Chapter 3. Small-Amplitude Water Wave Theory

3.1 Introduction
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Assuming inviscid, incompressible fluid and irrotational flow, ¢ and W exist, which

satisfy V°¢=V*¥ =0.

3.2 Boundary Value Problem
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3.3 Boundary Conditions
3.3.1 Kinematic boundary condition

The kinematic boundary condition is a condition that describes the water particle
kinematics at a boundary (either fixed or moving). If we sit on a boundary (fixed or
moving) and move with the boundary, we do not feel any change of the surface that
constitutes the boundary. Mathematically, the rate of change of the surface must be zero,
I.e., the total derivative of the surface is zero on the surface. Let the surface of the
boundary be represented by F(x,y,z,t)=0.Then
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3.3.2BBC
Assume a fixed sea bed:

z=-h(x,y) = F(xvV,z,t)=z+h(x,y)=0
The kinematic boundary condition on sea bed is

Gﬂ:%:o on z=-h(xY)

Recall that aLb if a-b=0. Therefore, u-n=0 means that u is parallel to the

sea bed surface, i.e. no flow perpendicular to the bed.

Using

we have
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On a horizontal bottom, oh/ox=0oh/oy=0,sothat 6¢/0z=0 on z=-h.



3.3.3 KFSBC
On water surface,
z=n(x,y,t) = F{XVv,zt)=z-n(x,y,t)=0

The kinematic boundary condition on free surface is
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Small-amplitude wave theory assumes

L~0O(h)
H/L =wave steepness << 1
n~0(H)
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Taylor series expansion about z=0 gives
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3.3.4 DFSBC

The Bernoulli equation on free surface is
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Using p, =0 (gauge pressure),

_aat_¢+ 2(u2 +v? +W2)+ gn=C() on z=n(Xxy,t)
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Taylor series expansion about z=0 gives
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3.3.5LBC

Assuming 2-D (x — z) periodic wave,

o(x,t) =g(x + L, 1)
d(X, ) =g(X,t+T)

3.3.6 Summary of 2-D periodic wave boundary value problem

GE Vi¢=0 0<x<L, —-h<z<py
BBC —%:0 on z=-h
0z

LKFSBC —%:8—77 on z=0
oz ot

LDFSBC —Z—f+gn:C(t) on z=0
o(x,t) =g(x + L,t)
d(X, ) =g(X,t+T)
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Note: The Laplace equation is linear, so the superposition of solutions is valid.



3.4 Solution to Boundary Value Problem

Using separation of variables, the velocity potential can be expressed as
(X, z,t) = X(X)Z(z)T(t)

Assume

T(t) =sin ot; 0:21_—7[

where o = wave angular frequency. The above equation satisfies the periodicity
condition in time, that is

T(t +T)=sin(ot + oT ) =sin ot cos oT + cosotsin oT =sin ot
Now

o(x,z,t) = X(x)Z(z)sin ot
Substitution into the Laplace equation gives
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The first term is a function of x alone, whereas the second term is a function of
zZ alone. Therefore, the two terms should be constants with opposite signs, that is,

The possible solutions that satisfy these ODE’s are given in Table 3.1 of textbook.



Among these, the solution which satisfies the periodicity condition in x is
#(x,2,t) =(Acoskx + Bsinkx)Ce*” + De ™ )sin ot

The periodicity condition in x gives

Acoskx + Bsinkx=Acosk(x+ L)+ Bsink(x+ L)
= A(cos kxcoskL — sin kxsin kL) + B(sin kx coskL + cos kxsin kL)

For the above relation to be satisfied, the followings are needed:

coskL=1 and sinkL=0
which give the wave number,

k=22
L

Recalling that the superposition of solutions is valid for the Laplace equation, keep only
#(x,z,t) = Acos kx(Ce"Z +De ™ )sin ot
Using BBC,
= Acos kx(kCekZ —kDe™ )sin ot=0 on z=-h

ce-kh —-De"" =0
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Therefore,



#(x,2,t) = Acos kx(DeZK'“ekZ +De ™ )sin ot
= ADe"" coskx(e"™? + e Jsin ot
= G coskxcoshk(h + z)sin ot

Applying LDFSBC,
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— oG coskxcoshkhcosot + g = C(t)
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The spatial mean of 7 must be zero. Thus, C(t) must be zero. Expressing 7 as

n:%coskxcosd

we have
G 9H
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Finally,

X, 2,1) = gH cosh(h + z)
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Applying LKFSBC,
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. o’ =gktanhkh (dispersion relationship)

The dispersion relationship gives relation among h, o and k or the relation among
h, T and L. The dispersion relationship can be solved for k by Newton-Raphson
method for given o and h. Approximate solutions are also available:

Eckart (1951):
2
o’ =gk /tanh oh
g
Hunt (1979):
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The dispersion relationship gives
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In deepwater (kh> ), tanhkh=1. Therefore, the deepwater wavelength is
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Then



L =L, tanhkh
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In summary,

Hg cosh(h + z)
20 coshkh

cos kxsin ot

o(x,z2,t) =

n(x,t) = %cos kx cos ot

which represents a standing wave.

Another standing wave associated with the sinkx term gives

Hg cosh(h + 2)
20 coshkh

sin kx cos ot
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n(x,t) :%sin kxsin ot

Superposition of the two standing waves gives a progressive wave:

o(x,z,t) = Hg cosh(h + 2) (cos kxsin ot —sin kx cos ot)
2 coshkh
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n(x,t) :%(cos kx cos ot + sin kxsin ot)

= % cos(kx — ot)



Progressive wave propagating to positive x -direction:

'oﬂ R, ‘\/ ‘t t+4t'/,-;$§\\\
r 4 e - “ > x
\‘~~ ,'1 \ \\

For progressive wave propagating to negative X -direction:
sin(kx —ot) = sin(kx + ot)

For the definitions of deepwater, shallow water, and intermediate depth water, see Fig.
3.12 of textbook. Also see Table 3.2 for asymptotic forms of hyperbolic functions.

Dispersion relationship in shallow water:

o? =gk tanh kh = gk*h

2
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The shallow water wave is non-dispersive, that is, all the waves with different
frequencies propagate at the same speed.

Dispersion relationship in deepwater:

o? = gk tanhkh = gk
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3.5 Waves with Uniform Current U,

Assume: 1) Current direction and wave propagation direction is collinear, and 2)
Current is uniform vertically as well as horizontally.

In the absence of waves,

o¢
Uy=—> = ¢=-UyX
o=, = #=U;

For wave with current,
¢ =-U, x+ Acoshk(h+ z)cos(kx — ot)
which satisfies the periodicity condition and BBC. Then,

u= —Z—¢:UO + kAcosh k(h + z)sin(kx — ot)
X

u?=U; +2kAU, cosh k(h + z) sin(kx — ot) + k*A® cosh® k(h + z) sin® (kx — ot)
Neglecting small nonlinear terms,
u?=UZ + 2kAU, cosh k(h + z) sin(kx — ot)
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Note that w? is small compared to the linear terms but u? is not. Then DFSBC gives

— oAcosh khsin(kx — ot) +%(u§ + 2kAU,, cosh khsin(kx — ot) )+ gn = C(t)

or
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Therefore,
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Applying KFSBC,
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Finally,



o =U k +,/gk tanh kh

The second term on RHS indicates the angular frequency in no current, that is the
angular frequency in moving frame of reference, while the total indicates the angular
frequency in stationary frame of reference.



