (Q_2/Q_1)$$

 $Q_2 > 0 \rightarrow \eta < 1$: system is less than 100% efficient

→ "2nd law of thermodynamics": heat increases the disorder (entropy), no system operating in a closed cycle can convert all the heat absorbed from a heat reservoir into the same amount of work

Carnot: maximum possible efficiency of a heat engine operating in a closed cycle between two heat reservoirs depends only on the ratio of the absolute temperatures of the reservoirs

$$\eta_{\rm C} = 1 - (T_2/T_1)$$

 T_1 , T_2 are the absolute temperatures (K) of the upper & lower reservoirs

Efficiency of a Carnot cycle

Consider ideal gas (pV = nRT) operating in the closed cycle *abcda* ab & cd are isotherms at T_1 & T_2 ; bc & da are reversible adiabatics (i.e, no heat transfer with the surroundings)

By the 1st law of thermodynamics,

$$dQ = dU + pdV = C_V dT + pdV$$

(C_V: heat capacity at constant volume)

Along isotherm
$$ab$$
, $dT = 0 \rightarrow dQ = pdV$
 $Q_1 = \int pdV = nRT_1 \int (dV/V) = nRT_1 ln(V_b/V_a)$

Along cd, $Q_2 = nRT_2ln(V_c/V_d)$

$$Q_2/Q_1 = [T_2 ln(V_c/V_d)]/[T_1 ln(V_b/V_a)]$$

Along adiabatic da, $dQ = 0 \rightarrow C_V dT = -pdV$ $C_V(dT/T) = -nR(dV/V) \rightarrow C_V ln(T_1/T_2) = -nRln(V_a/V_c)$ Along adiabatic da, $C_V ln(T_1/T_2) = -nRln(V_b/V_c)$

$$\rightarrow$$
 $(V_a/V_d) = (V_b/V_c)$ or $(V_c/V_d) = (V_b/V_a)$

$$\mathbf{Q}_2/\mathbf{Q}_1 = \mathbf{T}_2/\mathbf{T}_1$$

$$\eta = 1 - (Q_2/Q_1) = 1 - (T_2/T_1)$$

5. Useful thermodynamic quantities

Six key thermodynamics quantities of a thermal power plant: T, p, specific volume v (volume per unit mass, i.e., reciprocal of density), specific internal energy u, specific enthalpy h, specific entropy s

Enthalpy, h = u + pv

1. Heat transfer at constant pressure (e.g., in boilers & condensers)

$$h_1 - h_2 = Q$$
 (enthalphy change = heat input)

2. Adiabatic (Q = 0) compression or expansion (e.g., in compressors & turbines) $W = h_1 - h_2$ (net work done on the shaft = enthalpy change)

Entropy: a measure of the degree of disorder (2nd law of thermodynamics)

- 1. Reversible process: both system & surroundings can recover their original states
- 2. Irreversible process

$$\Delta s = \Delta Q_{rev}/T$$

Expansion of a gas at constant pressure

dQ is required to expand the volume from v to v + dv

Work done by the gas to the surroundings: dW = pdv

 1^{st} law of thermodynamics: du = dQ - pdv

For constant p, $pdv = d(pv) \rightarrow du = dQ - d(pv)$

Total change in internal energy,

$$u_2 - u_1 = Q - (p_2 v_2 - p_1 v_1)$$

$$\to (u_2 + p_2 v_2) - (u_1 + p_1 v_1) = Q$$

or
$$h_2 - h_1 = Q$$

Adiabatic compression or expansion (Q = 0)

The work done in moving unit mass of fluid through a volume v_1 at A: p_1v_1

The work through volume v_2 at B: $-p_2v_2$

 \rightarrow net work done by the fluid : $p_2v_2 - p_1v_1$

Work done by the shaft: W_s

The total work done by the system $W = W_s + (p_2v_2 - p_1v_1)$

1st law of thermodynamics: $Q - W = \Delta u$ $Q = 0 \rightarrow -W_s - (p_2 v_2 - p_1 v_1) = u_2 - u_1$

$$W_s = (u_1 + p_2 v_2) - (u_2 + p_1 v_1)$$

or $W_s = h_1 - h_2$

6. Thermal properties of water and steam

Temperature T – entropy s diagram for water & steam (thermal power plant)

Bell-shaped curve: phase boundary

Solid lines: isobars (constant pressure)

Dashed lines in region II: constant steam quality, x (i.e., fraction by mass of steam in the two-phase mixture)

In isobar BC, $m = m_f + m_g$ (water mass + steam(gas) mass)

If v_f is the specific volume of liquid water at B & v_g the specific volume of dry steam at C \rightarrow total volume of the mixture, $V = V_f + V_g = m_f v_f + v_g m_g$

Specific volume,

$$v = V/m = (m_f v_f + m_g v_g)/m = (m - m_g) v_f/m + m_g v_g/m = (1 - m_g/m) v_f + (m_g/m) v_g$$

The ratio, $x = m_g/m$ (steam quality)

Steam quality at B, x = 0 (all water), at C, x = 1 (all steam)

$$\mathbf{v} = (1 - \mathbf{x})\mathbf{v}_{\mathbf{f}} + \mathbf{x}\mathbf{v}_{\mathbf{g}}$$

동일하게,

$$u = (1 - x)u_f + xu_g$$

 $h = (1 - x)h_f + xh_g$
 $s = (1 - x)s_f + xs_g$

(e.g. 2.5) steam power plant in the Carnot cycle

7. Disadvantages of a Carnot cycle for a steam power plant

 T_1 of the upper reservoir to be constant \rightarrow only achieved along an isobar in region II \rightarrow not possible to operate the boiler in the dry steam region (III) since T rises \rightarrow upper temperature of the cycle, T_1 , is constrained by the maximum temperature of the two-phase boundary

Another problem arises in the turbine: turbine operates with a two-phase mixture of water and steam (region II) \rightarrow momentum of fast moving water droplets in the mixture damages the turbine blades and shortens the life of the turbines

Same in compressor: damage the blades of the compressor. Volume of steam in the mixture is very large \rightarrow large compressor needed so expensive

Carnot cycle: impractical for a steam power plant

8. Rankine cycle for steam power plants

- Carnot cycle의 문제점을 해결하려는 thermodynamic cycle

(1) Rankine cycle without reheat

de: condenser에서 steam이 전부 물로 바뀜(Carnot cycle과 다름)ef: compressor가 물의 압력을 adiabatically 높임

현재 steam power plant의 boiler는 세부분:
fa (economizer): 물이 끓을 때까지 고압에서 가열
ab (evaporator): 등압에서 two-phase mixture의
물이 dry steam으로 바뀌도록 가열
bc (superheater): 등압에서 dry steam의 가열

cd: 고압에서 dry steam이 turbine에 들어가 turbine blades에 일을 함

효율 계산: Carnot법을 적용하기 어려움 (upper T가 constant하지 않음) → economizer와 superheater의 평균온도 적용

(e.g. 2.6) steam power plant in a Rankine cycle without reheat

(2) Rankine cycle with reheat

Rankine cycle withour reheat: turbine blades를 마모시키는 높은 momentum의 물방울 생성을 완전히 제거하지 못함 → "with reheat" 도입 → steam is reheated several times before entering the condenser → 효율 증대 및 물방울 생성 억제

Maximum operating temperature in the superheater: 650°C (손상방지를 위해) 현재 효율은 40~45% 정도 도달

9. Gas turbines & the Brayton (or Joule) cycle

Gas turbine: gaseous products of combustion온도가 1300°C에 달함 (ceramic coating on turbine blades)

전기생성을 위한 gas turbine은 jet turbine engine에서 시작

Jet engine: combustion of gaseous fuel & expansion of exhaust gases → same gas phase, no condenser, steam engine 보다 작고 저가

Gas turbine은 Brayton (or Joule) cycle: atmosphere가 heat exchanger역할을 하기 때문에 closed cycle (combustion chamber에 들어가는 공기 냉각)

대기압의 공기가 compressor로 들어가(a) 10~20 bar로 압축(b) → combustion chamber에서 연료와 혼합됨 → turbine에 일을 하는 뜨거운 combustion gas들 생성 (c) → exhause gas들 대기로 배출 (d)

Compressor와 turbine에서 adiabatic process (Q = 0)를 가정하면, 열역학제1법칙은 $-W_c = \Delta U$.

Compressor에서 행해진 일 = 엔탈피 증가, $W_{com} = h_b - h_a = c_p(T_b - T_a)$ (c_p : specific heat at constant pressure)

Turbine에 행해진 일, $W_t = h_c - h_d = c_p(T_c - T_d)$ Net heat supplied, $Q = h_c - h_b = c_p(T_c - T_b)$

Efficiency of the cycle, $\eta = (W_t - W_{com})/Q = [(T_c - T_d) - (T_b - T_a)]/(T_c - T_b)$

More useful expression for efficiency of gas turbine, $\eta = 1 - r^{-[(\gamma-1)/\gamma]}$ $r = p_b/p_a = p_c/p_d$ (pressure ratio) & $\gamma = c_p/c_v$ (ratio of specific heats)

Gas turbine: relatively low cost, start up quickly. Efficiency ~ 40%

$$\eta = 1 - r^{-[(\gamma-1)/\gamma]}$$
 유도 (37쪽)

(e.g. 2.7)

10. Combined cycle gas turbine (CCGT)

Exhaust gases를 steam power plant 에 공급 gas turbine의 효율 증대: CCGT → 효율 ~60%

이보다 더 큰 효율은 combined heat and power cycle (CHP)로 확보 가능: 일반적 steam power plant 보다 더 높은 온도에서 condenser 작동. Waste Heat은 주변지역 난방으로 활용: 총효율 ~80% (단점: 설치비용 고가 → 산업단지나 인구밀접지역 가능)

11. Fossil fuels and combustion

천연가스:
$$CH_4$$
 연소 \rightarrow 발열반응 $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$ 55MJ/kg CH_4 16 kg $CH_4 \rightarrow 44$ kg CO_2

Oil: example pentane $C_5H_{12} + 8O_2 \rightarrow 5CO_2 + 6H_2O$ 72 kg pentane $\rightarrow 220$ kg CO_2

500 MW coal-fired plant consumes 250 ton coal per hour

$$C + O_2 \rightarrow CO_2$$

2C + O₂ \rightarrow 2CO (incomplete)

12. Fluidized beds

환경유해 배출가스 감소

13. Carbon sequestration (carbon capture)

온실가스 감축방안

14. Geothermal energy

지구핵 온도: 4000°C → temperature gradient at Earth's surface: 30°C/km

활발한 지열활동: Iceland, California, Italy, New Zealand..

지열활동이 활발하지 않아도 지하 수 km의 지열이용 가능: >150°C (electric power plant에 water heating에 주입), <150°C(난방)

(1) Aquifer(대수층[帶水層])로부터 heat extraction

(e.g. 2.8)

(2) Hot dry rock으로부터 heat extraction

Enhanced geothermal systems (EGS)

(3) Geothermal heat pumps

