2007 Fall: Electronic Circuits 2

CHAPTER 9 Operational-Amplifier and Data-Converter Circuits

Deog-Kyoon Jeong

dkjeong@snu.ac.kr

School of Electrical Engineering Seoul National University

Introduction

In this chapter, we will be covering...

- The Two-Stage CMOS Op Amp
- The Folded-Cascode CMOS Op Amp
- The 741 Op-Amp Circuit
- D/A Converter
- A/D Converter

- Compensation capacitance C_c (together with C_{gd6}) is Millermultiplied by the gain of the second stage
- Systematic output dc offset
 → can be eliminated by keeping

$$\frac{(W/L)_6}{(W/L)_4} = 2 \cdot \frac{(W/L)_7}{(W/L)_5}$$

3/78

Input Common-Mode Range

To Keep Q₁ & Q₂ in saturation

$$V_{ICM} \ge -V_{SS} + V_{tn} + V_{OV3} - \left|V_{tp}\right|$$

To Keep Q5 in saturation

$$V_{ICM} \leq V_{DD} - |V_{OV5}| - V_{SG1} \\ = V_{DD} - |V_{OV5}| - |V_{tp}| - |V_{OV1}|$$

Input common-mode range

$$-V_{SS} + V_{OV3} + V_{tn} - \left| V_{tp} \right| \le V_{ICM} \le V_{DD} - \left| V_{tp} \right| - \left| V_{OV1} \right| - \left| V_{OV5} \right|$$

IREF

9/23/2007

(c) 2007 DK Jeong

-0 Vo

 $+V_{DD}$

 $-V_{SS}$

Output Swing

To keep Q₆ & Q₇ saturated,

$$-V_{SS} + V_{OV6} \leq V_O \leq V_{DD} - \left|V_{OV7}\right| -$$

- We need to keep the magnitude of V_{ov} as low as possible
- However, counteracted by the need to have high f_T for Q_6

 $+V_{DD}$

9/23/2007

(c) 2007 DK Jeong

5/78

9.1 The Two-Stage CMOS OP AMP $+V_{DD}$ Frequency Response Capacitance C1, C2 $C_{1} = C_{gd2} + C_{db2} + C_{gd4} + C_{db4} + C_{gs6}$ $C_2 = C_{db6} + C_{db7} + C_{gd7} + C_L$ IREF (Pole & Zero (in Section 7.7.1) $f_{P1} \cong \frac{1}{2\pi R_1 G_{m2} R_2 C_C}$: dominant pole $f_{P2} \cong \frac{G_{m2}}{2\pi C_2}$ $f_Z \cong \frac{G_{m2}}{2\pi C_z}$ 9/23/2007 (c) 2007 DK Jeong 10/78

Frequency Response

- To guarantee stability, unity-gain frequency f_t must be
 - lower than $f_{p2} \& f_z$, so that $20 \log |A_v|$ crosses 0 db at its
 - -20db/dec decaying section

$$f_{t} = |A_{v}|f_{P1} = \frac{G_{m1}}{2\pi C_{C}} < f_{P2}, f_{Z}$$

$$\frac{G_{m1}}{C_C} < \frac{G_{m2}}{C_2}$$

$$G_{m1} < G_{m2}$$

- Q1, Q2: input differential pair
- Q3, Q4: cascode transistors
- Each of Q₁, Q₂ is operating at a bias current (*I*/2)
- The bias current of each of Q₃, Q₄ is $(I_B I/2)$
 - The cascode current mirror Q_5 to Q_8 : for high output resistance

Figure 9.8 Structure of the folded-cascode CMOS op amp.

- CL: the total capacitance at the output node
- The load capacitance contributes to frequency compensation

Input common-mode range and the output voltage

Input common-mode range and the output voltage

23/78

Example 9.2

9/23/2007

Note that for all transistors, $g_m r_o = 160 \text{V/V}, V_{GS} = 1.0 \text{V}$ $-V_{SS} + V_{OV11} + V_{OV1} + V_{tn} \le V_{ICM} \le V_{DD} - |V_{OV9}| + V_{tn}$ $\Rightarrow -1.25 V \le V_{ICM} \le 3 V$ $-V_{SS} + V_{OV7} + V_{OV5} + V_{tn} \le v_o \le V_{DD} - |V_{OV10}| - |V_{OV4}|$ $\Rightarrow -1.25 V \le v_a \le 2V$ $R_{o4} \cong (g_{m4}r_{o4})(r_{o2} || r_{o10}) = 160(200 || 80) = 9.14M\Omega$ $R_{a6} \cong g_{m6} r_{a6} r_{a8} = 21.28 M \Omega$ $\therefore R_o = R_{o4} \| R_{o6} = 6.4 M \Omega$ $\therefore A_v = G_m R_o = 0.8 \times 10^{-3} \times 6.4 \times 10^6 = 5120 \text{V/V}$

$$f_{t} = G_{m}R_{o}f_{P} = \frac{G_{m}}{2\pi C_{L}} = \frac{0.8 \times 10^{-3}}{2\pi \times 5 \times 10^{-12}} = 25.5MHz$$
$$f_{p} = \frac{f_{t}}{A} = \frac{25.5MHz}{5120} = 5kHz$$

 A_{v}

$$SR = \frac{I}{C_L} = \frac{200 \times 10^{-6}}{5 \times 10^{-12}} = 40 \,\text{V/}\mu\text{s}$$

Finally, to determine the power dissipation we note that the total current is 500μ A=0.5mA, and the total supply voltage is 5V, thus

 $P_{D} = 5 \times 0.5 = 2.5 \,\mathrm{mW}$

Increasing the input common-mode range: Rail-to-rail input operation

(c) 2007 DK Jeona

An NMOS and a PMOS differential pair placed in parallel would provide an input stage with a common-mode range that exceeds the power supply voltage in both directions.

Rail-to-rail input operation Each of the current increments indicated is equal to $G_m(V_{id}/2)$.

$$V_O = 2G_m R_O V_{id}, \qquad A_V = 2G_m R_O$$

This assumes that both differential pairs will be operating simultaneously.

Figure 9.12 (a) Cascode current mirror with the voltages at all nodes indicated. Note that the minimum voltage allowed at the output is $V_t + V_{OV}$ (b) A modification of the cascode mirror that results in the reduction of the minimum output voltage to V_{OV} . This is the wide-swing current mirror.

- The IC design philosophy
 - Mostly transistors
 - Relatively few resistors
 - Only one capacitor
 - This philosophy is dictated by the economics (silicon area, ease of fabrication, quality of realizable components) of the fabrication of active and passive components in IC form.
- Two power supplies (+ V_{CC} and $-V_{EE}$)
 - Normally, V_{CC}=V_{EE}=15V
 - But the circuit also operates satisfactorily with \pm 5V.

 With a relatively large circuit, the first step in the analysis is the identification of its recognizable parts and their functions.

Figure 9.13 The 741 op-amp circuit. Q_{11} , Q_{12} , and R_5 generate a reference bias current, I_{REF} . Q_{10} , Q_9 , and Q_8 bias the input stage, which is composed of Q_1 to Q_7 . The second gain stage is composed of Q_{16} and Q_{17} with Q_{13B} acting as active load. The class AB output stage is formed by Q_{14} and Q_{20} with biasing devices Q_{13A} , Q_{18} , and Q_{19} , and an input buffer Q_{23} . Transistors Q_{15} , Q_{21} , Q_{24} , and Q_{22} serve to protect the amplifier against output short circuits and are normally cut off.

The second stage (Single ended high gain stage)

- Intermediate stage: Q₁₆, Q₁₇, Q_{13B}, R₈, R₉
- Q₁₆: Emitter follower(High R_{in}), Q₁₇: Common emitter amp
- Q_{13B}: Active load (High gain), C_C: Frequency compensation
- Dominant pole : 4Hz, unity gain bandwidth : 1MHz

9/23/2007

(c) 2007 DK Jeong

- The output stage (Buffering stage)
 - Class AB output stage, Low R_{out}, Large load current
 - Q₁₄, Q₂₀: Complementary pair
 - Q_{18} , Q_{19} are fed by Q_{13A} and bias Q_{14} , Q_{20}
 - Q₂₃: Emitter follower (minimizing loading effect on second stage)

9/23/2007

(c) 2007 DK Jeong
9.3 The 741 OP-AMP Circuit

The output stage (buffering stage)

Class AB output stage is utilized in 741 Op-Amp

9.3 The 741 OP-AMP Circuit

Device parameters

Reference bias current

$$I_{REF} = \frac{V_{CC} - V_{EB12} - V_{BE11} - (-V_{EE})}{R_5} = 0.73 mA \ (V_{CC} = V_{EE} = 15V, \ V_{BE11} = V_{EB12} \cong 0.7V)$$

Input-stage bias

From symmetry $I_{c1} = I_{c2}$ If the npn β is high $I_{B3} = I_{B4} \cong I$

 Q_3 and Q_4 base current : $\frac{I}{\beta_p + 1} \cong \frac{I}{\beta_p}$

Using the result in Eq.(6.21) Q₈ and Q₉ current mirror : $I_{C9} = \frac{2I}{1+2/\beta_P}$ Using the result in Eq.(6.21)

Node X : if $\beta_P >> 1$, $2I \cong I_{C10} = 19uA$ $\therefore I = I_{C1} = I_{C2} \cong I_{C3} = I_{C4} = 9.5 \mu A$

 Q_1 through Q_4, Q_8 and Q_9 : negative feedback loop

To stabilize $I \cong I_{C10} / 2$

$$I \uparrow \Rightarrow I_{C8} \uparrow \Rightarrow I_{C9} \uparrow \Rightarrow$$

$$2I / \beta_P \downarrow (I_{C10} \, const) \Longrightarrow I \downarrow$$

40/78

Input offset voltage

 V_{OS} : differential input voltage to reduce the output current to zero

Input common-mode range

Input stage remains in the linear active mode The upper end by saturation of Q_1 , Q_2 The lower end by saturation of Q_3 , Q_4

9/23/2007

Second-stage bias (Fig. 9.13)

$$I_{C13B} = 0.75I_{REF} \text{ (by Emitter Area Ratio)} = 550\mu\text{A} = I_{C17}$$

$$Q_{17} \implies V_{BE17} = V_T \ln \frac{I_{C17}}{I_s} = 618mV, \ V_{B17} = I_{E17}R_8 + V_{BE17}$$

$$Q_{16} \implies I_{C16} \cong I_{E16} = I_{B17} + \frac{V_{B17}}{R_9} = 16.2\mu\text{A}$$
9/23/2007 (c) 2007 DK Jeong 43/78

Output resistance

(current source of Q_4) || (output resistance of Q_6)

Small signal equivalent circuit of input stage

Figure 9.22 Small-signal equivalent circuit for the input stage of the 741 op amp.

$$R_{id} = 2.1M\Omega$$

$$G_{m1} = 1/5.26 mA/V$$

$$R_{o1} = 6.7M\Omega$$
9/23/2007 (c) 2007 DK Jeong 48/78

The second stage

 $\begin{cases} R_{o2} \end{cases}$

0C17

$$i_{c17} = \frac{\alpha v_{b17}}{r_{e17} + R_8}, \ v_{b17} = v_{i2} \frac{(R_9 //R_{i17})}{(R_9 //R_{i17}) + r_{e17}}$$
$$R_{i17} = (\beta_{17} + 1)(r_{e17} + R_8)$$

$$\therefore G_{m2} \equiv \frac{i_{c17}}{v_{c2}} = 6.5 mA/V$$

9/23/2007

 $+ v_{i2} \xi_{R_{i2}}$

model of the second stage.

 $\langle V \rangle G_{m2} v_{i2}$

Figure 9.25 Small-signal equivalent circuit

Figure 9.27 Thévenin form of the smallsignal model of the second stage. Output resistance - R_{a2} : output resistance of second stage $R_{a2} = (R_{a13B} // R_{a17})$ - Q_{13B} base and emitter grouned $R_{o13B} = r_{o13B} = 90.9 \text{k}\Omega$ $-R_{o17} = r_{o17} [1 + g_{m17} (R_8 // r_{\pi 17})] = 787 k\Omega$ $(r_{e16} / / R_9 << r_{\pi 17})$ $\Rightarrow R_{o2} = R_{o13B} / / R_{o17} = 81k\Omega$ Thévenin Equivalent circuit The venin form : $v_{o2} = -G_{m2}R_{o2}v_{i2}$

open-circuit voltage gain : $-G_{m2}R_{o2}$

9/23/2007

The output stage

Output voltage limits - when Q_{13A} is saturated $V_{omax} = V_{CC} - V_{CEsat} - V_{BE14}$ $(1V \text{ below } V_{CC})$ - when Q₁₇ is saturated $\mathbf{v}_{\text{omin}} = -\mathbf{V}_{\text{EE}} + \mathbf{V}_{\text{CEsat}} + \mathbf{V}_{\text{EB23}} + \mathbf{V}_{\text{EB20}}$ $(1.5V \text{ above} - V_{\text{EE}})$

Figure 9.28 The 741 output stage.

9/23/2007

(c) 2007 DK Jeong

The output stage Open-circuit output voltage of the second stage $\begin{array}{c} + \\ v_{i3} \\ - \end{array} R_{in3}$ v_o 4 $G_{vo3}v_{o2}$ $v_{o2} = -G_{m2}R_{o2}v_{i2}$ Second stage voltage gain $A_{2} \equiv \frac{v_{i3}}{v_{i2}} = -G_{m2}R_{o2}\frac{R_{in3}}{R_{in2} + R_{i2}}$ Figure 9.29 Model for the 741 output stage. This model is based on the amplifier equivalent circuit presented in Table 5.5 as "Equivalent Circuit C." Input resistance $R_{in3} = f(R_L)$ assume Q_{20} active, $R_{b20} = r_{\pi 23} + \beta_{20}R_L \cong 100k\Omega$, $r_{o13A} \cong 280k\Omega$, R of $Q_{18} - Q_{19}$ negligible \Rightarrow total resistance in the emitter of Q_{23} : $r_{o13A} \parallel R_{b20} = 74k\Omega$ $\therefore R_{in3} \cong \beta_{23} \times 74k\Omega = 3.7M\Omega, \ A_2 = -515 \ V/V$ 9/23/2007 (c) 2007 DK Jeong 53/78

The output stage

Open-circuit overall voltage gain of the output stage

The output stage

9.6 Gain, frequency response, and slew rate of the 741

Small-signal gain

9/23/2007

Figure 9.31 Cascading the small-signal equivalent circuits of the individual stages for the evaluation of the overall voltage gain.

$$\frac{V_o}{v_i} = \frac{V_{i2}}{v_i} \frac{V_{o2}}{v_{i2}} \frac{V_o}{v_{o2}}$$

$$= -G_{m1}(R_{o1} //R_{o2})(-G_{m2}R_{o2})G_{vo3}\frac{R_L}{R_L + R_o}$$

$$= -476.1 \times (-526.5) \times 0.97 = 243,147 \text{ V/V}$$

$$= 107.7 \text{ } dB$$
(c) 2007 DK Jeong 56/78

9.6 Gain, frequency response, and slew rate of the 741

Frequency response

Using Miller's theorem in second stage C_c, the effective capacitance

$$C_{in} = C_C (1 + |A_2|) = 30 p(1 + 515) = 15480 pF$$

A₂: the second-stage gain

- This capacitance is quite large, we neglect all other C between Q₁₆ and signal ground
- The total R between this node and ground

$$R_t = (R_{O1} || R_{i2}) = (6.7M\Omega || 4M\Omega) = 2.5M\Omega$$

The dominant pole 1

$$f_p = \frac{1}{2\pi C_{in}R_t} = 4.1Hz$$

9/23/2007

9.6 Gain, frequency response, and slew rate of the 741

- Frequency response
 - The unity-gain bandwidth f_t
 - $f_t = A_0 f_{3dB} = 243147 \times 4.1 \cong 1MHz$
 - The phase shift at f_t is -90°
 - The phase margin is 90°
 - This phase margin is sufficient to provide stable operation for closed loop amp with any value of β

Figure 9.32 Bode plot for the 741 gain, neglecting nondominant poles.

9/23/2007

(c) 2007 DK Jeong

9.6 Gain, frequency response, and slew rate of the 741

9.6 Gain, frequency response, and slew rate of the 741

Slew rate

The large input voltage causes the input stage to be overdriven, and its smallsignal model no longer applies c_c

(c) 2007 DK Jeong

 $i_{C6} = 2I$

Figure 9.34 A unity-gain follower with a large step input. Since the output voltage cannot change instantaneously, a large differential voltage appears between the op-amp input terminals.

> $t > 0^+, V_+ - V_- = 10V$ $\Rightarrow Q_1, Q_3 \text{ on and } Q_2, Q_4 \text{ off}$ $\Rightarrow I_{c3} = I_{c6} = 2I$

Figure 9.35 Model for the 741 op amp when a large positive differential signal is applied.

Vo

60/78

$$v_o(t) = v_c = \frac{\int i_C dt}{C_C} = \frac{2I}{C_C}t$$

$$w_t = \frac{G_{m1}}{C_C}, \qquad SR = \frac{2I}{C_C} = \frac{2(9.5\mu)}{30p} = 0.63V / \mu s$$

9/23/2007

9.6 Gain, frequency response, and slew rate of the 741

Relationship between f_t and SR

therefore $\omega_t = \frac{I}{2C_c V_T} = \frac{SR}{4V_T}$

$$SR = 4V_T \omega_t = 4 \times 25 \times 10^{-3} \times 2\pi \times 10^6 = 0.63V / \mu s \text{ (for 741)}$$

9/23/2007

(c) 2007 DK Jeong

61/78

Digital processing of signals

- Convert the signal from analog to digital form and then use digital ICs to perform digital signal processing
- The digital signal processor can perform a variety of arithmetic and logic operations that implement a filtering algorithm
 - Analog to digital converter (ADC)
 - Accept an analog sample and produce an N-bit digital word
- Digital to analog converter (DAC)
 - Accept an N-bit digital word and produce an analog sample

9/23/2007

(c) 2007 DK Jeong

Signal quantization

- Consider: 0~10V
- Assuming that we wish to convert this signal to digital form and that the required output is a 4-bit digital signal

$$\begin{array}{l} 0V \rightarrow 0000 \\ 2/3V \rightarrow 0001 \\ 6V \rightarrow 1001 \\ 10V \rightarrow 1111 \end{array} \qquad resolution = \frac{10V}{15} = \frac{2}{3}V$$

- Example: the case of a 6.2V analog level (between 18/3 and 20/3) →18/3 (6V)
- Quantization error
- Use of more bits reduces quantization error

9/23/2007

(c) 2007 DK Jeong

The A/D and D/A converters as functional blocks

UA A

The A/D and D/A converters as functional blocks

- The analog samples at the output of a D/A converter are usually fed to a sampleand-hold circuit to obtain the staircase waveform
- This waveform can then be smoothed by a low-pass filter, giving rise to the smooth curve in color in Fig.9.38

9/23/2007

Basic circuit using binary-weighted resistors

Figure 9.39 An *N*-bit D/A converter using a binary-weighted resistive ladder network.

$$N - bit \ digital \ word \ D = \frac{b_1}{2^1} + \frac{b_2}{2^2} + \dots + \frac{b_N}{2^N}$$
$$i_o = \frac{V_{\text{REF}}}{R} b_1 + \frac{V_{\text{REF}}}{2R} b_2 + \dots + \frac{V_{\text{REF}}}{2^{N-1}R} b_N$$
$$= \frac{2V_{\text{REF}}}{R} \left(\frac{b_1}{2} + \frac{b_2}{2^2} + \dots + \frac{b_N}{2^N}\right) = \frac{2V_{\text{REF}}}{R} D$$

 $v_o = -i_o R_f = -V_{REF} D$

 9/23/2007
 (c) 2007 DK Jeong

 67/78

Basic circuit using binary-weighted resistors

The accuracy of the DAC depends on

- The accuracy of V_{ref}
- The precision of the binary-weighted resistors
- The perfection of the switches

Disadvantages

- For a large number of bits (N>4) the spread between the smallest and largest R becomes quite large.
- This implies difficulties in maintaining accuracy in R values.

A practical circuit implementation

Current switches

Figure 9.42 Circuit implementation of switch S_m in the DAC of Fig. 9.41. In a BiCMOS technology, Q_{ms} and Q_{mr} can be implemented using MOSFETs, thus avoiding the inaccuracy caused by the base current of BJTs.

 Each of the single-pole double-throw switches in the DAC circuit of Fig.9.41 can be implemented by a circuit as that shown in Fig.9.42 for switch S_m

 I_m: the current flowing in the collector of the m_{th}-bit transistor

Q_{mr}: the reference transistor

■ If $b_m > V_{BIAS} \rightarrow Q_{ms}$ turn on, Q_{mr} turn off \rightarrow I_m through Q_{ms}

■ If $b_m < V_{BIAS} \rightarrow Q_{ms}$ turn off, Q_{mr} turn on \rightarrow I_m through Q_{mr}

9/23/2007

(c) 2007 DK Jeong

9.9 A/D Converter Circuits

The feedback-type converter

Figure 9.43 A simple feedback-type A/D converter.

- The comparator circuit provides an output that assumes one of two distinct values
- An up-down counter is simply a counter that can count either up or down depending on the binary level applied at its up-down control terminal

The dual-slope A/D converter

The parallel or flash converter

The feedback-type converter

Suitable for CMOS implementation

The feedback-type converter

The feedback-type converter

