Chapter 14

Ecological Interactions

Ecology

- Investigation of interactions occurring at the highest levels of biological organization
 - Population
 - Community
 - Relationship of population with its environment
 - Ecosystem
 - Abiotic factors
- Ecologists vs. environmentalists

Systems Ecology

Ecosystem

- Community of organisms linked by a flow of energy and materials
 - Interaction among organisms
 - Interaction of organisms with the physical environment
- From aquarium to earth
- Diversity in biological and abiotic compositions and feature
- Common features
 - Energy input and flow
 - Cycling of materials

Input of Energy to Ecosystems

Primary producers : autotrophs

- Synthesis of organic molecules from external energy source
 - Photosynthesis : plant, phytoplankton, photosynthetic bacteria
 - Energy from chemicals
- Primary productivity of ecosystem
 - 1-3% sun light used for photosynthesis
 - 15-50% of chemical energy is used for their own metabolism
 - Net primary productivity : chemical energy available
 - Establishes an upper limit for
 - Total amount of energy
 - Biomass : total weight or volume of organisms in a community

Direction of Energy Flow in Ecosystem

Heterortophs

- Use other organisms as source of energy and building blocks
 - Consumer: use living food
 - Detritivores: use nonliving food
 - Scavengers: vultures and earthworms
 - Decomposers: use biologically unavailable molecules such as cellulose and N-containing waste products

Trophic levels

Arrangement of food chains

Direction of Energy Flow in Ecosystem

Loss of energy during transfer

The second law of thermodynamics

Material Cycle within Ecosystems

Different in the composition of elements between earth's crust and loving organisms

Earth's crust			Humans	Plants	Bacteria
Oxygen	46%	Oxygen	64%	79%	72%
Silicon	28%	Carbon	19%	8%	11%
Aluminum	8%	Hydrogen	9%	9%	9%
Iron	5%	Nitrogen	4%	1%	3%
Calcium	3.5%	Phosphorus	1%	0.5%	0.6%
Sodium	3%	Potassium	0.5%	0.3%	0.3%
Potassium	2%	Sulfur	0.4%	0.1%	0.3%

Table 14.3 Relative abundances of elements

Autotrophs

Decomposer

The Carbon Cycle

- Life is based on carbon
- Carbon flow parallels with energy flow
- Human activity, burning of fossil fuel: Exhaled CO₂ > inhaled CO₂

 \rightarrow Global warming

Photosynthesis

Nitrogen Cycle

Nitrogen Cycle

Nitrogen fixation

- Nitrogen-fixing bacteria
 - Nitrogenase: $N_2 + 6H_2 \rightarrow 2 NH_3$
 - High energy consuming: 15 ~ 20 molecules of ATP
- Symbiosis between nitrogen-fixing bacteria and plant
 - Formation of nodules in plant roots
 - Mutual benefits (glucose vs. nitrogen source) : mutualism
- Loss of N from the cycle
 - Harvesting crops and timber
 - Soil erosion
 - Chemically synthesized nitrogen fertilizer
 - Use high E to break N₂

Population of Communities

Population

- Determines the health and stability of ecosystems
- Reproductive potential : inherent capacity to increase in number
 - Inherent reproductive potential
 - Growth rate

Population growth rate = (# of births + immigrants)/time period - (# of deaths + emigrants)/ time period

- Intrinsic growth rate
 - r = average birth rate (b) average death rate (d)
- Change in the number of individuals in a population (G)
 - G = rN, N = # of individuals in a population
- Exponential growth of population

Time

Exponential Growth

- Implications of the exponential growth
 - Even with constant r, G increases
 - With positive r, population increases exponentially
- Factors determining r
 - Age a first reproduction : most effective
 - # of birth/ individual
 - Birth interval
 - # of offspring surviving to reproductive age
- Opportunistic species
 - Exponential growth by colonizing new sites or invading disturbed habitats
 - Small rodents, weedy plants

Regulation of Population Size and Growth

Limiting factors

- : Determine the abundance and distribution of species
- Density-dependent factors
 - Competition for resources
 - Predation
 - Disease
 - Habitat degradation
- Density-independent Ecological factors
 - Temperature, salinity, rainfall

Resource Competition and Environmental Carrying capacity

Carrying capacity (K)

- Maxomum # of individuals of the species that the environment can support at a particular point in time
- Logistic growth
 - G = rN X (K-N)/K
 - Small N: exponential growth
 - K=N: No growth

Predation, Parasitism, and Disease

- Population size of prey or host
 - Regulated below K by predator, parasite, or pathogen
- Population size of predator, parasite, or pathogen
 - Tracks the population size of prey or host

Environmental Degradation and Carrying Capacity

- Increasing population → decrease in population growth
 - Competing for limited resources
 - Environmental degradation

Environmental Degradation and Carrying Capacity

- Ecological release
 - Environmental degradation \rightarrow lowering K

Human Population Growth

- Exponential growth for 200 years
- Early humans eliminated limiting factors
 - Clothes, fires, shelters, hunting etc.
- Hunter-gatherers (40,000 BP)
 - Low r
- Agriculture (10,000 BP)
 - Higher r
 - Increasing population and environmental degradation
 - Density-dependent regulation slow r by increasing death rate

Lowering d Leads to Exponential Growth

- Dramatic increase in population by decreasing death rate
 - Around 1750 : Infectious disease control
 - Mid- to late 1800s
 - Biological understanding of infection and disease
 - Louis Pasteur and Robert Koch
 - Vaccines and antibiotics

Agricultural Technology Slows r in the Industrialized World

- From hunter-gatherer to agriculture society
 - Increase in population was the driving force
- Positive feed back
 - Need more labors for agriculture \rightarrow increase in population
- Industrialized countries
 - Advanced agricultural productivity by science and technology can replace the man power → decrease in population

