
Chapter 2 Boltzmann Distribution 
Microstates and Configurations 
− Consider permutations and configurations illustrated by tossing  
   a coin four times. 

Figure 1. Possible configurations and permutations for a Bernoulli trial consisting 
of tossing a coin four times. Blue indicates tails and red indicates heads. 



The configuration “2 Head” configuration has the greatest number 
of ways to achieve this configuration. 

The probability (PE) of this configuration is given by  

=E
EP
N

where E: the number of permutation associated with the event of 
interest 

            N: the total number of possible permutations 

The most likely configurational outcome for a trial is the 
configuration with the greatest number of associated 
permutations. 

Which of these trial outcomes is most likely? 
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The modified energy levels of this harmonic oscillator: 

0,1,2,ν= = ⋅⋅⋅nE h n n

The oscillators are distinguishable. 

Consider a simple molecular system consisting of three quantum 
harmonic oscillators that share a total of three quanta of energy 
(3hv). 



Figure 2. Configurations and 
associated permutations involving the 
distribution of three quanta of energy 
over three distinguishable oscillators. 



microstate: a specific arrangement of energy that describes the  
                   energy contained by each individual oscillator 

Which configuration of energy would we expect to observe most 
likely? 

The “2, 1, 0” configuration has a probability 
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configuration: a general arrangement of total energy available to   
                        the system 



Counting Microstates and Weight 
The number of arrangements for N objects with ai subgroups (the 
weight of the configuration) is given by 
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The an quantities are referred to as occupation number, because they 
may describe how many units occupy a given energy level.  

Example:  
  What is the weight associated with the configuration corresponding  
  to observing 40 heads after flipping a coin 100 times? 



Molecular energy levels and Boltzmann 
distribution 
energy levels: 1 2 3, , ,ε ε ε 


number of molecules: n1, n2, n3, 

↓ ↓ ↓

the configuration of the systems: the specification of the set of 
populations n1, n2, 

e.g.  i) 1 2 3, 0, 0n N n n= = = ⇒

ii) 1 2 32, 2, 0n N n n= − = = ⇒

only in one way 

different ways of forming it 
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more likely to occur 

A general configuration {n1, n2, …} can be achieved in W different 
ways, called its weight, where 
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The Dominant configuration 
Distribute N particles between left and right sides of a box 
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(1) Suppose all particles are distinguishable. 

      Probability of Nl on left followed by Nr on right 
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P(n) = the total probability 

P(0)      the maximum term 

(2) If particles are indistinguishable, then there are  
     equivalent placements of particles. 
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Toss a coin 10 times. 
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The configuration associated with observing 50% heads should become 
dominant configuration as the number of coin tosses increases.  
Indeed, the most probable configuration evolves into the dominant 
configuration as the size the system increases. 
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Figure 3. Comparison of relative probability for outcomes of a coin-flip trial 
in which the number of tosses is 10 (red line) and 100 (yellow line). Notice 
that all trials have a maximum probability at 50 % heads; however, as the 
number of tosses increases, the probability distribution becomes more 
centered about this value as evidenced by the decrease in distribution width. 



  Consider a collection of 10,000 particles with each particle capable  
  of populating one of three energy levels having energies, 0, ε, and 2ε   
  with a total available energy of 5000ε. Under the constraint that the  
  total number of particles and total energy be constant, determine the  
  dominant configuration. 

Example: 



Figure 4. Illustration of the dominant configuration for a system consisting of 10,000 
particles with each particle having three energy levels at energies of 0, ε, and 2ε as 
discussed in Example. The number of particles populating the higher energy level is N3, 
and the energy configurations are characterized by the population in this level. (a) 
Variation in the natural log of the weight, ln(W), for energy configurations as a function of 
N3, demonstrating that ln(W) has a maximum at N3 =1200. (b) Variation in the weight 
associated with a given configuration to that of the dominant configuration.  



Derivation of the Boltzmann Distribution 
W:  − the weight of the configuration 
       − the total number of microstates associated with a given  
           configuration of energy 
Because W will be large for molecular systems, it is more convenient 
to work with lnW, and the search criterion for the dominant 
configuration becomes 
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Figure 4-1. Mathematical definition of the dominant configuration.   
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From the restriction 1,                                                                  
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Restrictive condition: 



( )eq ( ) eq ( ) eq ( )α β∗ + ∗∗ × ∗∗∗ × −+

1 1 2 2
1 2

ln lnln

ln (a)n n
n

W WW a a
a a

W a
a

δ α βε δ α βε δ

α βε δ

   ∂ ∂
= + − + + − + ⋅⋅⋅   ∂ ∂   

 ∂
+ + − + ⋅⋅⋅ ∂ 

When δ lnW=0, lnW has a maximum value. 

Since eq (a) holds for any α and β, but we choose values of α and β 
such that 
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Lagrange’s method of undetermined multipliers 
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where the values of δa3, δa4,···, δan,··· can be chosen independently.   

The only way of ensuring the right-hand side of eq (b) is zero for 
any small value of  δa3, δa4,···  is to equate all the quantities in 
brackets to zero, i.e., 
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The probability of occupying a given energy level (Pn) is given by  
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This quantitatively describes the probability of occupying a given 
energy for the dominant configuration of energy. This well-known 
and important result is referred to as the Boltzmann distribution. 

Assume 1 .=
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The energy levels of the harmonic oscillator are εn=nhν for n = 0,1,2,···· 
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The partition function represents the sum over all terms that 
describes the probability associated with the variable of interest, in 
this case εn or the energy level n. 
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Figure 4-2.  
The partition function for the 
system of a harmonic 
oscillator as a function of 
temperature. 
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Figure 4-3.  
Populations of molecular states 
at various temperatures. 



Degeneracy 
degeneracy: multiple states at a given energy level  
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Figure 5. Illustration of degeneracy. In system 1, one state is present at energies 0 
and β−1. In system 2, the energy spacing is the same, but at energy β−1 two states are 
present such that the degeneracy at this energy is two. 
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The partition function for the first system 

Consider Figure 5. 

The partition function for the second system 

The corresponding probability of occupying a state at 
energy β −1 for the two systems 



Dominance of the Boltzmann Distribution 
Wmax: the largest number of microstates 

Consider a slight different configuration having weight (=W) and  
W<Wmax. 

Let αn be the fractional change in the number of units present in the 
nth state: 
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Recall the following definition, which related the fractional change 
in occupation number to the occupation numbers itself: 
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For an example, 

( )( )23 20

23

10

6.022 10 10
3000max 2

1 mole 6.022 10
10rms

N

W e e
W

α
−

−

×

= = ×

=

= ≈

The ratio of weights is extremely large number, and it demonstrates 
that a minute change in configuration will result in significant 
reduction weight. Clearly, the width of the curve illustrated in 
Figure 4-1 is extremely small in the a system where N is on the 
order of Avogadro’s number, and the most probable distribution is 
virtually the only distribution that will be observed for a 
macroscopic assembly of units. 



The Definition of β 
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Imagine two separate systems of distinguishable units at equilibrium 
having associated weights Wx and Wy. 

Figure 6. Two assemblies of distinguishable units, denoted x and y, are 
brought into thermal contact. 



If the two systems are initially at different equilibrium conditions, the instantaneous 
composite system weight will be less than the weight of the composite system at 
equilibrium. Since the composite weight will increase as equilibrium is approached, 
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When the composite system is isolated from surroundings, 
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Example: 

The vibrational frequency of I2 is 208 cm−1. What is the probability of 
I2 populating the n=2 vibrational level if the molecular temperature is 
298 K? 



This result is then used to evaluate the probability of occupying 
the second vibrational state (n=2) as follows: 
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