
Ch 8. Numerical Modeling 

8-1 

Ch.8 Numerical Modeling 

 

Contents 

8.1 River and Estuary Models 

8.2 Model Building and Use 

8.3 Finite Difference Method 

8.4 Finite Particle (“Random Walk”) Model 

8.5 Finite Element Method 

8.6 Kinetic Models 

 

Objectives 

 

  



Ch 8. Numerical Modeling 

8-2 

8.1 River and Estuary Models 

8.1.1 Considerations in Choosing a Model 

Table 8.1 Types of Transport Models 

Code Name Description 

1A 

One-dimensional 

tidally averaged 

A numerical solution of 1-D tidally averaged dispersion 

equation [Eq. (7.38)] 

①steady state model: coefficients are constant in time. 

② unsteady model: flow parameters and dispersion 

coefficient vary between tidal cycles. 

1T 

One-dimensional 

tidally varying 

A numerical solution of Eq. (7. 46) 

Tidal evaluation, velocity and dispersion coefficient vary 

during tidal cycle. 

1TB 

Branching 1-D 

tidally averaged 
A network of 1T models connected at junctions.  

2VA 

2HA  

Two-dimensional 

tidally averaged 

A numerical solution of 2-D tidally averaged dispersion 

equation. 

2V : horizontally averaged model 

2H : vertically averaged model 

2VT 

2HT 

Two-dimensional 

tidally varying 

A numerical solution of 2-D tidally varying dispersion 

equation 

3A  

Three-dimensional 

tidally averaged 

A numerical solution of 3-D tidally averaged dispersion 

equation 

3T 

Three-dimensional 

tidally varying 

A numerical solution of 3-D tidally varying dispersion 

equation 

P Physical model 
A small-scale physical replica of the prototype geometry 

with provisions of generating tidal and river flows 
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NP 

Hybrid numerical 

physical 

A combination of a physical and a numerical model, using 

one model to generate input information for the other 

 

◎ Dispersion mechanisms to be replicated by models 

Mixing 

mechanism 

Appropriate 

Model 
Description 

Trapping 

2HT 

physical model 

Well verified for simulation of trapping mechanism 

1TB Branches represent traps. 

Density-driven 

circulation 

2VA 

2VT 

In case transverse gravitational circulation is 

not important. 

3A 

3T 

If density-driven currents are important, the equations 

determining the flow and the salinity distribution 

are coupled. 

Tidal pumping 
2HT 

physical model 

Accuracy of 2HT may be difficult to establish. 

Shear flow 

dispersion 

2HT 

2VT 
 

Wind effects 
2HT 

3T 

Fig. 8.1 

Rotational 

effects 

2HT Easily modeled in 2HT models. 

Catastrophic/ 

seasonal changes 

1A 

physical model 
Long term simulation for a period of a year of more 
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8.1.2 Numerical Models 

8.1.2.1 One-Dimensional Models 

• 1-D model is accurate in any case where the time scale of the process being studied is 

substantially greater than the time scale for cross sectional mixing  

→ In practical use of 1-D models, instantaneous complete cross sectional mixing is assumed. 

 

(1) Finite Difference Models 

• 1A (tidally averaged model) 

f

C C C
A Q KA

t x x x

    
   

    
source/sink   (7. 38) 

  

• 1T (tidally varying model) 

( ) ( ) t

C
AC uAC K A

t x x x

    
   

    
source/sink  (7. 46) 

 

• Numerical solution of 1-D Eq. of motion 

→ method of characteristics solution by Streeter and Wylie (1967)  

 

• Finite-difference representation of derivatives 

(i) Explicit technique 

- all the derivatives are expressed in terms of known values  

(values of C at time level n)  

- easier to program  
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① backward difference operator  

, 1,j n j nC CC

x x




 
     (8.1) 

 

② forward difference operator  

1, ,j n j nC CC

x x

 


 
     (8.2) 

 

③ central difference operator 

1, 1,

2

j n j nC CC

x x

 


 
     (8.3) 

 

(ii) Implicit technique 

- use some of unknown values of C at time level 1n  

- a set of simultaneous equations must be solved to obtain all the values at the new time level 

at the same time 

- implicit schemes are more stable and a longer time step can be used. 

 

 

• central difference operator 

1, 1 1, 1 1, 1,1

2 2 2

j n j n j n j nC C C CC

x x x

       
  

   
   (8.4) 

 

○ Numerical diffusion 

∙ Most numerical schemes induce unwanted numerical spreading 
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∙ Numerical diffusion is an apparent diffusivity caused by the numerical process. 

∙ Numerical diffusion in Pure Advection Problem 

 

 

 

① The mass represented by the concentration at a grid point is advected forward during a 

time step a distance /u t x   grid points. 

② Then, mass is divided between the two nearest grid points proportionally according to the 

distance from each. 

③ Division between the grid points is necessary because the numerical scheme has no way of 

representing a concentration except at grid point. 

④ A mass originally concentrated at one point is now spread numerically two points. 

 

 

• Variance at the end of time step 

 
2 2

22 2 2 1 1 2 2
( )

3 3 3 3 9
x x cdx x x x





       
              

       
  

 
2

221 1 2 1
/ 0 /

2 2 9 9

x
K d dt x x

t


 
         

 

→ numerical diffusivity  
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○ How to control numerical diffusion 

i) The numerical diffusion represented by K   must be kept much smaller than the actual 

(real) dispersion represented by K . 

ii) Bella and Grenny (1970) suggested that if the K   is forecast accurately and K   is less 

than K , the value of K can be reduced accordingly. 

'newK K K   

 

• K can be estimated by setting 0K   in the numerical program and observing the results. 

iii) Higher order scheme by Stone and Brian (1963) 

- spread form forward difference for time derivative 

     1, 1 1, , 1 , 1, 1 1,

1 2 1
/

6 3 6
j n j n j n j n j n j n

x j

C
C C C C C C t

t
      



  
         

 

(8.6) 

 

- Crank -Nicholson approximation for diffusive term 

2
1, 1 , 1 1, 1 1, , 1,

2 2 2

2 21

2

j n j n j n j n j n j nC C C C C CC

x x x

          
  

   
  (8.7)  

• This scheme is the most accurate for the problems for which the diffusion coefficient is 

relatively small. 

• Stone and Brian's method can be used equally well for a tidally averaged or a tidally varying 

analysis.  
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8.1.2.2 Multidimensional Models 

• In multidimensional models, it is mostly important to understand and express properly 

physics of flow and exchange. 

• The mixing coefficients used in the numerical models express the net results of all processes 

whose scale is less than the grid size of the model. 

• In river and estuary models, turbulent mixing is smaller than the mixing caused by the 

skewed shear flow of the velocity profile (Fig. 4.8) 

• For numerical models which are averaged over at least one spatial dimension, over the tidal 

cycle, or over both, the mixing coefficient represents what has been averaged. 

 

◎ Two-dimensional models 

in section models : horizontally averaged  

in plan models : vertically averaged 

2HA : tidally averaged model 

2HT : tidally varying model 

 

◎ 2HA models 

1
x y

C C C C C
U V dK dK

t x y d x x y y

         
      

          
   (8.11) 

where / t   means a change per tidal cycle ; U , V  are tidal averages of the vertical 

averaged x- and y- direction velocities ; d  is the local depth; ,  x yK K  express the results of 

all the mechanisms (shear flow mixing, pumping, trapping) that cause mixing within a tidal 

cycle 

 



Ch 8. Numerical Modeling 

8-9 

• Terms like 
xy

C
dK

x y

  
 

  
 ought to be included, but usually not because it is difficult to 

evaluate xyK  and yxK . 

• 2HA models should be used only in conjunction with extensive field data to define the 

magnitude of the dispersion coefficients.  

 

◎ 2HT models 

1
x y

C C C C C
U V dK dK

t x y d x x y y

         
      

          
 

 

• 2HT models are in common use and have the advantage that they represent the important 

dispersion mechanisms of trapping, pumping, and wind and Coriolis driven circulations. 

• 2HT models appear to be practical for smaller bodies of water. 

→ Leendertse model (1970) applied to Jamaica Bay 

• If coarse spatial grid is used for large water bodies, advantages of replicating the tidal cycle 

may be lost. 

 

◎ Limitations of 2HT models 

① The model should be operated to simulate at least as much real time as is needed to reach 

an equilibrium distribution of tracer. 

 

<Example> 
equilT 100 days  in large estuary 

 1 mint   

 N (no. of time step) = 144,000 
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② The water column must not be sufficiently stratified to inhibit vertical mixing. 

Ⓐ :   
1

tx y

C C C C C
U V dK dK

t x y d x x y y

         
       

          
 

 

Where ,t tU V   tidal velocity ;  ,
t tx yK K = dispersion coefficient which represent only the 

effect of the vertical velocity profile.  (shear flow dispersion) 

, ,
t tx y x yK K K K  

 

• Bigger mixing by tidal pumping and tidal trapping are now represented by the time-variable 

advection 

  i. e.,   tu and  tv  

 

③ Since a time-varying flow field must be obtained from a first-stage 2HT flow model, the 

flow model must produce the complex flows which leads to trapping, pumping, and other 

dispersion mechanisms. 

→ The residual circulations are caused by the nonlinear frictional and inertial terms in the 

equations of motion. 

→ Leendertse's (1967) model included nonlinear friction and inertial terms; however the no-

slip boundary condition was not imposed. 

→ Tee's (1976) model incorporated the no-slip boundary condition. 

→ Tee computed a residual circulation from boundary layer separation  
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Ch 8. Numerical Modeling 

8-12 

8.1.3 Physical models 

8.1.3.1 Introduction 

• Physical model - physical representation at small scale  

• Useful to the engineer, lay public, and political decision maker 

◎ Distorted model to contain the model in a building of reasonable size 

  horizontal scale for river and estuary    1/1000 

vertical scale                       1/100 

typical estuarine depth      5∼30 m 

model depth              5∼30 cm 

• Flow would be dominated by viscous and surface tension effects if model depth is less than 

5cm. 

→ The vertical exaggeration converts a typically wide and shallow cross section into the 

more canyonlike cross section 

 

 

→ The conversion serves the essential purpose of making the model flow turbulent, but it 

also changes the longitudinal slope of the channels and distorts rates of vertical and 

transverse mixing. 

→ The tendency of the model flow to be too fast, because of the increased slope, must be 

resisted by adding friction to the channels. 
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→ The vertical copper strips are arrayed over the entire channel to provide the extra friction 

needed to counteract the distorted channel and water surface slopes. 

→ During the construction process most models are calibrated against prototype observations 

of tidal elevation and currents in the main channels. 

→ These calibrations do not assure that mixing will be modeled correctly. 

 

8.1.3.2 Model Laws and Scaling Ratios 

• Fixed bed estuary models 

rL  length ratio 
p

m

L

L
  

rd  depth ratio 
p

m

d

d
  

Once the length and depth ratios have been selected, the ratios of all other quantities are 

established by physical laws. 

 

(1) Froude law 

A frictionless small amplitude wave propagates at the correct velocity. 

wave velocity c gd  

m m m

p p p

c gd d

c gd d
    

1/ 2

r rc d       (8. 12) 

 

time required for wave to propagate a distance L 

/t L c  
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1/ 2r
r r r

r

L
t L d

c

       (8. 13) 

 

velocity ratio,   
1 / 2/

/

r
r r r r r

r r

L
u L t c d

L c
       (8. 14) 

Froude number, 
1/ 2

1r
r

r

u
F

gd
   

inertial force

gravitational force
rF   

 

• The propagation of tidal and flood waves depends on gravitational, inertial, and frictionless 

forces.  

→ Froude law scaling assures the proper ratio of gravitational forces.  

→ The copper strips are used to obtain the proper ratio of frictional forces. 

 

• Density stratified flows  

- The internal Froude number should be the same in the model and in the prototype to obtain 

the correct ratio for internal wave velocities. 

1

2

iF u gd






 
  

 
 

1
r





 
  
 

 

 

• Other important ratios  

slope ratio /r r rs d L  
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width ratio r rW L  

cross sectional area ratio r r r r rA W d L d   

discharge ratio 
1/ 2 3/ 2

r r r r r r r rQ A u L d d L d    

 

• Shear velocity ratio  

* 1/2 1/2( ) /r r r ru gds d L   

 

• Mixing coefficient ratio  

2 /r r rt          

2 5/ 2/ /vr r r r rd t d L       (8.15 a) 

2 1/ 2/tr r r r rL t L d       (8.15 b) 

 

cf)     
* du    

 * 2 1/ 2/r r
du dr Lr                       (8.15 c) 

 

Eqs. (8.15 a, b) and (8.15 c) are quite different. 

→ The turbulent mixing may not be modeled correctly. 

 

<Example>  The model of San Francisco Bay :  

1000  100r rL d   

10 1,000,000r ru Q   

*100 3.13r rt u   
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 *1/10 313r r
S du   

 

• The model operator controls only the discharge ratio for the tributary inflows, the height 

ratio and time ratio for the ocean tides, and the salinity ratio in the ocean. 

• The actual elevations, currents, and salinities occurring throughout the model are 

determined by the frictional characteristics of the model channels and the distribution of the 

copper strips. 
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8.2 Model Building and Use 

8.2.1 Definition of Model 

○ What is a model? 

Model = a deliberate  misrepresentation  of  reality 

   (simplification)       (real system) 

approximation  

Reason = convenience 

Purpose = understanding (gain understanding) 

prediction   (predict an outcome) 

Constraints = degree of simplification 

degree of accuracy 
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• Real System 

 Simplification 

Conceptual Model = set of assumptions 

              

Physical Model    Mathematical Model =  Compact form of a set of equations 

Governing Equation (Eq. of mass balance, 

flux eqs, kinetic eq.) 

+ Initial & Boundary conditions 

+ Domain Geometry 

+ Model Parameters 

Analytical model     Numerical model 

① irregular shape of the domain's boundaries  

② heterogeneity of the domain (coefficient) 

③ irregular temporal and spatial distributions of various inputs 

④ source and sink 
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8.2.2 Model Mechanisticity (Karplus (1976)) 

← Empirical       Air Pollution         Mechanistic → 

(Black Box)                   (Gray Box)                (White Box) 

 

Social  Econometric   Standard     Deterministic       Process        Models of 

Model        Watershed    Water Quality      Control        Computers 

Model        Model 

 

* Karplus, W.J. (1976)  The future of mathematical models of water resources systems. 

In “System Simulation in Water Resources”, pp11-18 North Holland Publishing Company 

 

~ No model is either completely mechanistic or empirical.  

~ All models are somewhere in between. 

 

8.2.3 Modeling Procedure 

◎ Models and Parameters 

→ Model Parameters exist only in context of model. (Model Coefficients) 

◎ Model Calibration = parameter tuning to fit observed data to predicted data.  

 Model becomes less mechanistic (more empirical) 

= Parameter Identification Problem  

 

Inputs   →   Model    →   Outputs 

(Excitation)    (Parameter)    (Responses) 
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Prediction Problem 

(Forecasting) 

Parameter Identification 

(Estimation or Inverse) 

Signal Identification 

 

○ Verification 

= Establishment of the model validity by comparison between observed and predicted data. 

○ Calibration and verification should be done with two separate (different) data sets  

 

○ Procedure of Calibration and Verification 

 

Data Set I    Data Set II 

Input       1I      2I  

Output      1O      1O  

Parameter      ?     P  

 

(i) Calibration 

1I  →  Model(?)  → 1O        Fit 1O to 1O  

Find P (set of values of parameters (coefficients)) 

 

(ii) Verification 

2I →  Model (P)  → 2O      Predict 2O with calibrated parameter P 

Compare 2O to 2O  to see if 2 2O O  

√ √ ? 

√ ? √ 

? √ √ 
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◎ Dimensionless Coefficients 

E (Dispersion Coefficient)   p126  Fischer et al 

/ *E du  

= 0.1 ~ 0.4 
2m /s  Lab channel    180~400 

0.76~1500     8.6~7500 

See paper by Seo (1991) 

 

 

◎ Best fit 

~ techniques for determining the "best", or "optimal" values of the model coefficients, 

i.e., values that make the predicted values and the measured ones sufficiently close to each 

other. 

 

◎ Calibration 

~ to estimate parameters of model from available information 

  

             →           →    →  

                                                                            

 

 →             →                        

  

 

 

Measured 

Outputs 

Real System 

(unknown) 

Parameter 

Corrector 

Model 
Computed 

Outputs 

Comparison 

Measured 

Inputs 

Measured 

Input 

O.K. 

END 

NO 

Initial Parameter 

Estimates 
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8.3 Finite Difference Method  

8.3.1 Errors 

Analytical Solution 

= closed-form algebraic expression for temporal and spatial distribution of the constituent 

~ easier to use than a numerical model 

 

Numerical Solutions 

Complex water body geometry and flow fields 

Nonlinearities of the source / sink terms  

→ make it impossible to obtain analytical solutions to the differential equation 

→ solve using numerical techniques 

○ Numerical techniques 

~ simultaneous solution of a series of mass balances on a number of small fluid elements 

~ matrix-inversion methods 
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◎ Source of error 

 

 

 

 

 

 

 

 

 

 

 

 

• Truncation error = discretization error 

• Round-off error = error occurred in the arithmetic operations needed to solve FDE 

 

 

 

  

Conceptual model 

Physical 

model 

Mathematical 

 model 

Conceptual errors 

Analytical 

Solution 
Numerical 

Solution 

FDM FEM Special 

Techniques 

(=numerical model) 

Parameter errors 

(most frequent source) 

= G.E. + B.C.’s 

Truncation & Roundoff 

errors 
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8.3.2 Finite-Difference Methods 

• Basic Relationships 

 

 

①Break  ( & )x y z  into finite segments of  x in length 

②Subscript all variables and constants, iC , iU , iA , iE ,… etc.,  

such that i subscript indicates the value of variable or parameter at point i  

 

③Apply Taylor Series expansions 

2 2 3 3
4

1 2 32 3!

i i i
i i

C x C x C
C C x x

x x x


    
     

  
         (a) 

2 2 3 3
4

1 2 32 3!

i i i
i i

C x C x C
C C x x

x x x


    
    

  
   (b) 

 
i

x i

C C

x x 

 


 
 

 
22x x    

44
order of ( ) and smallerxx    
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(i) Forward-difference 

(a): 

2 2 3
31

2 3

 ~ first-order error

2 3!

i i i i i

x

C C C x C x C
x

x x x x





     
   

   
 

 

(ii) Backward-difference = upwind difference 

(b):  

2 2 3
31

2 32 3!

i i i i i

x

C C C x C x C
x

x x x x





     
   

   
 

 

(iii) Central-difference 

Subtract (b) from (a) 

2

3
2 41

3

 ~ 2nd-order error

1
( )

2 3

i i i i

x

C C C C
x x

x x x





  
    

  
 

 

(iv) Central-difference for 2nd derivative 

Add (a) and (b) 

2
21 1

2 2

2
( )i i i iC C C C

Q x
x x

   
  

 
 

 

Assembling a model 

A. 1-D transient transport w/ dispersion, Conservative  

1C C C
u EA

t x A x x

    
   

    
 

, , ( )nA E U f x  
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(1) Explicit Solutions 

Superscript n  - time step 

Subscript i  - distance step 

 

(a) Formulation a  

Forward-difference for time derivative → explicit 

Forward-difference for 1st derivative in x  

1n n

i iC CC

t t

 


 
 

1

n n

i iC CC

x t

 


 
 

1 1 1 1

2

( ) ( )1
n n n n

i i i i i i i i

i

E A C C E A C CC
EA

A x x A x

       
 

   
 

 

Substituting & rearranging 

1

1 12
( ) ( )n n n n n ni

i i i i i i i

E tt
C C u C C C C

x x



 


    

 
 1 1

12
 n ni i

i i

i

E A t
C C

A x

 



 


 

 

 

Rearranging Further 

1 1 1

2 2
  1n ni i i i

i i

i

u t E t E A t
C C

x x A x

  
   

    
   

 

1 1

1 12 2

n ni i i i

i i

i

E t u t E A t
C C

x x A x
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Let 

i

i

u t
a

x





    → Courant No.  dimensionless numbers 

2

i

i

E t
b

x





        → Peclet No.  

1 1

2

i i

i

i

E A t
d

A x

  



 

 

Then 

   1

1 11n n n n

i i i i i i i i i iC d C a b d C b a C

         

 

 

Note that 

 

id (1 a  i b i d ) (i b i ia ) 1

 

∴ 
1n

iC 
 is weighted average of 1

n

iC  ,   

  
n

iC  and 1

n

iC   

 

Solution 

Boundary conditions :    ① C  known for all  @ 0x t    

② C  known for all  @ 0t x   

Procedure :           ① Use equation to get 
1 1 1

1 2 3, ,  C C C ,  etc. 
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② Then get 
2 2 2

1 2 3,  , C C C  on the basis of 
1 1

1 2,  ,C C  etc. 

③ Continue as far in time as desired 

 

(b) Formulation b 

Forward difference for time derivative 

Backward difference for spatial derivative 

 

1n n

i iC CC

t t

 


 
 

1

n n

i iC CC

x x




 
 

1 1 1 1

2

( ) ( )1
n n n n

i i i i i i i i

i

E A C C E A C CC
EA

A x x A x

       
 

   
 

 

Let's include the source/sink term in this time 

 iS f c  

 

Substituting and rearranging  

1 1

1 12
( ) ( )n n n n n ni i i

i i i i i i

i

u t E A t
C C C C C C

x A x

 

 

 
    

 
 

 12
 ( )n n ni

i i i

E t
C C f C t

x



   

 -

 

1
12 2 2

1 n ni i i i i i
i i

i

u t E A t E t u t E t
C C

x A x x x x
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1

12
( )n ni i

i i

i

E t A
C f C t

x A






  


 

 

Let 
1 1

2

i i

i

i

E A t
d

A x

  



 

 1

1 1( ) 1 ( )n n n n n

i i i i i i i i i i iC a b C d C a b d C f C t

           

 

Assume first-order decay  

 S f c kc    

( )n n

i i if C t k tC      

   1

1 11n n n n

i i i i i i i i i i iC a b C a b d k t C d C

            

Note that now  1Coeffs   

 

Stability Problem → cause problem to explicit scheme only 

 

Convergence 

The numerical scheme is convergent  

If for any fixed time T n t   and fixed location 

     , ( , ) ,      ( , , 0)X i t C X T C X T or C X T C X T      

as 0t   and 0t   

 

in which     ,C X T   computed value at the fixed point ,  X T  of the FDE 
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( , )C X T   exact solution to the PDE 

 

Consistency  

The FDE is consistent with the PDE if the local truncation error goes to zero as 0x   

and 0t   

 

Stability 

The numerical scheme is stable if 
n

iE  remains bounded as n  for fixed t  

( t or as computation proceeds) 

 

in which 
n

iE = roundoff errors 

 
~

( , ) ,C x t C x t    

 ,C x t = computed value of FDE by computer 

~

( , )C x t = exact solution to the FDE 

 

◎ Lax Equivalence Theorem 

Consistency + Stability  →  Convergence 

 

◎ Analysis of Stability 

 Von Neumann Method 

 Matrix Method 

 



Ch 8. Numerical Modeling 

8-31 

◎ Source of Errors 

 

Mathematical Model    PDE  C  

↓   ↓  ←   Truncation Error 

Numerical Model    FDE   C  

                       ↓  ←    Roundoff Error 

Solution to FDE C  

  

◎ Errors in machine computations    Kuo (1970)  p 313 

Roundoff error = stem from a finite number of digits in a computer word 

   or from initial data 

Truncation error = due to finite approximations of limiting processes 

 

◎ Roundoff Errors 

(i) Decimal-binary conversion error 

~ computer converts decimal number to its binary equivalent 

 

~ conversion error may be introduced because of  

finite word length of computer particularly 

 if there is not exact binary equivalent 

 

(ii) Non decimal-binary conversion error 

~ if calculation requires more digits than available digits through a machine 

 (decimal computer) 
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(Examples) 

(i) 

1 3
1 1

0.625 .101
2 2

   
     
   

 

1 3 10 16 17 21
1 1 1 1 1 1

0.626
2 2 2 2 2 2

           
                    
           

(infinite series) 

.101000....  

 

if binary machine has 20 bits available binary-decimal reconversion to a decimal equivalent 

with 8-digit accuracy  

 

→  0.62599945 without rounding 

0.62600040 with rounding 

 

(ii) if decimal computer of capacity of 8 significant digits 

0.33333333                       0.33333333 

+ 0.33333333                 +0.33333333 

add 3000 times                 +0.33333333 

Expected value = 999.99999        +0.33333333 

Rounded-off value= 999.99091         1.33333332 → 1.3333333  

Roundoff error = 0.00908                      8digit 

True value    Truncated to 

Error = 0.00000002 
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◎ Stability Problem 

○ Explicit Solutions 

~ accurate & easy 

~ may be unstable  

→ need a stability criterion 

 

○ Let 
n n n

i i iC T e                 (1) 

n

iC  computed value of FDE by computer 

n

iT  true (exact) value to FDE at the x  and t  associated with i and n C  

n

ie  error at that point 

 

Substitute this into formulation a) 

 1

1 1(1 ) n n n

i i i i i i i i

n

i ia b d e b a e de e 

        ① 

   1

1 11n n n n

i i i i i i i i i iT a b a T b a T d T

          ②            (2) 

→ error for newly-calculated concentration depends not only on true concentration  

(exact solution to FDE) (T-terms) but also on other errors (e-terms) 

~ Part ② may not be zero because of truncated terms in formulating FDE out of PDE 

  

PDE      FDE   Solution 

 

Truncation error    roundoff error 

T-terms   e-terms 
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But assume truncation error is zero, and worry only about the e-terms or propagation 

(magnification) of roundoff errors. 

To insure stability (to prevent magnification of errors) 

  
1

1 1max , ,n n n n

i i i ie e e e

 
 
 

      (3) 

 

For Formulation a) 

   1 1n n

i i i i i i i ie a b d b a d e          

1 1i i i i i ia b d b a d             (4) 

 

Absolute values of the coefficients should add to less than one. 

Now, since , , 0i i ia b d  , there are 4 possibilities. 

) 1 0 & 0i i i i iif a b d b a        

then 1 a i ib id ib ia d 1 1i    

 

which is satisfied for all values of , ,i ia b  and id  

which meet these conditions. 

) 1 0 & 0i i i i iif a b d b a        

1 i i ia b d   i ib a d   1i  

2 2i ia b  

i ia b  
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) 1 0 & 0i i i i iif a b d b a        

1 1i i i i i ia b d b a d         

2 2 2 2i i id b a    

1i i id b a    

i iif d b  

2 1i iae bth n    

 

) 1 0 & 0i i i i iif a b d b a        

1 1i i i i i ia b d b a d           

2 2id   

1 1i i i io dd br if b    

 

 

 

○ Restrictions on x  and t  

a b  



Ch 8. Numerical Modeling 

8-36 

2
    

u t E t E
x

x x u

 
   

 
     ① 

 

2 1b a   

2 2

1 2
2 1  

E t u t E u

x x t x x

 
    

    
 

2

1
       

2
t

E u

x x

  


 

               ② 

                

Substitute ① into ② 

2

1

2
t

E u

EE

uu

 


  
     

 

2 2 2 2

1 1

2

E
t

u u u u

E E E

   



 

2

E
t

u
          ③ 

 

∴   
E

x
u

   

2

E
t

u
   

2

1

2
t

E u

x x
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○ Stability Criterion for Formulation (b) w/o decay term  

1 1i i i i i ia b d a b d        

there are only 2 cases to be considered 

 

) 1 0i i iif a b d      

1 a i ib id ia b i id 1  

1 1  

Satisfied for any values of , ,i ia b  and id   

 

) 1 0i i iif a b d      

1 1i i i i i ia b d a b d         

 2 2i i ia b d    

1i i ia b d    

i iif b d  

21 12 ii ii aa bb    
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2 1a b   

2
2 1

u t E t

x x

 
 

 
 

2

1

2
t

u E

x x

 


 

 

 

) Formulation EXCD 

Central difference for spatial derivative 

   Forward difference for time derivative 

 

1 1

2

n n

i iC CC

x x

 


 
 

1n n

i iC C C

x t

 


 
 

2

1 1

2 2

2n n n

i i iC C CC

x x

  


 
 

 

Substitute these into 1-D transport equation 

2

2

C C C
u E

t x x

  
 

  
 

1

1 1 1 1

2

2

2

n n n n n n n

i i i i i i iC C C C C C C
u E

x x x



      
 

  
 

1

1 12 2 2
1 2

2 2

n n n n

i i i i

E t E t u t E t u t
C C C C

x x x x x
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 1

1 1 11 2
2 2

n n n n

i i i i

a a
C b C b C b C

  

   
        
   

 

u t
a

x





 

2

E t
b

x





 

 

• Stability Criterion 

1 2 1
2 2

a a
b b b       

 

) if    1 2 0 & 0
2

a
b b      

1 2b
2

a
 b b

2

a
 1  

1 1  

 

) if    1 2 0 & 0
2

a
b b      

1 2 1
2 2

a a
b b b       

2 0a b   

2a b  

 

) if   1 2 0 & 0
2

a
b b      
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1 2 1
2 2

a a
b b b        

4
1

2
2b b   

 

) if   1 2 0 & 0
2

a
b b      

1 2 1
2 2

a a
b b b        

2 2b a   

1
2

a
b    

2a b  

2
2

u t E t

x x

 


 
 

2
E

x
u

   

1

2
b   

2

1

2

E t

x





 

2

2

x
t

E


   

 

◎ Numerical Dispersion 

Taylor series expansion 
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2

2 3
31 1

32 3!

x

n n

i iC C C x C
x

x x x



    
  

  
    ( ) cential  

1 2
2

22

n n

i iC C C t C
x

t t t

   
  

  
    ( ) forward  

 

By the way think about 1-D transport equation w/o dispersion term (pure advection) 

C C
u

t x

 
 

 
        ① 

 

differentiate  w.r.t x  

2 2

2

C C
u

x t x

 
 

  
        ② 

 

differentiate ① w.r.t. t 

 

2 2

2

C C
u

t t x

 
 

  
                                              ③ 

② 

2 2

2

C C
u

x t x

 
 

  
  

③    

2 2

2

1C C

t x u t

 
 

  
 

2 2

2 2

1C C
u

x u t

 
   

 
 

2 2
2

2 2
  

C C
u

t x

 
 

 
       ④ 
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Formulate ① with ( ) & ( )   

1 2
2 21 1

2
( ) ( , )

2 2

n n n n

i i i iC C t C C C
u t x

t t t



    
      

  
 

 

Substitute ④ 

1 2
2 2 21 1

2
( ) ( , )

2 2

n n n n

i i i i

numerical dispersion term

C C C C t C
u u t x

t t x



    
     

  
 

 

Let  
2

2 2
n

t u x
E u a

 
     ( Courant No)

u t
a

x


 


 

= numerical dispersion coeff 

 

Then 

2
2 2

2
( , ) 0n

C C C
u E t x

t x x

  
     

  
 

 

So, add nE to physical dispersion coeff. E 

f nE E E   

for numerical dispersion correction 

 

2. Implicit Solutions 

 

(1) Formulation (c) 
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Backward difference for 
C

t




 

Forward difference for 
C

x




 

 

1n n

i iC CC

t t




 
 

1

n n

i iC CC

x x

 


 
 

 1 1 1 12

1 1
( ) ( ) ( )n n n n

i i i i i i i i

i

C
EA E A C C E A C C

A x x A x
   

 
   

  
 

 

Substituting and rearranging 

1 1 1
1 1 12 2

( ) ( ) ( )n n n n n n n ni i i i
i i i i i i i i

i

u t E t E A t
C C C C C C C C

x x A x

  
  

  
       

  
 

 1 1
12 2 2

(1 ) ( )n ni i i i i i
i i

i

u t E t E A t u t E t
C C

x x A x x x

 


    
    
    

 

11 1

12

n ni i

i i

i

E A t
C C

A x

 




 


 

 

let  
i

i

u t
a

x





 

2

i

i

E t
b

x





 

1 1

2

i i
i

i

E A t
d

A x
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1

1 1(1 ) ( )n n n n

i i i i i i i i i ia b d C a b C d C C 

         

1 n

iC    weighted average of 1 1, ,  and  n n n

i i iC C C   

 

We need I.C., UBC, and DBC to solve system of algebraic equation 

→ See Fig. in next page. 

 

◎ let ;  1 ,i i i i i i i i iL d M a b d U a b         

then 
1

1 1

n n n n

i i i i i i iLC M C U C C 

     

 

(i) If C  known 
0 ( 0)

@
( 1) (0), ( 1)

x i

x i m C C m

 


    
 

→ Dirichlet (first kind) type B.C. 

 

1 1 1 2

1

1 0 11: nn n nLC U Ci M C C      

1

1 1 1 2 1 1 0

n n n

K

n

nown

M C U C C L C     

1

2 1 2 2 2 3 22 : n n n ni L C M C U C C      

1

1

1: n n

m m m m

n n

m m mU Ci m L C CM C 

      

1

1 1

n n n n

m m m m m m

Kno n

m

w

L C M C C U C
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1

1 1 0
1 1

1 1

22 2 2
2 1

33 3 3

3

11
1 1 1 1

1

1

0 . ... . 0

0 ... 0

0 0 ... 0

0

n n

n

n

n

n

n

n

nm
m m m m

n

n nm
m m

m m m

C L CM U
C

CL M U
C

CL M U
C

C
L M U C

CL M C U C








   





      
     
     
       

    
       
   
          

 

 

→ All concentrations for one value of n are solved for simultaneously, and the solution 

marches in time. 

→ Implicit Solution 

• Tridiagonal matrix →    Gaussian elimination 

Thomas Algorithm 

 

(ii)  If C  known @ x=0 (i=0)               → Dirichet 

And 
C

x




 known @ ( 1)x i m                 → Neumann(2nd kind) 

 

IC 

 UBC 

DBC 
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◎ No flux @ boundary → 

1

0

n

m

C

x 





 

1

1

0

n n n

m m

m

C C C

x x





 
 

 
 Backward difference 

1

n n

m mC C   

1

1 1: n n n

m m m m

n

mm mi m L C M C U CC 



     

1

1 ( )n n n

m m m m m mL C M U C C 

     

11 1
1 1 01

2 2 2 1

2 2

1
1 1

1 1 1
1

0

0

  

 

0

n n n

n

n
m m

m m m
n

m m
m m m

M U
C L CC

L M U
C C

C C
L M U

C C
L M U
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8.3.3 Boundary Conditions  

T 

Ω 

 

Dirichlet (1st Type)    1 1, , onC x y f x y T  

Neumann (2nd Type) 2 2( , )
C

f x y on T
n





 

C

n





derivative normal to a boundary = 

C C
or

x y

 

 
 

Mixed (3rd Type) 3 3( , )
C

a bC f x y on T
n


 


 

 

(2) Formulation d ~ most commonly used formulation 

 

Backward difference for 
C

t




 

Backward difference for 
C

x




 

 

1n n

i iC CC

t t




 
 

1

n n

i iC CC

x x




 
 

1 1 1 12

1 1
( ) ( ) ( )n n n n

i i n i i i i i

i

C
EA E A C C E A C C

A x x A x
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Substituting and rearranging  

 

1

1 1(1 ) ( )n n n n

i i i i i i i i i ia b d C a b C d C C 

         

where 1 1

2

i i
i

i

E A t
d

A x

  



 

 

let ( )i i iL a b    

 (1 )i i i iM a b d     

 i iU d   

 

then  
1

1 1

n n n n

i i i i i i iLC M C U C C 

     

 

(3) Formulation Im-Cd 

 

Backward difference for 
C

t




 

Central difference for 
C

x




 

 

1n n

i iC CC

t t




 
 

1 1

2

n n

i iC CC

x x
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Final discretized equation results in 

 

1

1 1

n n n n

i i i i i i iU C M C U C C 

     

 

where 
2

i
i i

a
U b    

1 2i iM b   

2

i

i i

a
U b   

2

i

i

E t
b

x





 

 

◎ Numerical Dispersion 

= artificial viscosity, numerical dissipation 

= smearing of concentration fronts due to excessive damping 

= Taylor's series truncation error 

 

<Ref> 

Lantz, R.B., "Quantitative evaluation of numerical diffusion (truncation error)," Soc. Pet. 

Engr. J., pp.315-320, Sept., 1971. 

 

◎ Formulation b 

Taylor series expansion in x direction 
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2 2
3

1 2
( )

2

n n i i
i i

C x C
C C x x

x x


  
     

 
 

2 2
3

1 2
( ( ))

2

n n i
i i

C x C
C C x x

x x


  
     

 
 

21

2

2
( )

2

i i

n n

i i CC C x C
x

x xx

   
   
 




    ① 

2 2
1 3

2
( )

2

n n

i i

C t C
C C t t

t t

   
     

 
 

1 2
2

2
( )

2

n n

i iC C

t

C t C
t

t x

   
   
 




           ② 

 

Consider the 1-D transport equation with no dispersion term (pure advection) 

 

C C
u

t x

 
 

 
 

 

Formulation b 

1

1

n n n n

i i i iC C C C
u

t x



 


 
     ③ 

2
21

2
( )

2

n n

i i i iC C C x C
Ex a x

x x x

    
   

  
 

2
21 0 0

2
( )

2

n n

i iC C C x C
Ex b x

x x x

   
   

  
 

2 3
41 1

3
( )

2 3

n n

i i iC C C x C
Ex c x

x x x
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Im a 

2 2
3

1 2
( )

2

n n i
i i

C t C
C C t t

t t


  
     

 
 

1 2
3

2
( )

2

n n

i iC C C t C
t

t t t

   
   

  
 

 

differentiating ③ w.r.t. t 

2 2

2

C C
u

t t x

 
 

  
       ④  

 

differentiating ③ w.r,t  x 

2 2

2

C C
u

x t x

 
 

  
       ⑤ 

 

 

2 2

2 22

2 22 2 2

2

1

1

C C

C Ct x u t
u

u t xC C C
u

x t t x x

 
      

  
      

     

 

2 2
2

2 2

C C
u

t x

 
 

 
       ⑥  

 

Substituting ① and ② into ③ 

*

2

2

2 2
2

2
( )

2 2

C t C x C
u t x

t x x

C

t
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Substituting ⑥ 

2
2 2 2

2
( )

2 2
Truncation error

PDE Numerical dispersion

Total error

C C u x t C
u u t x

t x x

     
        

   
 

 

Define numerical dispersion coefficient 

(1 ) (1 )
2 2

n

u x u t u x
E a

x

  
   


 

u t
a Courant No

x


 


 

 

Then  

2

2n

C C C
u E

t x x

  
  

  
 

 

If we include real dispersion term 

2

2
( )

c

n

E Computed dispersion

C C C
u E E

t x x


  
  

  
 

 

◎ How to remove nE  

(i) Choose and t and x  such that 0nE   

(1 ) 0
2

n

u t
E a


    

1
u t

a
x


  


        ① 
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However, stability criterion for Formulation b is 

2

2
1

u t E t

x x

 
 

 
       ② 

 

If we make 1
u t

x





 

then ② becomes 

2
0

E t

x





        ③ 

 

Therefore we have to choose and  and xt   

Satisfying both ① & ③ → impossible 

 

<Example> 

1u   

2, 1x t     

1 1 1 1(2) 1 1
1

2 2 2 2 2
na E

  
     

 
 

 

 
2

2 11 1
1

2 2 22

E
E     

1

2 2

E
  

1

4
E   
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(ii) Dispersion correction technique 

→ make cE E  

For Formulation b, subtract nE  from cE  

c n nE E E E E      

(iii) make x  and t  small 

 

◎ c nE E E   

Formulation  Numerical dispersion, nE  Effective solution to ND 

2

(1 )          ( )
2

(1 )                   (  )
2

    (           ( )
2

             )

I (1 )          1
2

x n

x n n

x n

m

u x
E a a Add E

u x
E b a Subtract E Be careful whenE E

u
E cd t No numerical Add E

dispersion due to advection

u x
c a Make a


  


 

  


 

2

I (1 )          
2

I           
2

m n

m n

u x
d a Subtract E

u
cd t Subtract E






 

◎ Lagrangian Formulations 

1
( )

C C C
u EA S

t x A x x

   
  

   
 

 

(1) Formulation e  -explicit 
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Forward difference formula at the i+1 grid point for 
C

t




 

1

1 1

n n

i iC CC

t t



 


 
 

 

Forward difference formula for 
C

x




 

1

n n

i iC CC

x x

 


 
 

 

Eulerian formulation for second derivative 

   1 1 1 12

1 1
( )

;

n n n n

i i i i i i i i

C
EA E A C C E A C C

A x x A x
   

 
    
   

 

 

Substituting into Governing eq. 

   1

1 1 1 12

n n n n n ni i

i i i i i i

u t E t
C C C C C C

x x



   

 
    

 
 

 1 1
12

n ni i
i i i

i

E A t
C C S t

A x

 



   


 

 

Rearranging further  

 
1 1 1

1 12 2 2
(1 ) ( )n n ni i i i i i

i i i

i

u t E t u t E t E A t
C C C

x x x x A x

  

 

    
     

    
 

 
1 1

12

ni i

i i

i

E A t
C S t

A x
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Let 
i

i

u t
a

x





 

2

i

i

E t
b

x





 

1 1

2

i i

i

i

E A t
d

A x

  


 

 

then  
1

1 1 1(1 ) ( )n n n n

i i i i i i i i i i iC a b C a b d C d C S t

            

 

 

• We need 2 UBC and IC, need no DBC 

 

◎ Numerical Dispersion 

Pure Advection Problem 

1

1 1 1

n n n n

i i i iC C C C
u

t x



   
 

 
    ① Formulation e 

Taylor Series Expansion in t direction 

2 2
1 3

1 1 2
( )

2

n n

i i

C t C
C C t t

t t



 

  
     

 
 

1 2
21 1

2
( )

2

n n

i iC C C t C
t

t t t



    
    

  
    ② 

 

Taylor Series Expansion in x direction  
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2 2
3

1 2
( )

2

n n

i i

C x C
C C x x

x x


  
     

 
 

2
21

2
( )

2

n n

i iC C C x C
x

x x x

    
    

  
    ③ 

 

Substitute ② & ③ into ① 

2 2
2 2

2 2
( ) ( )

2 2

C t C C x C
t u x

t t x x

      
        

    
 

2
2

2

2 2
2 2

2 2
( )

2 2
C

u
x

C C t C x C
u u x t

t x t x




     
       

   
 

2
2 2

2
(1 ) ( )

2

nE

C C u C
u x a x t

t x x

  
         

  
 

(1 )
2

n

u x
E a


   

 

◎ Stability Criteria  

1 0 & 0i i i ia b a b d       

   

2 2x E
t x

u x E u


   

 
 

 

(2) Formulation f - Implicit 
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Backward difference for 
C

t




 at the i-l grid point  

Backward difference for 
C

x




 

 

1

1 1

n n

i iC CC

t t



 


 
 

1

n n

i iC CC

x x




 
 

    1

1 1 11 n n n n

i i i i i i i i i i ia d C a b d C bC S t C 

             

 

 

 

 

◎ Numerical Dispersion 

(1 ) ~ I
2

n m

u x
E a d


   

 

◎ "Two-Step" techniques 

~ Advection is "tracked" to a new set of grid points and dispersion follows separately 

◎ Lagrangian approach (Bella & Dobbins, 1968) 

~ Observer is traveling at the same speed as the parcel of water under observation 

We need   1 IC & 

          2 DBC 

 

          No UBC 
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• Two-step explicit method → Two processes are assumed to occur sequentially rather than 

simultaneously as in the prototype. 

(1) 1st step (advection process) : to advect the pollutant downstream for one-time step 

→ Eulerian Frame 
1n n

i iC C   

   
1

0 0

n nC C   

 

(2) 2nd step (dispersion process) : to calculate new values on the n+1 row using only the 

dispersion 

→ Lagrangian Frame   

1

1 12
( 2 )

n n

n n ni i

i i i

C C E
C C C

t x



 


  

 
 

   
1

1 12
( 2 )n n n n n

i i i i i

E t
C C C C C

x



 


   


 

 

◎ Crank-Nicholson Scheme 

(1) Upwind (Backward) → Formulation CN-b 

 

1

1 1

..

12
( ) ( 2 )

B D

n n

i i
i i i i i

C C u E
C C C C C

t x x

    


  


     

  
 

n   → Explicit                   4Point scheme 

1n    → Implicit 

1

2
n    → Crank-Nicholson    
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1

12
1

( )
2

n
n n

i i iC C C


   

1

1 1

1 1

1 1
( ) ( )

2 2

n n

n n n ni i

i i i i

C C u
C C C C

t x



 

 

  
      

   
 

1 1 1

1 1 1 12

1 1 1
( ) 2( ) ( )

2 2 2

n n n n n n

i i i i i i

E
C C C C C C

x

  

   

 
       
  

 

 

1 1 1

1 12 2 2
(1 )

2 2 2 2

n n n

i i i

E t u t u t E t E t
C C C

x x x x x

  

 

     
     

     
 

1 12 2 2
(1 )

2 2 2 2

n n n

i i i

E t u t u t E t E t
C C C

x x x x x
 

     
      

     
 

      
1

{ }
n nA C B C b

   

    Tridiagonal Method,  A B   

 

 

 

C-N method   
2( )x t    

Fully Implicit   x t    

   

6 Point scheme 

 3 knowns @ time level n 

 

3 unknowns @ time level n+1 
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(2) Central difference for 
C

x




 → Formulation CN-cd

1

1 1 1 12

.

( ) ( 2 )
2

C D

n n

i i i i i i i

u t E t
C C C C C C C

x x

    

   

 
      

 
 

 

n    Explicit 

1n    Implicit 

1

2
n    C-N 

 

 1 1 1

1 1 1 1

1 1
( )

2 2 2

n n n n n n

i i i i i i

u t
C C C C C C

x

  

   

  
      

  
 

     1 1 1

1 1 1 12

1 1 1
2

2 2 2

n n n n n n

i i i i i i

E
C C C C C C

x

  

   

 
       
  

 

 

1 1 1

1 12 2 2
1

2 4 4 2

n n n

i i i

E t u t E t u t E t
C C C

x x x x x

  

 

         
         

         
 

1 12 2 2
1

2 4 2 4

n n n

i i i

E t u t E t E t u t
C C C

x x x x x
 

         
          

         
 

 

◎ Models based on Solutions to Ordinary Differential Equations 

Consider transient zero dimensional problems (Box model) 

 

( )in out

dc
S Q C C

dt
    

 

 

 

 

↓ 

→  
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→ Initial value problem 

→ Solution marches forward in time 

 

(1) Euler Method (Explicit method) 

 

1

( )
n ndc C C

t
dt t


 

 


 

 

then 

 

 1 ( )n n

in outC C t S Q C C       

in which ( )nS S C  

∴ Choose t , march forward in time 
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(2) Runge-Kutta Method  

2nd order RK 

4th order RK → most popular 

5th order RK 

 

 

 

 

Calculate in order 

 1

2

,
2

i i i
i

x
C C f C X




   

1 1/ 2 1

2 2

,
2

i i
i i

x
C C f C X 


 

 
   

 
 

1 1/ 2 1

2

,
2

i i i
i

x
C C f C X 

 


 
   

 
 

 

Then 

 1 1/ 2 1 1/ 2 1 1 1

2 2

1 1 1 1
( , ) , ,

6 3 3 6
i i i i i i i i

i i
C C x f C X f C X f C X f C X  

    
 

    
          

     
 

 4~ x   
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◎ 4th R-K with Runge’s coefficient  

○ Euler's Method 

 1( , ) ( , )i i

dc
f x c C C xf x c x

dx
        

1i i iC C C     

   4

0 1 2 32 2 ~
6

i

x
C K K K K x


        

~ weighted average of slopes  

 

in which  

  0 ,i iK f x c  

0

1 ,
2 2

i i

Kx
K f x C x

 
    

 
 

1
2 ,

2 2
i i

Kx
K f x C x

 
    

 
 

 3 2,i iK f x x C K x      
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○ Derivation by Taylor series expansion 

→ see "Computer Applications of Numerical Methods", S. Kuo (1972)  p.137 

 

◎ R-K formula with Kutta coefficient  

1i i iC C C     

 0 1 2 33 3
8

i

x
C K K K K


      

 0 ,i iK f X C  

0

1 ,
3 3

i i

Kx
K f x C x

 
    

 
 

0 1
2

2
, ( )

3 3
i i

x K K
K f x C x

   
    

 
 

 3 0 1 2, ( )i iK f x x C K K K x        

 

◎ Simpson rule 
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~ Special case of R-K with Runge coefficients  

If  ( )
dc

f only x
dx

  independent of C  

Then 1i i iC C C      

 0 1 2 32 2
6

i

x
C K K K K


      

 0 ,iK f x  

1 ,
2

i

x
K f x

 
  

 
 

2 ,
2

i

x
K f x

 
  

 
 

 3 iK f x x    

 ( ) 4
6 2

i i i i

x x
C f x f x f x x

    
        

  
 

 

◎ 1-D Steady-state Problem 

2

2

dc d c
u E kC

dx dx
                            ① 2nd order ODE 

 

Let 
dc

Z
dx

  

then ① becomes coupled 1st-order ODE 

dz
uz E kC

dx
         ② 
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dc
Z

dx
         ③ 

 

Boundary conditions (Initial Conditions) 

(i) Initial Value Problems 

 

  00       @  0c c x   

0 0       @  0
dc

z x
dx

   

 

Solve simultaneously by using either Euler or R-K method 

 

② :  1( , , )
dz u k

z e f z c x
dx E E

    

 

③ :  2 ( , , )
dc

z f z c x
dx

   

 

1

2
2

i i
i

x
c c z




   

1

2
2

i i i
i

x u k
z z z c

E E





  
   

 
 

1 1 2 1 1 1

2 2 2 2 2

, ,
2 2

i i
i i i i i

x x
c c z c f z c x   
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1 1 1 1 1 1 1

2 2 2 2 2 2

, ,
2 2

i i
i i i i i i

x x u k
z z f z c x z z c

E E

    

     

    
       

   
 

*

1 2 1 1 1

2 2 2

, ,i i
i i i

c c xf z c x  


  

 
    

 
 

1

2

i
i

c x z    

1 1 1

2 2

i i
i i

u k
z z x z c

E E

  


 

 
    

 
 

 

 

* ** *

1 1 1 1

2 2

2 2
6

i i i i
i i

x
c c z z z z 

 

 
      

 
 

1 1 1

2 2

2
6

i i i i
i i

x u k u k
z z z c z c

E E E E

 


 

    
       

   

 

1 1 1 1

2 2

2 i i
i i

u k u k
z c z c

E E E E

   

 
 

   
       

   

 

 

 

(ii) Boundary value problems 

 0 @ 0c c x   

 @Lc c x L   

 

→ use "Shooting method" 

Guess 0 @ 0z x   
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Solve ② and ③ simultaneously by using R K  

check 
j

L Lc c  

Vary 0z  such that target = Lc is hit 

→ "Shooting method" 

 

• Iteration rules for Shooting method  

let 0

jz jth  estimate of 0x

dc

dx
  

 
1

0 1jz j th    estimate of 0x

dc

dx
  

 

By interpolation 

1 1

0 0 0 01
( )

j
j j j jL L

j j

L L

c c
z z z z

c c
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8.4 Finite Particle ("Random Walk") Model 

  

~ based an the concept that dispersion is a random process 

 

New position = Old position + Advection + Dispersion 

~ In the computer code, enough particles are included (released) so that their locations and 

density are adequate to describe the distribution of the dissolved constituent of interest 

→ "Giant Molecule" method 

~ release a number of particles, each representing a finite mass of solute, at a rate 

proportional to the strength of each source. 

The particles are then "tracked" in space and time.   → "Particle Tracking" method 

Ref. Prickett et al. (1981) 

 

○ Distribution of concentration of solute 

~ represented by the distribution of a finite number of discrete particles 

~ each particle is moved by flow and is assigned a mass which represents a fraction of the 

total mass of chemical constituent. 

2

2
( )

c c c
u E kc

t x x

  
  

  
      (1) 
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If a unit slug of solute placed initially at 0x   

 

then analytical solution is 

21 ( )
( , ) exp

44

x ut
c x t

EtEt

 
  

 
                                   (2) 

     

◎ Statistics 

○ Random variable x  if said to be normally distributed if its density function, ( )n x is given 

by 

  

2

2

1 ( )
( ) exp

22

x
n x





 
  

 
      (3) 

 standard deviation  

 mean  

 

Now, if we let 

2Et           (4) 

ut           (5) 

( ) ( , )n x c x t         (6) 
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Then Eqs (2) and (3) are equivalent. 

So, the key to solute transport is the realization that dispersion can be considered a random 

process, tending to the normal distribution. 

 

○ Random walk modeling 

 

 

Advective distance  =u t         (7) 

t = time increment  

 

Dispersive distance  6    

2 ANORM(0)E t        (8) 

 

in which 6   Probable locations of particles out to 6 standard deviations either side of 

the mean ( > 99.9% ) 

 

ANORM (0) = a random number between -6 and +6, drawn from a normal distribution of 

numbers having a standard deviation of 1 and a mean of zero. 
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∴ New position of the particle 

= Old position + 2 ANORM(0)u t E t        (9) 

 

 

◎ Repeat for numerous particles, all having the same initial position and advection term. 

→ Create a map of the new positions of the particles having the discrete density function.  

( , ) ( )
N

c x t n x
x

 


 

2

0 ( )
exp

42 2

N x u t

xE txE t

  
  

    
     (10) 

 

in which  x  = incremental distance over which N particles are found 

oN  = total number of particles in the experiment 

 

◎ The distribution of particles around the mean position, u t , is made to be normally 

distributed via the function ANORM(0) 

 

○ Generation of ANORM(0) in computer code. 

(1) Summation of Random function 

ANORM(0) =

12

1

(0,1) 6
i

RF


  

In LOTUS or EXCEL  (RAND()) 

use @RAND function to generate a uniform random number between 0 and 1 = (0,1)U  
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(2) Multiply Random function 

ANORM(0) = 

()

(0,1) 12 6

RAND

RF    

 

◎ Numerical Recipes 

ANORM(0)= GASDEV (IDUM) 

RAND() = RAN1(IDUM) 

 

◎ Advantages of the Random-walk technique 

1. There is no numerical dispersion, despite the use of an Eulerian framework. 

2. Computer CPU time is drastically reduced. Solutions are additive. If not enough particles 

are included for adequate definition in one run, subsequent runs may be made and the results 

of these may be superimposed upon the first. 

3. This method is particularly suited to time-sharing systems where velocity fields can be 

stored. 

 

◎ Disadvantages 

1. It may require a large number of particles to obtain meaningful results. 

2. It doesn't easily accommodate nonlinear kinetic expressions. 
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◎ 2-D Model : Depth-averaged 

 

 ( , ) ( , ) x y

c c c c c
u x y x y S

t x y x x y y
  

        
       

         
 

in which 

 *5.93x du   

*0.6y du   

*u gds  

cf) 1-D Model :  Depth & Width-averaged 

(Cross-sectional) 

( )L

c c c
U D

t x x x
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◎ 2-D Advection-Dispersion Model 

 

○ Longitudinal and transverse dispersion take place simultaneously 

0 2 xx x u t E t      ANORM (0)  

0 2 yy y t E t      ANORM (0) 

○ In natural rivers 

*5.93YE dU  

*0.6yE dU  
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8.5 Finite Element Method 

 

. .:     
c c

G E E uc
t x x

   
  

   
  PDE    ① 

 

○ Numerical solutions to PDE 

 

Approximating Derivatives  

PDE         System of Linear 

Algebraic Eq. 

Approximating Solution → Integral Eq.  

Matrix Solver 

Numerical Solution    

(Approximate Solution)  

 

8.5.1 Procedure (Summary) of FEM 

1. Discretize domain into elements. 

2. Select Basis Functions. 

3. Derive an Integral equation based on. Method of Weighted Residuals (MWR). 

4. Compute element matrix and vectors. 

5. Assemble global matrix and vectors. 

6. Incorporate boundary conditions. 

7. Use a finite difference for time discretization. 

8. Solve a system of simultaneous linear algebraic eg. 

 

FDM 

FEM 
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A. Domain Discretization 

 

 

 

( )c x   true(and unknown) solution to PDE 

continuous function of x  

ˆ( )c x   approximate solution 

piecewise continuous function 

We may approximate the true solution by a polynomial 

 
1

ˆ ( )
m

e e

j j

j

c x c x


               ② 

in which 

j = basis function (shape, approximate) functions 

Now, we are seeking the "best" value of the jc  to give us the best values for ˆ ( )ec x  
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B. Basis functions 

(1) Lagrangian Interpolating Polynomials 

1
( )

m
k

j
k

j kk j

x x
x

x x






 


 

 

(i) linear ;  m=2 

 

  2
1

1 2

x x
x

x x






 

  1
2

2 1

x x
x

x x






 

1 1 2 2
ˆ ( ) ( ) ( )ec x c x c x     

 

(ii) quadratic ;  m=3 

 

 
  
  

2 3

1

1 2 1 3

x x x x
x

x x x x


 


 
 

 
  
  

1 3

2

2 1 2 3

x x x x
x

x x x x


 


 
 

 
  
  

1 2

3

3 1 3 2

x x x x
x

x x x x


 


 
 

1 1 2 2 3 3
ˆ ( ) ( ) ( ) ( )ec x c x c x c x       
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(2) Hermitian Interpolating Polynomials 

 

~ interpolate ( )ic x and 

ix

dc

dx
     (function and slope) 

   0 1

1

( )
m

j j j

j j

dc
c x c

dx
 



  
   

   
  

 

C. Method of Weighted Residuals 

◎ Formulation of approximating integral equation 

Variational method 

Method of Weighted Residuals (MWR) 

MWR : 

Substitute  ②  into  ① 

 

ˆ ˆ
ˆ 0 ( , )

c c
E uc R x t

t x x

   
    

   
    ……residual   ③ 

 

If   ĉ c  then  , 0R x t   

But  ĉ c  ( , ) 0R x t   

So, in the MWR, an attempt is made force this residual to zero through selection of the 

constant  1,2,.....jc j M .  

Let’s set the weighted integrals of the residual to zero, i.e., →MWR 

  ,       ( , 1,2,.0 .) ..
e i i MR x t x d


       ④ 
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→ Integral Eq. 

 
ˆ ˆ

ˆ  0i

c c
E uc x dx

t x x


    
     

    
      ⑤ 

 

There are several MWRs which is distinguished by the choice of weighting function i  

(1) Galerkin method :  i i x   

(2) Subdomain method 

divide domain B  into M subdomains iB  

  1,

  0,

i

j

i

x in B

x not in B



 
  

 

(3) Collocation method 

M  point ix  (collocation points) are specified in B  and weighting functions are Dirac 

delta functions 

( )i ix x    

 

which have the property that 

     0i i
B

R x dx R x    

 

(4) Least Squares Method 

 i

i

R
p x

a






 

p(x) = arbitrary positive function  
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minimize the integrated square residual w.r.t ia  

   2I p x R x dx   

0 ( 1,2,......., )
i

I
i M

a


  


 

 

FDM ~ domain of interest is replaced by a set of discrete points 

FEM ~ domain is divided into subdomains (finite elements) unknown function C  is 

represented by an interpolating polynomials within each element 

   
1

ˆ( ) , 1,2,.....,
N

j j

j

u u u j N


       

ju   undetermined coefficient 

 j    function over both time and space 

 j    Basis (shape, interpolation) function 

~ chosen to be polynomials that satisfy certain boundary conditions imposed 

on the problem 

 

PDE : 0Lu f   

   ˆLu f R      residual 

The objective is to select the undetermined coefficients ju such that this residual is 

minimized in some sense. 

    0, 1,2,.....,i
t v

R dvdt i N      
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(1) Galerkin Method 

 

~ Weighting function is chosen to be the basis function 

    0, 1,2,.....,i
t v

R dvdt i N      

 

(2) Subdomain Method 

  0, 1,2,......,i
v
R x dv i N    

 

where 

*

*

1, ( , , )

0, ( , , )

i

i

i

x y z in v

x y z not in v



 


 

 

~ integrations are less tedious than those in Galerkin's method 
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(3) Collocation Method 

~ Weighting function is chosen to be the Dirac delta 

( )i ix x    

    0, 1,2,3,.....,i
t v

R dvdt i N      

 

~ Calculate the value of residual at the selected points  

 

 

    , , ,, , ,
i i i ii i i i i x y z t

t v
a x x y y z z t t dvdt a        

 

<Example> 

( ) 0e

dT
k T T

dt
    

0 1t   

( 0) 1T t    

1
2 ;

2
ek T   
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1
1

1

1
1

1

,

,

i
i i

i i

i

i
i i

i i

t t
t t t

t t

t t
t t t

t t














  




  
 

ｉ = nodal points 

 

 

1.     
3

1

ˆ
j j

j

T T T t


   

 

2.     ( ) ( ) 0 , 1 , 2 , 3i
t

R t w t d t i   

( ) ( ) 0e i
t

d T
k T T w t dt

dt


 

 
   

  
   

 
3

1

( ) 0, 1,2,3
j

j j e i
t

j

d
T k kT w t dt i

dt






 
    

 
  

3. Galerkin 

 

 

3 1 1

0 0
1

, 1,2,3
j

j j i e i

j

d
T k dt kT dt i

dt


  



 
   

 
    

3 1 1

1 1
0 0

1

1 :
j

j j e

j

d
i T k dt kT dt

dt


  



 
   

 
    

1 1 1 1
1 2 3

1 1 1 2 2 1 3 3 1 1
0 0 0 0

1 e

d d d
i T k dt T k dt T k dt kT dt

dt dt dt
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1 1 1 1
31 2

1 1 2 2 2 2 3 3 2 2
0 0 0 0

2 e

dd d
i T k dt T k dt T k dt kT dt

dt dt dt

 
      

    
           

     
   

 

1 1 1 1
31 2

1 1 3 2 2 3 3 3 3 3
0 0 0 0

3 e

dd d
i T k dt T k dt T k dt kT dt

dt dt dt

 
      

    
           

     
     

1 3 0   

 

Expansion yields the following matrix equation 

1 1

1 22 2
1 1 1 1 2 1

0 0

1
1 1

1 2 22
12 1 2 2 2 2 2 3 2

0 0
2

1 1
2 3

1 13 2 3 3 3 3

2 2

0

0     

d d
k dt k dt

dt dt

d d d
k dt k dt k dt

dt dt dt

d d
k dt k dt

dt dt

 
    

  
       

 
     

    
     

    
      

        
      

    
     

     

 

  

 

1
1 2

1
0

1

2 2
0

1

1 3

23

`

e

e

e

T
kT dt

T kT dt

kT dt
T







  
  
  
   
  
  
  

   







2

3

11 1 0
3 6

2
1 2 1

1 1
2 6 3 6 2

0 1 1 2
6 3

e

e

e

k k
T

k

k k k
T kT

kT
k k

T

                                             

 

○ Basis functions  (Interpolation) 

1

ˆ ˆ( , ) ( , ) ( ) ( , )
m

e

j j

j

c x t c x t c t x t


   

 
1

ˆ ( )
m

e

j j

j

c t x


  

1

m
j

j

j

C
C

t x
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1

( )
m

j

j

C dc
x

t dt










  

 

○ Natural Coordinate System for element basis function 

(Dimensionless   coordinate system where 1 1   ) 

 

(1)Linear 

1

1
( ) (1 )

2

e     

2

1
( ) (1 )

2

e     

1 1

2

ed

d




   

2 1

2

ed

d




  

 

(2) Quadratic 

 

1

1
( ) (1 )

2
        

2

0 ( ) 1     

1

1
( ) (1 )

2
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◎ Galerkin method 

Select the basis functions as the weighting functions 

i i   

Thus the weighted integral equation of the residuals becomes 

^

( ) 0
e i

c c
E uc dx

t x t


 



 
   

   
    

      ⑥ 

( ) 0
e e

u
d

e

i i

A

B

c e
dx E ue dx

t x x


 

 


 

  
  

     

 

Term A ※ (See 7-1 for basis functions) – use Linear, Basis function 

1

ˆ
( )

e e

m
j e e

i j i

j

dcc
dx x dx

t dt
  

 






   

 
1

( )
( )

e

m
j

j i

j

dc t
x x dx

dt
 




   

Term B : Integration by parts udv uv du    

 

1

ˆ ˆ( )
ˆ ˆ( ) ( )( )

m

e

xe
ei
i

x

x c c
E uc x E uc

x x x






   
       
  

1
1 1

( ) ˆ( )
ˆ( ) ( ) ( ) ( )( )

mxee m m
j e ei

j j j i

j j x

xx c
E C t u C t x dx x E uc

x x x
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1
1

( ) ˆ
ˆ( ) ( ) ( )( )

m

e e

xe em
j j e ei

j j i

j x

x c
C t E dx u x dx x E uc

x x x x

  
 

 


       
            
    

 

∴ Eq ⑥ :   
1 1

ˆ ( ) ( ) ( )
( ) ( )

e e

e eM m
j j i

j i j

J j

dc t x x
x x dx c t E dx

dt x x

 
 

 
 

  
 

 
    

1

( ) ˆ( )
ˆ( )( ) 0

m

e

xe e
j ei

i

x

x x c
E dx x E uc

x x x

 




    
        
    ⑦ 

Let  
( )

( ) , 1,....,
e e

e e
je ei i

ij j

x
a E dx u x dx i m

x x x

  


 

  
  

     

  

11

ˆ
ˆ( )( )

.
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D. Element matrix equation 

~ Element matrix equation results in 

       
ˆ

ˆ 0
e e edc

A c M B
dt

 
   

 
     ⑧ 

 

Use Linear Basis function 

( )
( )

e e

e e
je ei i

ij j

x
a E dx u x dx

x x x
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1 1

1 1

j j j
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dx dx
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x x d x d
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E d u d
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By the way 
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  1

2

ˆ
ˆ

ˆ
ˆ

xe

x

c
E uc

x
B

c
E uc

x

   
    

  
       

 

 

E. Assemble global matrix equations  

Combining element equations 

 

For each element, apply  

 

     ˆ{ } { } 0
e e edc

M A c B
dt

 
   

 
 

   &
e e

M A  ~ 2×2 matrices  

 

○ Numbering Systems 

Local   

1       2       1       2       1       2 ... 

Element No    1       2      3      4       5  

Global     1       2       3       4       5       6 ... 

 

Let N (= number of element) = 30 

number of nodes = 31 

Then  

          1x       2x       3x               Nx       1Nx   
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e=1      2       3 

 

   

(1) (1)

11 12

(1) (1) (2)

21 22 11

(2)

12

(2) (2) (3)

21 22 11

31 31

(29) (30) (

22 11 12

    

                           0                        

           

0               

                                 

e

a a

a a a

a

a a a

A A

a a a







 



30

1

30)

(30) (30)

21 22                                      

e

a a



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

  

     
30

31 31 1

~
e

e

M M same as A
 

   

   

(1) (1)
1 1

(1) (2)

2 1

(2) (3)

2 1

30

31 1 1

(29) (30)

2 1
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22

0
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..

..

..

0

e
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B B

B B

B B
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◎ Boundary Conditions 

1

ˆ
ˆ; o

c
At x x uc E uc

x


  


 

ˆ
ˆ;N N

c
At x x uc E uc

x


  


 

 

F. Time discretization  

(1) Fully Implicit 

 
   

    

1

1 1
ˆ ˆ

ˆ 0

k k
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C e

M A C B
t



 


  


    ⑨ 

 
        

1
~

1
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        ⑩ 

In which     
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(2) Crank - Nicholson scheme 
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2 2 0
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8.6 Kinetic Models 

 

○ iS  term 

~ effects of  biochemical  changes  →   Non-conservative Solutes 

chemical 

physical sources and sinks  →   lateral input 

storage zone solute 

○ Fundamental differential form of conservation equation 

 

      i
i i

C
J S

t


  


 

↑         ↑       ↑ 

accumulation   flux    generation 

iC  concentration of substance i       scalar, mass/vol 

 

○ Fickian Diffusion 

( ) ( )i

i i i i i

C
C u D C S

t


   


 

 

○ Turbulent Diffusion 

 
_

( )i

i i i i i

C
C u D C S

t



      

 

i   
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0

1 T

u udt
T

    

 

○ Dispersion 

2-D : 
1 1

( ) ( )x y x y i

C C C C C
u u H E H E S

t x y H x x H y y

      
    

      
 

1-D : 
1

( ) i

C C C
u AE S

t x A x x

   
  

   
 

E= longitudinal dispersion coefficient 

 

○ Solute Transport 

1
( ) ( )

C Q C
C AD

t x A A x t

   
  

   
 

Q, A, D = const. 

2

2

C C C
D

t x x

  
  

    

 

○    Groundwater and tributary inputs ,L LQ C  

transient storage zones 

 

1
( ) ( ) ( )L

L S

C Q C C Q
AD C C C C

t A x A x x A


   
      

   
 

( )S

S

S

C A
C C

t A
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LQ  lateral inflow per unit length of stream 

LC  solute concentration in lateral inputs  (assumed to be const) 

SC  solute concentration in transient storage zones 

SA  cross-sectional area of the storage zone 

 coefficient for storage zone exchange 

 

◎ Non-conservative solutes 

~ terms to simulate solute transfers 

~ variety of forms and complexity 

~ depends on type of solute and use of model 

○ Uptake of a first-order function   

(loss of solute from the water column) 

 

Sol) 
1

( ) ( ) C

C Q C
C AD k C

t x A A x t

   
   

   
 

 

2( )
( , ) exp

42
e

M x Ut
C x t k t

ktA KT

 
   

 
 

ek overall uptake rate coefficient 

 

○ Single benthic compartment with first-order release 

1 1
( ) ( ) C B B

C Q C
C AD k C k C

t x A A x t h

   
    

   
 

B
e B B

C
hk C k C

t
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C water column solute concentration 

BC  benthic concentration 

h  depth 

,C Bk k  first-order exchange rate coefficients 

fV hkc  mass transfer coefficient  

1 1
( ) ( )

f

B B

VC Q C
C AD C k C

t x A A x t h h

   
    

   
 

B
f B B

C
V C k C

t


 


 

 

○ Non-conservative solute 

= nutrients  -nitrogen 

-phosphorus  

-sulfer 

-dissolved organic carbon  

-trace metals copper 

 

○ Stream transport of copper by incorporating first order mass transfer equations for 

periphyton and sediment reactions 

1
( ) ( ) SB

B S

CCC Q C
C AD P P

t x A A x x t t

   
    

     
 

( )B
B B B

C
C Kd C

t
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( )S
S S S

C
C Kd C

t



 


 

 

in which  BC  periphyton solute concentration 

SC  sediment solute concentration 

,B SP P mass of periphyton and sediment  

,B S   first-order exchange rate coefficients 

,dB dSk k partition coefficients, expressing equilibrium ratios of periphyton 

to water column and sediment to water column solute conc. 

 

○ Non-linear uptake function  (Kuwabara & Heliker, 1988) 

~ Monod (or Michaelis-Menten) → algal uptake 

 

max

max

1

S

S

U
S

h C U C
S

U C t h K C
U

K C


   

  
 

 

 

 

in which  maxU = maximum uptake per unit area of stream bottom 

SK = half-saturation constant 

~ solute concentration at which uptake is one-half the maximum 

 

◎ Concepts and method for assessing solute dynamics in stream ecosystems (1990) 

◎ Solute dynamics 
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transport = advection, dispersion 

transfer (transformation)  chemical transformations 

changes in physical state(phase) = sorption, desorption 

biological processes 

 

◎ Chemical processes in natural water bodies (Orlob p70) 

oxidation-reduction reactions 

acid-base reactions 

gas-solution processes and outgassing  

coordination reactions of metal ions and ligands 

precipitation and dissolution of solid phases 

adsorption-desorption processes at interfaces 

○ Aquatic organisms influence the concentrations of many substances by metabolic uptake, 

transformation, storage, and release. 

 

◎ Reaction Rates and Reaction Equation (Orlob p79) 

○ In simplified water quality modeling, chemical, biochemical, and processes are described 

by 

(1)  
ndc

KC
dt

    ~ irreversible diminish (decay) 

 

linear   
first-order reaction

0

1               

n

n




 
 

nonlinear      0, 1n n   
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(2)  
1

2

K Cdc

dt K C



  (Michaelis - Menten) 

 

~ non-linear 

~ uptake rate of external nutrient concentration 

 

(3)  
1

2

ndc
KC

dt
  

1
2,0 2( )ndc

K C C
dt

   

2,0C   saturation conc 

~ reaeration , adsorption  

 

(4) 
1

1 2 2 1 , 0ndc
K C K C n

dt
    

~ Streeter-Phelps Eq 

~ adsorption - desorption processes 

 

(5) 
1

1,0 1 2 2 1( ) ndc
K C C C K C

dt
    

~ adsorption 

  

(6)  
1 2

1 1

2 2

dc C
K C

dt K C



  (Monod) 

~ change of the biomass 1C  of a primary producer 
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(7) 
1 2

1 2 1

dc dc
K K C

dt dt
   

~ very rapid reactions  


