Biology and Biotechnology

Part I : Perspective

- Science, Technology, and Society
- Part II: The foundational Science
 - The Cell
 - Molecular components of cells
 - Expression of genetic information
 - Protein structure and function
 - Cell metabolism
 - Cells maintain their internal environments
 - Cells respond to their external environments
 - Cells grow and reproduce
 - Cells differentiate
 - Ecological interaction

Biology and Biotechnology

Part III: Biotechnology Applications

Research applications

- The biotechnology toolbox
- Biotechnology in the research laboratory

Commercial applications

- Health care applications
- Environmental sustainability and biotechnology

Chapter 1

Science, Technology, and Society

Contents

Technology and Society

Technology

- The totality of means employed to provide objects necessary for human sustenance and comfort
- Changes the environment and society
 - Automobile
 - Development of petroleum industry
 - Social impacts
 - Pollution and global warming

Technology and Society

Society

Creates filters for technology

All possible technologies

Economically feasible technologies

Economically feasible and ethically acceptable technologies

Commercialized technologies:

- Economically feasible
- Ethically acceptable
- Safe (low risks)
- Societal benefits outweigh costs

Commercially successful technologies

Science and Technology

Science

Search for knowledge

- Way of understanding ourselves and the physical world
- Process of asking questions and finding answers, then creating broad generalizations

Technology

- Practical <u>application</u> of knowledge
- Way of <u>adapting</u> ourselves to the physical world
- Process of finding solutions to human problems to make lives <u>easier</u> and <u>better</u>

Science and Technology

Science

Technology

- Looks for order or patterns in the physical world
- Evaluated by how well the facts support the conclusion or theory
- Limited by the ability to collect relevant facts
- Discoveries give rise to technological advances

 Looks for ways to <u>control</u> the physical world

- Evaluated by how well it works
- Limited by <u>financial cost</u> and <u>safety</u> concerns
- Advances give rise to <u>scientific</u> <u>discovery</u>

The Relationship Between Science and Technology

Acceleration of technological change

The Nature of Science

- Science is a process, not a list of discoveries
- Science can prove a generalization is not true, but cannot prove that is true
- Influenced by society

Biotechnology

Definition

- The use of living organisms or life processes to solve problems or make useful products
- Ancient biotechnology
 - Started from 10000 years ago
 - Domestication of plants and animals
 - Fermented foods
 - Trial and error-based
- Modern biotechnology
 - Technology using cells and biological molecules or cellular and biomolecular processes
 - Specificity, precision, and predictability
 - Unity and flexibility
 - Reproduction and renewable resources

Bread,3000 BC

Wine, 2500 BC

Types and Applications of Biotechnology

Biotechnology

- Bioprocessing
- Cell culture
- Recombinant DNA
- Monoclonal antibody
- Biosensor
- Microarray
- Protein engineering
- Antisense technology

Industry

- •Human health care
- Agricultural production
- •Food and beverages
- •Enzyme industry
- •Forestry/pulp and paper
- •Textiles
- Chemical manufacturing
- Energy
- Waste treatment

The History of Crop Genetic Modification

- Stage1
 - Genetic modification through seed selection
- Stage 2
 - Genetic modification through plant breeding and selection
 - Models of inheritance
 - Fluid-blending model
 - Medel's theory of inheritance (1865, proved in 1900)
 - Discrete-particle (now known as gene) model
- Stage 3
 - Science-based plant breeding
- Stage 4
 - Discovery of the nature of genetic inheritanc
 - Plant genetic engineering

Mendel's Theory of Inheritance

- Dominant and Recessive
- Genotype and Phenotype

The Nature of Genetic Material

- DNA as genetic material
 - Frederick Griffith (1928)
 - 'Transforming factor' transferred from dead smooth virus to rough virus

- O.T. Avery (1943)
 - Identification of the 'Transforming factor' as DNA

The Nature of Genetic Material

DNA as genetic material

- Alfred Hershey and Martha Chase (1952)
 - Identification of DNA as genetic material
 - Protein labeled with ³⁵S, and DNA with ³²P

The Nature of Genetic Material

Structure of DNA

- Linus Pauling, Erwin Chargaff, Maurice Wilkins, Rosalind Franklin (1948-1951)
 - Identification of chemical properties and X-ray diffraction images of DNA
- Frances Crick and James Watson (1953)
 - Determination of DNA structure

Recombinant DNA Technology

- Discovery of restriction enzyme and ligase
- Development of recombinant DNA technology
 - Herbert Boyer and Stanley Cohen (1973)

Cutting and Joining DNA Molecules

Molecular Biotechnology

The last great technological revolution of the 20th century

