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8.1 River and Estuary Models

8.1.1 Considerations in Choosing a Model

Table 8.1 Types of Transport Models

Code Name Description
A numerical solution of 1-D tidally averaged dispersion
One-dimensional equation [Eq. (7.38)]
1A (Dsteady state model: coefficients are constant in time.
tidally averaged
(@ unsteady model: flow parameters and dispersion
coefficient vary between tidal cycles.
One-dimensional | A numerical solution of Eq. (7. 46)
1T ) ) Tidal evaluation, velocity and dispersion coefficient vary
tidally varying o
during tidal cycle.
Branching 1-D
1TB ) A network of 1T models connected at junctions.
tidally averaged
A numerical solution of 2-D tidally averaged dispersion
2VA | Two-dimensional .
equation.
2HA tidally averaged 2V : horizontally averaged model
2H : vertically averaged model
2VT | Two-dimensional A numerical solution of 2-D tidally varying dispersion
2HT tidally varying equation
Three-dimensional . . . . .
3A A numerical solution of 3-D tidally averaged dispersion
tidally averaged equation
Three-dimensional . . . . . .
3T A numerical solution of 3-D tidally varying dispersion
tidally varying equation
p Physical model A small-scale physical replica of the prototype geometry

with provisions of generating tidal and river flows
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NP

Hybrid numerical

physical

A combination of a physical and a numerical model, using

one model to generate input information for the other

© Dispersion mechanisms to be replicated by models

Mixing Appropriate o
) Description
mechanism Model
2HT - . . . .
Well verified for simulation of trapping mechanism
Trapping physical model
1TB Branches represent traps.
VA In case transverse gravitational circulation is
2VT not important.
Density-driven
_ _ If density-driven currents are important, the equations
circulation 3A
determining the flow and the salinity distribution
3T
are coupled.
. . 2HT - .
Tidal pumping Accuracy of 2HT may be difficult to establish.
physical model
Shear flow 2HT
dispersion 2VT
Wind effects 2HT Fig. 8.1
3T
Rotational OHT Easily modeled in 2HT models.
effects
Catastrophic/ 1A

seasonal changes

physical model

Long term simulation for a period of a year of more
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8.1.2 Numerical Models

8.1.2.1 One-Dimensional Models

« 1-D model is accurate in any case where the time scale of the process being studied is
substantially greater than the time scale for cross sectional mixing

— In practical use of 1-D models, instantaneous complete cross sectional mixing is assumed.

(1) Finite Difference Models

« 1A (tidally averaged model)

A@ +Q; @ = g KAg + source/sink (7. 38)
ot OX  OX OX

« 1T (tidally varying model)

9 (AC) + 9 (UAC) = i( KtAﬁj + source/sink (7. 46)
ot OX OX OX

» Numerical solution of 1-D Eq. of motion

— method of characteristics solution by Streeter and Wylie (1967)

« Finite-difference representation of derivatives

(i) Explicit technique

- all the derivatives are expressed in terms of known values
(values of C at time level n)

- easier to program
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(D backward difference operator

oC ~ Cj,n _ijl,n

(8.1)
OX AX
(@ forward difference operator
oC ~ Cj+1,n _Cj,n 8.2)
OX AX
3 central difference operator
oC N Cj+1,n _Cj—l,n 8.3)

OX 2AX

(i) Implicit technique

- use some of unknown values of C at time level n+1

- a set of simultaneous equations must be solved to obtain all the values at the new time level
at the same time

- implicit schemes are more stable and a longer time step can be used.

« central difference operator

(8.4)
oX 2 2AX 2AX

oC - £|:Cj+l,n+l _Cj—l,n+1 N Cj+1,n _Cj—l,n
o Numerical diffusion

- Most numerical schemes induce unwanted numerical spreading
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- Numerical diffusion is an apparent diffusivity caused by the numerical process.

- Numerical diffusion in Pure Advection Problem

ADVECTION
¥3 Cj 273 C;
it i J* i+e i+3

<—Ax—>l
<——UAI—>l

Figure 8.2 An illustration of the origin of numerical diffusion in a simple model, showing the
case where #At/Ax = 1§. The mass originating at point j is proportioned % to point j + 2 and § to
pointj + 1.

(D The mass represented by the concentration at a grid point is advected forward during a

time step a distance UAL/ AX grid points.

(2 Then, mass is divided between the two nearest grid points proportionally according to the
distance from each.

(3 Division between the grid points is necessary because the numerical scheme has no way of
representing a concentration except at grid point.

@ A mass originally concentrated at one point is now spread numerically two points.

« Variance at the end of time step

o— J: (x— x)2cdx = (%Ax)z [%j + (% ij2 (gj = S(Ax)2

2
K’:idozldt:EF(Ax)z—O}/Ax—lAi
2 219

— numerical diffusivity
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o How to control numerical diffusion

i) The numerical diffusion represented by K’ must be kept much smaller than the actual
(real) dispersion represented by K .

ii) Bella and Grenny (1970) suggested that if the K’ is forecast accurately and K’ is less

than K , the value of K can be reduced accordingly.

Kew = K=K

« K'can be estimated by setting K =0 in the numerical program and observing the results.
iii) Higher order scheme by Stone and Brian (1963)
- spread form forward difference for time derivative

@ B I:E(Cj—l,nﬂ - Cj—l,n ) + E(CL”H h ijn ) + 1(Cj“’nﬂ - Cj+l'n ):|/At

ot 6

X=]

(8.6)

- Crank -Nicholson approximation for diffusive term

0°C ~ 1 Cj+l,n+1 B 2Cj,n+1 +ijl,n+1 n Cj+1,n B 2Cj,n +ijl,n 8.7)
aXZ 2 AXZ AXZ

* This scheme is the most accurate for the problems for which the diffusion coefficient is
relatively small.

« Stone and Brian's method can be used equally well for a tidally averaged or a tidally varying

analysis.
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8.1.2.2 Multidimensional Models
« In multidimensional models, it is mostly important to understand and express properly

physics of flow and exchange.

« The mixing coefficients used in the numerical models express the net results of all processes
whose scale is less than the grid size of the model.

« In river and estuary models, turbulent mixing is smaller than the mixing caused by the
skewed shear flow of the velocity profile (Fig. 4.8)

« For numerical models which are averaged over at least one spatial dimension, over the tidal

cycle, or over both, the mixing coefficient represents what has been averaged.

© Two-dimensional models

|: in section models : horizontally averaged

in plan models : vertically averaged

|: 2HA : tidally averaged model

2HT : tidally varying model

© 2HA models
8C+U oC LV o€ _1 ﬁ(deﬁ}ﬁ de@ (8.11)
ot ox oy d|ox ox ) oy oy

where 0/0t means a change per tidal cycle ; U, V are tidal averages of the vertical
averaged x- and y- direction velocities ; d is the local depth; K,, K, express the results of

all the mechanisms (shear flow mixing, pumping, trapping) that cause mixing within a tidal

cycle
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C
* Terms like g[dKXy %J ought to be included, but usually not because it is difficult to
X

evaluate K, and K.

» 2HA models should be used only in conjunction with extensive field data to define the

magnitude of the dispersion coefficients.

© 2HT models

6C+U8C +V 8C:£ g(dKX§j+£ dK %
ot OX oy djox ox ) oyl 7oy

« 2HT models are in common use and have the advantage that they represent the important
dispersion mechanisms of trapping, pumping, and wind and Coriolis driven circulations.

« 2HT models appear to be practical for smaller bodies of water.

— Leendertse model (1970) applied to Jamaica Bay

« If coarse spatial grid is used for large water bodies, advantages of replicating the tidal cycle

may be lost.

© Limitations of 2HT models
(D The model should be operated to simulate at least as much real time as is needed to reach

an equilibrium distribution of tracer.

<Example> T_ . ~100 days in large estuary

quil
At=1 min
N (no. of time step) = 144,000

8-9



Ch 8. Numerical Modeling

(2) The water column must not be sufficiently stratified to inhibit vertical mixing.

NE 8C+U8C +VaC:l i(dKX§j+i dK @
ot OX oy d|ox ox ) oy oy

Where U,,V, = tidal velocity ; th,Kyt = dispersion coefficient which represent only the

effect of the vertical velocity profile. (shear flow dispersion)

K, K, <<K,K,

« Bigger mixing by tidal pumping and tidal trapping are now represented by the time-variable

advection

i.e., U, andV,

@ Since a time-varying flow field must be obtained from a first-stage 2HT flow model, the

flow model must produce the complex flows which leads to trapping, pumping, and other
dispersion mechanisms.

— The residual circulations are caused by the nonlinear frictional and inertial terms in the
equations of motion.

— Leendertse's (1967) model included nonlinear friction and inertial terms; however the no-
slip boundary condition was not imposed.

— Tee's (1976) model incorporated the no-slip boundary condition.

— Tee computed a residual circulation from boundary layer separation
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Nova Scotia

1 1
66° 60

Figure 8.6a The tide-driven residual circulation in the Minas Basin, Nova Scotia, according
to Tee's (1976) numerical model. [After Tee (1977).]
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8.1.3 Physical models

8.1.3.1 Introduction

« Physical model - physical representation at small scale

« Useful to the engineer, lay public, and political decision maker

© Distorted model to contain the model in a building of reasonable size

|: horizontal scale for river and estuary 1/1000

vertical scale 1/100
|: typical estuarine depth 5~30m
model depth 5~30cm

« Flow would be dominated by viscous and surface tension effects if model depth is less than

5cm.

— The vertical exaggeration converts a typically wide and shallow cross section into the

more canyonlike cross section

{a) (b)

Figure 8.7 (a) A typical estuarine cross section (b) the transformed shape of the same cross
section in a 10 to 1 distorted model.

— The conversion serves the essential purpose of making the model flow turbulent, but it
also changes the longitudinal slope of the channels and distorts rates of vertical and

transverse mixing.

— The tendency of the model flow to be too fast, because of the increased slope, must be

resisted by adding friction to the channels.
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— The vertical copper strips are arrayed over the entire channel to provide the extra friction
needed to counteract the distorted channel and water surface slopes.

— During the construction process most models are calibrated against prototype observations
of tidal elevation and currents in the main channels.

— These calibrations do not assure that mixing will be modeled correctly.

8.1.3.2 Model Laws and Scaling Ratios

« Fixed bed estuary models
L. =length ratio = —"-
Lm

d

d, =depth ratio = d_p

m
Once the length and depth ratios have been selected, the ratios of all other quantities are

established by physical laws.

(1) Froude law

A frictionless small amplitude wave propagates at the correct velocity.

wave velocity € =./gd

Cn_ 94y _ [dy
CP gdp dp
c, =d*? (8.12)

time required for wave to propagate a distance L

t=L/c
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t,=—=Ld " (8. 13)
Cr
velocity ratio, U, =L/t = L =c =d*’ (8.14)
L, /c,
u
Froude number, F, =—"—>=1
od,

E_ inertial force
" gravitational force

» The propagation of tidal and flood waves depends on gravitational, inertial, and frictionless
forces.
— Froude law scaling assures the proper ratio of gravitational forces.

— The copper strips are used to obtain the proper ratio of frictional forces.

» Density stratified flows
- The internal Froude number should be the same in the model and in the prototype to obtain

the correct ratio for internal wave velocities.

1
2
E=U(A—pgdj
yo

)

« Other important ratios
sloperatio s, =d_ /L,
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width ratio W, =L,
cross sectional area ratio A =W.d, =L,d,

discharge ratio Q = Au, =Ld d"*=Ld*?

« Shear velocity ratio

u =(gds),”*=d /LY

« Mixing coefficient ratio

g =0t
g, =d°/t =d**/L (8.15a)
g =L/t =Ld"? (8.15 b)
cf) = ocdu’
g = (du*)r =dr?/Lr"? (8.15¢)

Egs. (8.15 a, b) and (8.15 c) are quite different.

— The turbulent mixing may not be modeled correctly.

<Example> The model of San Francisco Bay :
L =1000 d, =100

u, =10 Q. =1,000,000

t =100  u =313
8-15
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S,=1/10 (du") =313

» The model operator controls only the discharge ratio for the tributary inflows, the height
ratio and time ratio for the ocean tides, and the salinity ratio in the ocean.

» The actual elevations, currents, and salinities occurring throughout the model are
determined by the frictional characteristics of the model channels and the distribution of the

copper strips.
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8.2 Model Building and Use

8.2.1 Definition of Model

o What is a model?

Model = a deliberate misrepresentation of reality
(simplification) (real system)
approximation

Reason = convenience

Purpose = understanding (gain understanding)

prediction  (predict an outcome)
Constraints = degree of simplification

degree of accuracy
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* Real System
l Simplification
Conceptual Model = set of assumptions
BN
Physical Model Mathematical Model = Compact form of a set of equations
Governing Equation (Eg. of mass balance,
flux egs, Kinetic eq.)

+ Initial & Boundary conditions

+ Domain Geometry

l l + Model Parameters
Analytical model Numerical model

(D irregular shape of the domain's boundaries
(2 heterogeneity of the domain (coefficient)

@ irregular temporal and spatial distributions of various inputs

\ @ source and sink
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8.2.2 Model Mechanisticity (Karplus (1976))

«— Empirical Air Pollution Mechanistic —
(Black Box) (Gray Box) (White Box)
Social Econometric  Standard Deterministic Process Models of
Model Watershed Water Quality Control Computers
Model Model

* Karplus, W.J. (1976) The future of mathematical models of water resources systems.

In “System Simulation in Water Resources”, pp11-18 North Holland Publishing Company

~ No model is either completely mechanistic or empirical.

~ All models are somewhere in between.

8.2.3 Modeling Procedure

© Models and Parameters

— Model Parameters exist only in context of model. (Model Coefficients)

© Model Calibration = parameter tuning to fit observed data to predicted data.

Model becomes less mechanistic (more empirical)

= Parameter ldentification Problem

Inputs — | Model —  Outputs

(Excitation) (Parameter) (Responses)
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Prediction Problem
v v ?
(Forecasting)
v ? v Parameter Identification
(Estimation or Inverse)
? v v
Signal Identification

o Verification

= Establishment of the model validity by comparison between observed and predicted data.

o Calibration and verification should be done with two separate (different) data sets

o Procedure of Calibration and Verification

Input

Output

Parameter

(i) Calibration

l, —

Model(?)

(i) Verification

l,—

Model (P)

Data Set |

Data Set 11

Fit O,to O,

Find P (set of values of parameters (coefficients))

Predict (52With calibrated parameter P

Compare O,to O, toseeif O,=0,
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© Dimensionless Coefficients

E (Dispersion Coefficient) p126 Fischer et al
Efldu~*
=0.1~04 m?/s Lab channel 180~400
0.76~1500 8.6~7500
See paper by Seo (1991)
© Best fit

~ techniques for determining the "best", or "optimal™ values of the model coefficients,
i.e., values that make the predicted values and the measured ones sufficiently close to each

other.

© Calibration

~ to estimate parameters of model from available information

Measured Real System Measured END

Inputs — (unknown) — Outputs
N 4/).1(.

Comparison \
NO
Measured Computed /

Model

Input — — Outputs
Parameter
\ Corrector
Initial Parameter
Estimates
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8.3 Finite Difference Method
8.3.1 Errors

Analytical Solution

= closed-form algebraic expression for temporal and spatial distribution of the constituent

~ easier to use than a numerical model

Numerical Solutions

Complex water body geometry and flow fields
Nonlinearities of the source / sink terms }

— make it impossible to obtain analytical solutions to the differential equation

— solve using numerical techniques

o Numerical techniques

~ simultaneous solution of a series of mass balances on a number of small fluid elements

~ matrix-inversion methods
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© Source of error

Conceptual model

’ Conceptual errors

\’ v

Physical Mathematical = G.E. + B.C.’s
model model
Parameter errors
< (most frequent source)
\l/ Truncation & Roundoff
y errors

Anal;_/tlcal Numerical
Solution

Solution  (=numerical model)

|

| | |

FDM FEM Special
Techniques

» Truncation error = discretization error

 Round-off error = error occurred in the arithmetic operations needed to solve FDE
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8.3.2 Finite-Difference Methods

* Basic Relationships

C (x)

i—1 i i+1

(DBreak x (y&2z) into finite segments of Ax in length

(@Subscript all variables and constants, C;, U,, A, E;.... etc,

such that 1 subscript indicates the value of variable or parameter at point |

@ Apply Taylor Series expansions

2 2 3 A3
C.,=C e ax S A0 Cz:‘ SO0 % +OAX* (@)
OX 2 OX 3! oX
2 2 3 A3
C,,=C - BTG AXOG 6\ (b)
OX 2 OX 3! oXx
o, _oc
X ox|
AX? = (Ax)2

OAx* = order of (Ax") and smaller
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(i) Forward-difference

. 2 2 A3
@y $Ci2Cu=C_MXPC_NEIC
OX AX 2 OX 3! oX
OAx ~ first-order error
(i1) Backward-difference = upwind difference
. 2 2 A3
(b oC, ;Ci ci_1+ga Ei _AX 8(;i _OAY
OX AX 2 OX 3! ox
OAX
(iii) Central-difference
Subtract (b) from (a)
C LG =G L TS oaxy

x . 2Ax 3 o

OAx? ~ 2nd-order error

(iv) Central-difference for 2nd derivative

Add (2) and (b)

82Ci Ci+1 — 2Ci + Ci—l
ox? AX?

1

~Q(Ax?)

Assembling a model

A. 1-D transient transport w/ dispersion, Conservative

oc oC 1(o _,0C
—+uUu—=—| —EA—
ot OX A(@x 8xj

AE,U = f (x)
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(1) Explicit Solutions
|:Superscript n - time step

Subscript | - distance step

(a) Formulation a
{ Forward-difference for time derivative — explicit
Forward-difference for 1st derivative in X

aC N Cin+1 _ Cin
ot At

oC Cn

i+1

8x At

A(QEA j EA(C, -CN-E,ALC-Cl)
Alox  ox AAX?

—Cf

Substituting & rearranging

Cin+1 Cn_% (CHl_C) EAt |+1 )_ Ei_lA_lﬁ(Cin_ n)

Rearranging Further

oo _ (1, UAt_EAt E LA, AL,
! AX  AX A A

EAt  uAt E
+ ! = il — Cirlrl + Lpﬁ_l Atz o
AX AX A AX
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Let
U, At . .
A_ =a — Courant No. dimensionless numbers
X
E At
= bi — Peclet No.
AX
E LA, At _
A A
Then
Cin+l =dCl, + (1"' & —b —d, )Cin + (bu — 4 )Cin+l
el Note that
n
/di/"‘(l"‘/a{i _k{i _)d/i)"‘(k{i —/6\1-/):1
-1 i+1
: l i . C™ is weighted average of C,,
C' and C',
Solution

Boundary conditions : { @ C knownforall x @ t=0

@ C knownforall t @ x=0

Procedure : @ Use equationto get C;,C;, C;, etc.
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@ Thenget C’, C5, CZ onthebasisof C;, C;, etc.

(@ Continue as far in time as desired

(b) Formulation b

[ Forward difference for time derivative

Backward difference for spatial derivative

aC N Cin+1 _ Cin

ot At
oC _ C'-C',
OX AX

l Q EA oC ~ Ei+1A1+1(Cin+1 _Cin) - EiAﬁ (Cin _Cin—l)
Alox  ox AAX?

Let's include the source/sink term in this time

S, =f(c)

Substituting and rearranging

u.At EA,, At
C-n+1 — C_n _ i C_n _C.n +|—+1_ C.n _C_n
i i AX ( i |—1) Ai sz 1+1 i )
EAt ., n n
~ oz GG f(Cr)at

—|1- uiAt _ Ei'Aﬁ+1 Atz — E'Azt Cin +(—uiAt +Ei—A2tjCin_l
AX A AX®  AX AX  AX
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EA
+|_thc_n

+ f(C")At
sz A i+1 ( |)
A AX

C™=(a+h)C, +dCl,+(1-a —b —d;)C" + f(C")At

171+l i I

Assume first-order decay
S=f(c)=—ke
- F(CAt =k AtC!
~CM =(a, +b)C +(1-a —b —d, —kAt)C] +d.Cl,

Note that now >, Coeffs #1

Stability Problem — cause problem to explicit scheme only

Convergence

The numerical scheme is convergent

If for any fixed time T =nAt and fixed location
X =iat,  C(X,T)>C(X,T)  (or[C(X,T)-C(X.T)=0)

as At >0 and At —>0

in which C( X 'I) = computed value at the fixed point X, T of the FDE
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C(X,T) = exact solution to the PDE

Consistency

The FDE is consistent with the PDE if the local truncation error goes to zeroas AX — 0

and At >0

Stability
The numerical scheme is stable if E.' remains bounded as n —> oo for fixed At

(T — ooor as computation proceeds)

in which E." = roundoff errors

:é(x,t)—C(x,t)

C (X,t): computed value of FDE by computer

C(x,t) = exact solution to the FDE

© Lax Equivalence Theorem

Consistency + Stability — Convergence
© Analysis of Stability

[ Von Neumann Method

Matrix Method
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© Source of Errors

Mathematical Model PDE C
! | <« Truncation Error
Numerical Model FDE C

l < Roundoff Error

Solution to FDE C

© Errors in machine computations Kuo (1970) p 313
Roundoff error = stem from a finite number of digits in a computer word
or from initial data

Truncation error = due to finite approximations of limiting processes

© Roundoff Errors

(i) Decimal-binary conversion error

~ computer converts decimal number to its binary equivalent

~ conversion error may be introduced because of
finite word length of computer particularly

if there is not exact binary equivalent

(i1) Non decimal-binary conversion error
~ if calculation requires more digits than available digits through a machine

(decimal computer)
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(Examples)

1 3
(i) 0.625=(E] +(Ej = .101
2 2
1 3 10 16 17 21
0.626:(EJ +(ij +(1j +(£j +(Ej +(Ej + - - - (infinite series)
2 2 2 2 2 2

=.101000....

if binary machine has 20 bits available binary-decimal reconversion to a decimal equivalent

with 8-digit accuracy

— |: 0.62599945 without rounding

0.62600040 with rounding

(ii) if decimal computer of capacity of 8 significant digits

0.33333333 0.33333333
+ 0.33333333 +0.33333333
add 3000 times +0.33333333
Expected value = 999.99999 +0.33333333
Rounded-off value= 999.99091 1.33333332 — 1.3333333.
Roundoff error = 0.00908 T \ 8digit

True value Truncated to

Error = 0.00000002
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© Stability Problem

o Explicit Solutions
~ accurate & easy
~ may be unstable

— need a stability criterion

olLet C'=T." +e" oy

C

i” = computed value of FDE by computer

Tin = true (exact) value to FDE atthe X and t associated with 1 and n=C

e =error at that point

Substitute this into formulation a)

e =1+a-b-d)e" +(b-a)e,+de’, @

i i+1

_-I-in+l + (1+ ai o bi . ai )Tin 4 (bl — ai )-I_Hr:l =+ diTiE]. @ (2)

— error for newly-calculated concentration depends not only on true concentration

(exact solution to FDE) (T-terms) but also on other errors (e-terms)

~ Part (2 may not be zero because of truncated terms in formulating FDE out of PDE

PDE ——» FDE —— Solution

Truncation error roundoff error

T-terms e-terms
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But assume truncation error is zero, and worry only about the e-terms or propagation
(magnification) of roundoff errors.
To insure stability (to prevent magnification of errors)

n

e.

n

n+1
i i+1

e ell.e’|.|e

gmax[

] ©

For Formulation a)

n+1
ei

<{1+a —b —d;|+[b —a|+|d[}

e

1+a —b —d|+[b —a]+|d|<1 4)

Absolute values of the coefficients should add to less than one.

Now, since &;,b.,d. >0, there are 4 possibilities.

a) if 1+a,-b-d >0&b-a>0

then 1+/a(i—p(—}ji/+}2,/—/ai/+/z(i:1 <1

which is satisfied for all values of &, b, and d,

which meet these conditions.

p) if 1+a -b-d >0&b-a <0

1+a,—b— g/ -b+a+d,<1
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y) if 1+a -b-d <0 & b -a >0
-1-a +b +d. +b —-a +d. <1
2d. +2b —2a, <2

d+b—a <1

if d =b

then 2b <1+3,

S) if 1+a -b-d <0 & b-a <0

-1-a+b+d -B+a +d <1

0.57

V' A II

o Restrictionson AX and At

~
r

a<b
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U—MSEA;[ - AXSE

AX  AX u
2b<l+a

QEM g A 1,2
AX AX At AX°®  AX

Substitute @ into @

8-36
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o Stability Criterion for Formulation (b) w/o decay term
-3 —b —d|+|a +b|+[d,]|<1

there are only 2 cases to be considered

a) if 1-a —b —d, >0

1—/3{i—}2i/—9i/+/31/+k{i+}1i/31
1<1

Satisfied for any values of &, b, and d.,

p)if 1-a —b —d, <0
—1+a +b +d, +a +b +d <1
2(a,+b +d;)<2
a+b +d <1
if b=d

a +2b <1 a, <1-2b

1.07

0.57

R
0.5 b

1.0 i
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a+2b<1

u_At+2 EAt

<1
AX  AX?

1
u 2E

AX  AX

At <

y) Formulation EXCD

|: Central difference for spatial derivative

Forward difference for time derivative

oC - Cin+1 — Cin—l
OX 2AX
aC N Cin+l _ Cin
OX At

§°C _Cr,-2C"+C/,

i+1

OX? AX?

Substitute these into 1-D transport equation

oC oC 0°C
tU—=E—;
ot OX OX

i+1 i+1

Cin+1 —-C' c',-C', C',—2C"+C",
+U =E 5
AX 2AX AX

cr :(1_2 EAthCin +(EA2t _u_AtjCin+1 {
AX AX®  2AX

8-38
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Ch 8. Numerical Modeling

e =2 e +a-)ct,+(b-2 e,

_ust
AX

EAt

b=
AX?

» Stability Criterion

1- 2b+ b——_
| |
2

a)if 1-2b>0 & b——>O

S R

1<1

B)if 1-2b>0 & b—g<0

a a
1-2b+—+p-pP+—-<1
2 p-8 2

a—2b<0

a<2b

»)if 1-2b<0 & b—%>0
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—1—2b+%+b+b—gﬁl

4b <2 bSl
2

5)if 1-2b<0 & b—%<0

—1+2b+%+sz—b’+g£1

2b+a<?

© Numerical Dispersion

Taylor series expansion
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0AX?
no_ _n 2 A3
€ _Gu-C, A9 CS: +OAX
OX 2AX 3! oX
n+1 _ n 2
oC_CIM-Cl AT )\
ot At 2 ot

() cential

(p) forward

By the way think about 1-D transport equation w/o dispersion term (pure advection)

ot OX

o oC

differentiate  w.r.t x

&C _ o°C

oxot  ox?

differentiate @ w.r.t.t

Fe__ e
ot? Otox
0°C 0*C
@ =— >
oxot OX
0°C 106°C
®) =———
otox u ot
B 0°C _ E 0°C
ox? u ot
. 0°’C  ,0°C
) - =Uu .
ot OX
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Formulate @ with () & (f)

C™-C' Ato*C " C“1
St E et _ oG 1) + O(At?, AX®
At 2 ot? A ) ( )

Substitute @

N+l ~n n 2
GG AtC u I+12AtC 4 —étuz—gf FO(A2, AX?)

X

%,_J

numerical dispersionterm

UAt
Let E =—u"=——a (a:A—:Courant No)
X

= numerical dispersion coeff

Then

2
oc +uac ~-E, 0 (2: +O(At*, Ax*) =0
ot OX OX

So, add E_ to physical dispersion coeff. E
E,=E+E,

for numerical dispersion correction

2. Implicit Solutions

(1) Formulation (c)
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Backward difference for —

Forward difference for —
OX

oc _Ch-crt
ot At

oC Cn

i+1

ax AX

—-C/

1
——( ax) ™

{EA(C!, -C)~EAL(C -Cl))]
Substituting and rearranging

e ot =2 e, -+ oy e -2 g

- Cin—l)

|+1

U, At N E At N Ei_lA_lAt) (u,At EAt

1- .
( AX  AXZ T AAX A AXETTH

i lA At Cn Cin—l
AAX?

_uAt

_EAt
AX?

E,ALAL
L AAX
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(l_ai +b| +di)Cin + (81 _bi)C'n _diCin—l :Cin_l

i+1
— C"" = weighted average of C",C",, and C,

We need I.C., UBC, and DBC to solve system of algebraic equation

— See Fig. in next page.

© et LL=—d; M,=1-a+b+d, U =a-b

then LC", +M.C"+U.C'

i+l

— C.nfl

x=0  (i=0)

(i) If C known @(x:oo (i=m+1) C(0),C(m+1)

— Dirichlet (first kind) type B.C.

i=1: LC]+M,.C'+UC)=C""

- MCM+UC) =CM - LC!
%/—J

Known
i=2:LC'+M,C] +U,C} =C]™

i=m: LC' +M C'+U C! =C*

m~"m+l

> LC',+M C'=CM-u Cr

m—~m-1 m~"m+l
v

Known
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M, U 0 0 Jer ) |G LS
LL M, U, 0 0 Cln cr
0 L M Uy O 0 Zn c
0 %
c e
I—m—l M m-1 m-1 Cr:l Cm_ll
- Lm M mo ] Crf:]—l -U mCm+1
n ! A IC
O uBC
n-1 1 DBC
.2 |
1 fl
S - L )
1 2 3 i=1 i i+l - m m+1 —ilx)

— All concentrations for one value of n are solved for simultaneously, and the solution
marches in time.
— Implicit Solution
» Tridiagonal matrix — Gaussian elimination
Thomas Algorithm

(i) If C known @ x=0 (i=0) — Dirichet

And o« known @ X=oo(i=m+1)

— Neumann(2nd kind)
OX
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n

oC
© No flux @ boundary - —| =0
8)( m+1
c” c', -C’
0 ~—mdl Tm_Q Backward difference
OX |1 AX
Cnn1+1 = Cnn1

i=m:LC +MC'+U C" =C

m~"m+1

L LC +(M_+U_)C"=C

M 1 Ul 0 Cl n _Cln—l _ Llcg _
L2 M 2 U 2 0 C C n-1
2 2
C n-1
Lm—l M m-1 U m-1 Cm_l ij
m C’
L 0 Lm M m T U m | L m i
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8.3.3 Boundary Conditions
©/ T

Dirichlet (1st Type) C(X, y) = fl(X, y) on T,

oC
Neumann (2nd Type) ) =f,(X,y) on T,
n
—— =derivative normal to a boundary = 8_ or @
on oX oy

Mixed (3rd Type) aaa—c+bC =f,(x,y) on T,
n

(2) Formulation d ~ most commonly used formulation

oC

Backward difference for E

_ oC
Backward difference for —

OX

oc _Cr-c
ot At

oC N C'-C,
OX AX

192, 1

A O Ox W[ Ei+1A+1(C|:+1 B Cin) B Ei Aﬁ (Cin B Cin—l):|
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Substituting and rearranging

(1+a1 +b| +di)Cin _(ai +b|)Cin-1 —-d,C :Cin_l

17+l

Ei+1A1+1£
A AX

where d, =
et L =—(a+h)
M; =(@+a +b +d)

U, =—d.

ten LC',+M,.C’"+U,C’

i i+l

— C-n_l

(3) Formulation Im-Cd

0
Backward difference for E

0
Central difference for —
OX

oc _Cr-c
ot At

i+1

OX 2AX

oc _Ch, -C,
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Final discretized equation results in

uc', +M.C"+U.C'

i+1

where U, =——-D,
M, =1+2b,
Ui :i_bl
2
E,At
b =—;
AX

© Numerical Dispersion

= artificial viscosity, numerical dissipation

— C-n_l

= smearing of concentration fronts due to excessive damping

= Taylor's series truncation error

<Ref>

Lantz, R.B., "Quantitative evaluation of numerical diffusion (truncation error),” Soc. Pet.

Engr. J., pp.315-320, Sept., 1971.

© Formulation b

Taylor series expansion in x direction
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2
C—Cax oc,  AX 0°C o)
ax 2 Ox?
oC AX 82C
C' + AX +0(AX®
( |+1 8X 2 8X ( ))
n_ _n 2
Cl=Cl, _ G, _AX3C,_ a0 o

AX X 2 oK

2
Cin+1:Cin+ G;t: A; aatc O(At)

C;”l—c:n oC At 0*C
At at 2 X’

+O(At?) ®)

Consider the 1-D transport equation with no dispersion term (pure advection)

n+l Cin C_n . C_n

Formulationb — =—y— B8 ©
At AX
n n 2
Ex a C.,—C 8C+AX8C +O(AX )
AX OX
n_e/n 2
Exp GGG AXOCy oz
AX OX 2 OX
n _/n 2 A3
Ex c C. —C., 8Ci AX“ 0°C —O(AX4)

2AX X 3 oc
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Ima
2 12
C', =C"—At (Z(t: + A2t aat% —O(At?)
C'-C"" oC AtoC
N a2 e toen)
differentiating & w.r.t. t
0°C 0°C
— == @
ot otox
differentiating & w.rt x
0°C 0°C
=— ; ®
OXot OX
0°C _ 1 0°C
otox  u at? 19°C  o°C

’C oCc  oc| ua® o ox

oxot  otox  oxl

~o°C 2 0*C ©
Cot? x>

Substituting @ and @ into @

oC At o°C oC Ax d*C
Pt =-U -
ot 2 ot OX 2 OX

}-i- O(At? + AX?)
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Substituting ®

2
oc aC+{UAX—£UZ}a + O(At? + AX?)
%/—J

ot OX 2 2 x° _
— Truncation error
PDE Numerical dispersion
Totalverror
Define numerical dispersion coefficient
UAX UAt UAX
E =—(@1-—)=—-(1-a
"= ( ~ ) > 1-a)
UAL
a=——=_Courant No
AX
2
Then o :—uaC +E, 0 (2:
ot OX OX
If we include real dispersion term
2
£+u§: (E+E,) 0 (2:
ot OX ——— X

E. =Computed dispersion

© How to remove E,

(i) Choose and Atand AX suchthat E =0

E :%M(l—a)zo

UAL
a= =

=—n=1 @
AX
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However, stability criterion for Formulation b is

U—M+2E§[ <1 ®
AX AX

UAL
If we make — =1
AX

then @ becomes

iAzt <0 5
X

Therefore we have to choose and At and Ax

Satisfying both O & @ — impossible

<Example>
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(i) Dispersion correction technique

—make E . =E
For Formulation b, subtract E_ from E,
~.E.=E+E,-E,=E

(iii) make AX and At small

© E.=E+E,
Formulation Numerical dispersion, E, Effective solution to ND
E a —%m ) Add(~E)

UAX
E, b T(l_ a) Subtract E, (Be careful whenE < E,)

2
E, cd — u?At (No numerical Add(-E,)
dispersion dueto advection)
I, C %(1—@ Make a=1
I, d %(H a) Subtract E,
u2

|, cd ?At Subtract E,

© Lagrangian Formulations

£+u@:£(QEA@)+S
ot oXx A oOx  oXx
(1) Formulation e -explicit
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Forward difference formula at the i+1 grid point for E

aC C n+1 C n

i+1 i+1

ot At

0
Forward difference formula for 8_
X

oC Cn

i+1

ax AX

—-C/

Eulerian formulation for second derivative

8C

1 n n
S AT~ EA(Cl-Cl)-E.AL () —CL)]

Substituting into Governing eq.

n+l n U At n n E At n
C:|+1 C:|+1 (C|+1 CI ) AX (C|+l Ci )
FLE (c'-cfy)+sat
AAXZ i i-1 i
Rearranging further
Crt = (1 u,At B EiAt) (u,At E.At B EHAflAt) .
s AX  AXP Cia ¥ AX® AN T
i 1A71At Cn S
A AX®
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U, At
Let a =—-
AX
E At
b =—
AX
d- — Ei—l'Aﬁ—lAt
' AAX

then C''=(1-a +b)C" +(a—-b—-d)C"+dC" +SAt

i+1 i+1

n+1

i-1 i i+1

* We need 2 UBC and IC, need no DBC

© Numerical Dispersion

Pure Advection Problem

C'n+1 _ C'n J C_n _ Cin

i+1 i+l _ _ i+1

At AX

(D Formulation e

Taylor Series Expansion in t direction

2 2
Cr=C" + At ‘th: ; A; ‘th +O(A)

i+1 i+1
CM'-C", oC Ato*C
- =—4+—

v =5 +O(At?) @

Taylor Series Expansion in x direction
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oC AX 82C

C ), =C"+Ax +O(AX®
i+1 8X ( )
n n 2
,CL-C ac+Axac +O(AX)
AX X 2 Ox

Substitute @ & @ into O

2 2
5C+§8(23+O(At2):_u §+&83+0(Ax2)
ot 2 ot oXx 2 oX

2 2
8C:_ oC At@(ZZ uAX@C O(AX + At?)
ot ox 2 ot 2 ox*
20°C
e
2
2L W Y a) S o + )
ot ox 2 OX
En
UAX

~E, = ——(1+ a)

© Stability Criteria

(2) Formulation f - Implicit

8-57



Ch 8. Numerical Modeling

oC
Backward difference for E at the i-I grid point

. oC
Backward difference for 8_
X

oc _C, -C!

ot At
oC _ C'-C',
OX AX

(3 +d,-1)C", +(—a —b —d

&

A
\\

N
A\

© Numerical Dispersion

3 :“—ﬁx(ua) ~

© "Two-Step" techniques

bC’

+SAt=C"}

1+l

Weneed 1IC&
2 DBC

No UBC

~ Advection is "tracked" to a new set of grid points and dispersion follows separately

© Lagrangian approach (Bella & Dobbins, 1968)

~ Observer is traveling at the same speed as the parcel of water under observation



Ch 8. Numerical Modeling

» Two-step explicit method — Two processes are assumed to occur sequentially rather than
simultaneously as in the prototype.

(1) 1st step (advection process) : to advect the pollutant downstream for one-time step

) 1
— FEulerian Frame Cin = Cin+

n _ ~n+l
C:O _CO

(2) 2nd step (dispersion process) : to calculate new values on the n+1 row using only the

dispersion
C_n+l _ C_n E
— Lagrangian Frame ' L= C". -2C"+C'
g g At sz ( i-1 i i+1
N EAt
o t= C'+ (Cl,-2C" +C,

AX?

© Crank-Nicholson Scheme

(1) Upwind (Backward) — Formulation CN-b

C'n+1 _ C'n u E
S S~ (CF-C°)+—(C?, —2CF +C?
At AX( i ~ |—1) AXZ ( i+1 i |—1)
g=n — Explicit :| 4Point scheme
e=n+1 — Implicit

1
E=N+ E — Crank-Nicholson
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n+

G

G ey )

At T AX

e HOED 3B A

N~

1
- C-n+C-n+1
> GG

[ EAtz —U—At)cin_;l + (1+U_At n EAZt)CinJrl . EAtZ CirHl
2AX°  2AX AX 2AX

:( EAt2 +u_AtJCin_l+(1_ UAL EAzt)Cin N EAt2 cr.
2AX°  2AX 2AX  AX 2AX

[Alic}™ =[BHCY +{b}

[A].[B] — Tridiagonal Method

u u u )
fL rl\ fL n+l 6 Point scheme
|: 3 knowns @ time level n

3 unknowns @ time level n+1

C-Nmethod —> O(AX + At?)

Fully Implicit —> O(AX+At)
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C
(2) Central difference for 5‘_ — Formulation CN-cd
X

Cin+1 _ Cin — _U_At(cs _Csl) (C

2 AX i+1 ' _2C8 Cig—l)
C.D

i+1

g=n Explicit

e=n+1 Implicit

1
E=N+— C-N
2

DL DAY
e T e GRS R

( EAt2 —~ U—AtjCi”f + (1+ EA;[ jCi”“ + (U—At —~ —EAtZ ch
2AX°  4AX AX AAX  2AX

EA
_ tz+ UAL Cin—l+ 1_ EAt Ci N EA’[2 _uAt Cin+1
2AX 4AX AX? 2AX 4AX

© Models based on Solutions to Ordinary Differential Equations

Consider transient zero dimensional problems (Box model)

(0,C)in
|

dc
E =S+ Q(Cin _Cout)
¢ —(Q,C)out
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— Initial value problem

— Solution marches forward in time

(1) Euler Method (Explicit method)

n+l _ ~n
de ~ ¢ -c o(At)
dt At

then

cMt=C" +At[S+Q(C,, —C,,.)]

inwhich S=S(C")

. Choose At, march forward in time
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(2) Runge-Kutta Method
2nd order RK
4th order RK — most popular

5th order RK

Calculate in order

CQZQ+%HQ;K)

i+=

C**l =V +& f [Ci*u/z’x 1)
i 2 i+§

Then

C.,=C +AX{% f(C, Xi)+% f [Ci*+l/2’ :

~ O(Ax“)

Given de = f(x,c)
dx

C., =C+AC

l ek l *
+2J+§ f (Ci+1/2’ xi+;j+€ f (Ci+1 + Xi+1)i|
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© 4th R-K with Runge’s coefficient

o Euler's Method

% = F(%C)  —[Cpy =C,+AXF (%,) + O(AX)
X
Ci+1 = Ci +ACi

AC, :%[K0 + 2K, + 2K, + K,] ~ O(Ax*)

~ weighted average of slopes

C

C/ J T,

Ci \
X
i i+1
slope = %‘1 =K,
in which
Ko =f(x.C)
K, = f(xi +%,CI +—°ij
K, = f(xi +&,Ci +%Ax]
K, = (X +Ax,C, + K,AX)
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i+1

slope K,

AxK

C
C1+1 ”
C.+ AxK, =
C + g K, . “slope K,
Azx ZKlf slope K,
e & —Ky = g
5 7
2
G
slope K,
Ax Ax
g P oEng e DI ma
i ik i+l
2

o Derivation by Taylor series expansion

— see "Computer Applications of Numerical Methods", S. Kuo (1972) p.137

© R-K formula with Kutta coefficient

Ci+1 = Ci + ACi

AC,

:ASX(K0+3K1+3K2+K3)

K, = f(X,,C))

AX

X, +—,C, +ﬁAx
3 3

2AX

X +—,

C + (#) Ax}

Ky = f[X +AX,C, + (K, — K, + K,)Ax]

© Simpson rule
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~ Special case of R-K with Runge coefficients
dc :
If i f (onlyx) independent of C
X

Then C,,, =C +AC,

AC.:%(K +2K, + 2K, +K;)
=f(x)
AX
Klzf( ﬂ
:f(x +A—j
2
K, = (% +Ax)

- AC, = A(Sx{f(x)+4f(x +%)+ f(x +Ax)}

© 1-D Steady-state Problem

E =E E —kC D 2nd order ODE
dx dx?

Let Z :E

dx

then (O becomes coupled 1st-order ODE

uz_Eﬁ—kC ®
dx
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Boundary conditions (Initial Conditions)

(1) Initial Value Problems

c(0)=c, @ x=0
dc
&|O—zO @ x=0

Solve simultaneously by using either Euler or R-K method

dz u k
: —:—Z+_e:f Z’C’X
@ dx E E 1(2,6:%)
dc
@: _:Z:f Z,C,X
dx o )

8-67
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Ci*+1 =G +AXf2[Z**1’C**1’X**lj
2

(ii) Boundary value problems
c=c, @ x=0

C=C_ @ x=L

— use "Shooting method"
Guess Z, @ x=0
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Solve @ and @ simultaneously by using R — K

check Cﬂ =C,
Vary Z, suchthattarget= C__is hit

— "Shooting method"

» Iteration rules for Shooting method

- dc
let Z, = jth estimate of d—|x_0
X

i dc
2% = j+1th estimate of d—|x_0
X

By interpolation

cl-c .. _ia
1z —2 )

s i _©
0 0 j j
C.—C

<Ref.>

1. Pinder, G. and W. Gray, Finite Element Simulation in Surface and Subsurface Hydrology,

Academic Press, New York, 1977

2. Ames, W.F. , Numerical Methods for Partial Differential Equations, Academic Press,

New York, 1977

3. Richtmyer, R.D. and K.W. Morton, Difference Methods for Initial-VValue Problems,

Interscience Publishers, 1967.

4. Lapidus, L. and G.F. Pinder, Numerical Solution of Partial Differential Equations in

Science and Engineering, A Wiley-Interscience Publication, 1982.
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8.4 Finite Particle (""Random Walk') Model

~ based an the concept that dispersion is a random process

® S X
& A
W
Advection Dispersion

New position = Old position + Advection + Dispersion

~ In the computer code, enough particles are included (released) so that their locations and
density are adequate to describe the distribution of the dissolved constituent of interest

— "Giant Molecule" method

~ release a number of particles, each representing a finite mass of solute, at a rate
proportional to the strength of each source.

The particles are then "tracked" in space and time. ~ — "Particle Tracking" method

Ref. Prickett et al. (1981)

o Distribution of concentration of solute
~ represented by the distribution of a finite number of discrete particles
~ each particle is moved by flow and is assigned a mass which represents a fraction of the

total mass of chemical constituent.

oc  oc o°c
Sl LS (ke 1
ot ox OX? (ke) @
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If a unit slug of solute placed initially at x=0

then analytical solution is

exp |:_M:| (2)

cxt)= AEt

1
JArEt

ctT 1 b

1.0

0.8+
0.6 1
047

021

© Statistics

o Random variable x if said to be normally distributed if its density function, n(x) is given

by
1 (x = p)°
n(x) = exp| ———— 3
(X) N r{ = (3)
o =standard deviation
M =mean
Now, if we let
o =+/2Et (4)
p=ut (5)
n(x) =c(x,t) (6)
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Then Eqgs (2) and (3) are equivalent.
So, the key to solute transport is the realization that dispersion can be considered a random

process, tending to the normal distribution.

o Random walk modeling

-6 _\ +6

& >3 —~ >
SN — i TN — ¥
Advective Dispersive
Distance Distance
Advective distance =UAt (7)

At = time increment

Dispersive distance =160

= J2EAt ANORM(0) 8)

in which 60 = Probable locations of particles out to 6 standard deviations either side of

the mean (> 99.9% )

ANORM (0) = a random number between -6 and +6, drawn from a normal distribution of

numbers having a standard deviation of 1 and a mean of zero.
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" New position of the particle

= Old position + UAt ++/2EAt ANORM(0) 9)

© Repeat for numerous particles, all having the same initial position and advection term.

— Create a map of the new positions of the particles having the discrete density function.

N
c(x,t) > n(x) —>&

N, (X —UAL)?
= exp| ———— (10)
V27 \2AXE AL AAXE At
in which AX = incremental distance over which N particles are found

N, =total number of particles in the experiment

© The distribution of particles around the mean position, UAL, is made to be normally

distributed via the function ANORM(0)

o Generation of ANORM(0) in computer code.

(1) Summation of Random function

12
ANORM(0) = > RF(0,1) -6
%f_/

i1
||

In LOTUS or EXCEL (RAND())

use @RAND function to generate a uniform random number between 0 and 1 = U (0,1)
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(2) Multiply Random function

ANORM(0) = RF(0,1)x12—6
H_/

RAND()

© Numerical Recipes

ANORM(0)= GASDEV (IDUM)

RAND() = RAN1(IDUM)

© Advantages of the Random-walk technique

1. There is no numerical dispersion, despite the use of an Eulerian framework.

2. Computer CPU time is drastically reduced. Solutions are additive. If not enough particles
are included for adequate definition in one run, subsequent runs may be made and the results
of these may be superimposed upon the first.

3. This method is particularly suited to time-sharing systems where velocity fields can be

stored.
© Disadvantages

1. It may require a large number of particles to obtain meaningful results.

2. It doesn't easily accommodate nonlinear kinetic expressions.
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© 2-D Model : Depth-averaged

7

@+u(x y)—+ v(X, y)—=§( ac)+i(g @]+S

ot oy “ox) oy Moy
in which

g, =5.93du.

¢, =0.6du.

=/gds
cf) 1-D Model : Depth & Width-averaged
(Cross-sectional)
uZ-Lp 5
at OX OX
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© 2-D Advection-Dispersion Model

Old position  (xg,¥,) &
v
I UM ——o

> X
Advection =|\J(uAt)’ + (vAr)?
/ &
v A
New position (x,y)
I T Transverse Dispersion
= J2E A - ANORM(0)
Longitudinal Dispersion
= 2EAt - ANORM(0)
y v

o Longitudinal and transverse dispersion take place simultaneously

X =X, +UAt + ,/ZEXAt ANORM (0)

Y =Y, + VAt + [2E At ANORM (0)

o In natural rivers

E, =5.93dU.

E, =0.6dU.
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8.5 Finite Element Method
G.E.: @:Q(E@—uc] PDE @

o Numerical solutions to PDE

FDM
Approximating Derivatives
/ ~
PDE\ System of Linear
Algebraic Eq.
FEM /v 9 q

Approximating Solution — Integral Eq.

Matrix Solver

Numerical Solution <

(Approximate Solution)

8.5.1 Procedure (Summary) of FEM
1. Discretize domain into elements.

2. Select Basis Functions.

3. Derive an Integral equation based on. Method of Weighted Residuals (MWR).

4. Compute element matrix and vectors.

5. Assemble global matrix and vectors.

6. Incorporate boundary conditions.

7. Use a finite difference for time discretization.

8. Solve a system of simultaneous linear algebraic eg.
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A. Domain Discretization

Finite element

modal point

/j \ C(x)

element

domain

c(X) = true(and unknown) solution to PDE
continuous function of X
€(X) = approximate solution

piecewise continuous function

We may approximate the true solution by a polynomial
m
A€ e
(¥ =2 c,8 (%) @
j=1

in which

¢J— = basis function (shape, approximate) functions

Now, we are seeking the "best" value of the C; to give us the best values for €°(X)
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B. Basis functions

(1) Lagrangian Interpolating Polynomials

m X—X

i =11 K

¢J(X) if, Xj =X

(i) linear ; m=2

_X=%
¢1(X)_Xi_xz
_ X=X
¢2(X)_Xz_xl

-~ C(X) =g (X) + ¢, (X)

(ii) quadratic; m=3

= C(X) = (X) + o, (X) + Coy(X)

1 1
N ¢2\
0 0
X X
&,
LK 4 B o i
0 0
% x; %
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(2) Hermitian Interpolating Polynomials

(function and slope)

dc
~ interpolate C(X.)and —
dx

X

N 0, (dc) @
C(X)N;[Cj¢j +(dxjj¢j }

C. Method of Weighted Residuals

© Formulation of approximating integral equation
Variational method

{ Method of Weighted Residuals (MWR)

MWR :

Substitute @ into @

%-%(E%—uéjiO: R(x,t) ... residual ©)

If ¢E=c then R(X,t):O

But C#cC R(x,t) =0

So, in the MWR, an attempt is made force this residual to zero through selection of the
constant C; (i=12...M).

Let’s set the weighted integrals of the residual to zero, i.e., > MWR

IQeR(X,t)wi(x)dQ:o, i=12,...M @
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— Integral Eq.

j{%—%(E%—ué)} - (x)dx =0 ®

There are several MWRs which is distinguished by the choice of weighting function @,

(1) Galerkin method : @, = ¢ (X)

(2) Subdomain method

divide domain B into M subdomains B,

w; =

1, xin B,
0, X not in B,

(3) Collocation method
M point X; (collocation points) are specified in B and weighting functions are Dirac
delta functions

@ =0(X-X)

which have the property that

IBR(x)a;,dx: R(x)=0

(4) Least Squares Method

OR
o = p(x)a

p(x) = arbitrary positive function
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minimize the integrated square residual w.r.t a,

I :j p(x)R?(x)dx

FDM ~ domain of interest is replaced by a set of discrete points
FEM ~ domain is divided into subdomains (finite elements) unknown function C is

represented by an interpolating polynomials within each element

uj = undetermined coefficient

b () = function over both time and space
¢,~ () = Basis (shape, interpolation) function

~ chosen to be polynomials that satisfy certain boundary conditions imposed

on the problem

PDE: Lu—f =0
LG(-)— f = R() = residual
The objective is to select the undetermined coefficients U; such that this residual is

minimized in some sense.

[[ RO ()avdt=0, i=12...,N
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(1) Galerkin Method

W
A
1
Basis and
weighting function
{Chapeau function)
‘hatshaped’

e e+1

~ Weighting function is chosen to be the basis function

HVR('M(-)dvdt:o, i=12,...,N

(2) Subdomain Method

[R(X)@dv=0, i=12...,N

where

{1, (X, y,2) inv,’
. =

0, (x,y,2) notinv,

A
4 weighting function
]. 7 N
// \\ /
s N
7/ N
7/ N
7 N
7 ~N
7/ N
7 N
% S basic function
- N /
7 & \\
7 5,
7 N
V. N
e N
7 \\‘ ~
° >
e e+1

~ integrations are less tedious than those in Galerkin's method
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(3) Collocation Method

~ Weighting function is chosen to be the Dirac delta

@ =0(X—X)

[[R()()avdt=0, i=123....N

~ Calculate the value of residual at the selected points

154 ; weighting function
\ o
]- i [ 7 \\
' N
7 N
// \\ . .
57 NG basis function
// \\ /
// \\
7 N
7 N
' N
7 N
7 N
7 N
7 N
7 N
7 N
7 N
7 N
& & —-—>
e e+1

X2 Yi Zi b

J.t.[va(')ﬁi (X—Xi,y— YinZ— Zilt_ti)dth =a

<Example>

9T kT -T)=0
dt

o<t<1
T(t=0)=1
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]. _"\ ¢1 ¢3 // ) —

N AL =l
=t <t<t

0.5+ ! i . s _ti+1 -1

7 =nodal points

2. jt R()w(t)et 0, =i 1,

) %—Im(r T,) b (t)dt = 0

L{iTj(%ﬂchﬁj)—kTe}wi(t)dt=o, i=123
3. Galerkin
ZT [ {—+k¢ }¢dt—j KT,gdt,  1=123
ZT f {—+k¢ }qﬁldt —j KT, ddt

i=1 T, j:{% + k¢1}¢1dt 4T, j:{% ke, }¢1dt T, j;{% + k¢3}¢1dt _ j;kTe¢ldt
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i=2 JO{M +k¢1}¢2dt+T j{ /, +k¢2}¢2dt+T j{ ¢3 +k¢3}¢2dt_j KT, ¢,dlt

i=3  T[ {d‘bl +k¢1}¢3dt+T [ {d% +k¢2}¢3dt+TI{d¢3 +k¢3}¢3dt jkT ¢.dt

%oy =0

Expansion yields the following matrix equation

_J.;(%qﬁ +k¢¢jdt j;(%gb +k¢¢jdt 0 I e |
ol dt ol at T || [Tt
d d d .
j;[dif¢z+k¢l¢zjdt I:(%fﬁﬁk%%]dt E[f@wm]dt T, |=| [Tt
d d KT, g.dt
0 Ii(%%"‘k%%jdt Ill(d;?¢3+k¢3¢3jdt _Ts_ _J.; ¢3 |
2 2 _
—1+§ 1+— 0 1] _kT—e_
2
1 —l+E 2K 1+5 T,| = 1 KT,
2 6 3 2 KT
k e
0 —1+€ 1+— T, | 2 ]

o Basis functions  (Interpolation)

c(x,t) = E(x,t) = iéi (t)g; (x,1)
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AN

6C  &dc
— = (X
8t:;7%()

o Natural Coordinate System for element basis function

(Dimensionless & coordinate system where —1< & <1)

17 # (&) #() L (1)Linear
il Sy
ey =L
¢ (5) = > 1-%)
0 . . 1
! _>[§ 1 ¢2(§):§(1+§)
dgf 1
dé 2
dg, _1
dé 2
(2) Quadratic
1% i &
$1(&) = 60-8) / /
¢o (95) =1- fz
0_1 0
—>&

#(E) = %5(1+ &)
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© Galerkin method
Select the basis functions as the weighting functions
> =4
Thus the weighted integral equation of the residuals becomes

9¢_2 2 _ye)lgdx=0 ®

jaéa
o\t ox. et

o _oe .
dx—J'Qe&(E&—ue)gzzi dx=0

ocC
[
A

do
B

Term A (See 7-1 for basis functions) — use Linear, Basis function
o¢ m dc,
—gdx = —L #* () dx
.L)ea'[¢I Qeé dt ¢J( )¢'

JERTEG
=> " I@@(x)qﬁ,(x)dx

=

Term B : Integration by parts I udv = uv—_[ vdu

[ 9 £ ey oe L e
[, L uc)+[¢, ()(E— uc)}

Xm
X

_ _%(X){ =30, At -uc, (t)¢f(x)}dx+[#(x)(EZ—i—ué)}

Xm
X

1
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m a¢f(X) 8¢Je . a¢| . o6 ) -
— ;Cj(t){ QEET gdx - _[Qeu¢j (x)&dx}— [ﬂ (X)(E&—uc)}

X

m 0 € e
. Eq ® : 2 x)dx+;cj(t){erE ¢é>EX) a¢é>EX)dX
1 20500 ) | [ e |
erE L = dx} [yﬁ, (x)(EaX uc)L_o @
Let j Ea¢() a¢, dx j ugs (x) ¢'dx ,i=L....m

¢f(x)(E2—i—ué)xl

e

me = jge¢j(x)¢i(x)dx , (B} =

¢;(x)(Eg—ﬁ—ué)xm

D. Element matrix equation

~ Element matrix equation results in

[A]E{e}+[m]6{%+{s}e:o

Use Linear Basis function

. 0¢; () aqﬁ,
=], E

i X

dx —j ug: (x)ﬁdx
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:fl 6¢ o0& 09, o
198 X O Ox

_jl 5¢ 8¢i d§
1O ag d

f——j 9655

- ¢,a§'d§

By the way

dx L dgi(5) _

— =X d¢1e
de &< d
5 j=1 é

de

d¢z
EE

1 1. 1 AX
= X1(—E) + XZ(E) :E(XZ —-X)= 23

f ¢a¢,
o og o

e
m=[ 4

e

é(—) [ ¢,a§

dxj

d_
55

1 AX
= 4pds=

- woo(eZu]|
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E. Assemble global matrix equations

Combining element equations

For each element, apply

[M] {%}+[A]e{é}+{8}e =0

[M ]e &[A]e ~ 2x2 matrices

o Numbering Systems

Local I | I | | I
| | | | | |
1 2 1 2 1 2 ...
Element No 1 2 3 4
Global 1 2 3 4 5 6 ..
Let N (= number of element) = 30
number of nodes = 31
Then | | | | |
| | | |
X X, Xq Xy X

8-91



Ch 8. Numerical Modeling

e=1 2 3

® @
a,

W | @
1

(2)
Ay

[A]= 2 [A] -

31x31 e=1
0
(29) (30) (30)
a22 + a12
(30) (30)
L aZl 2 |
30 e
[M]:Z[M] ~ same as [A]
31x31 e=1
@ ®
B, B,
BY +B? 0
B® + B 0
30 e
[B]=>.{B} = =
31x1 e=1 .
BZ(ZQ) + Bf30) 0
(30)
B9 B,

Since g +¢ " =0
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© Boundary Conditions

A

At X=X ;ué—E@:uc
OX

0]

At X=X, ;ué—E@:ucN
OX

F. Time discretization

(1) Fully Implicit

(M ]{C} R +[Al{C] + (B} =0

At

Inwhich  [R]= [Ait] +[A]

s M

At

(2) Crank - Nicholson scheme

S L Ay eyt o

At

wyiCl-ier +[A][{C}“—{c}k]+{3}k+z 0

At
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—
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8.6 Kinetic Models

o S, term
~ effects of _~ biochemical > changes —  Non-conservative Solutes
chemical
physical sources and sinks — (" lateral input
[ storage zone solute

o Fundamental differential form of conservation equation

accumulation  flux generation

C, =concentration of substance i scalar, mass/vol

o Fickian Diffusion

aEC%V(Ciui) =V(D,VC,) +S,

o Turbulent Diffusion

oc, -
—+VE, u)=V[{D, +&}VC, |+,
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_ 1 7
u:?zjoudt
o Dispersion
2-D: §+uxg+uy@:ia —) ——(HE—) + S,
ot OX oy H ox H oy Y oy
1-D: §+u@=£i(AE—) S,
ot ox A ox

E= longitudinal dispersion coefficient

o Solute Transport

§___ Qeys 19 ap%
Pl ( C) (AD )
Q, A, D = const.

oC oC 0°C
=——+D
ot OX OX?

o |: Groundwater and tributary inputs Q, ,C_

transient storage zones

C__QX 10, D—) QL(C C)+a(C, ~C)

ot Aox Aox

A
—g-—(C,-C
aAs( )
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Q_ =lateral inflow per unit length of stream
C_ =solute concentration in lateral inputs  (assumed to be const)
C, =solute concentration in transient storage zones

A, =cross-sectional area of the storage zone

o =coefficient for storage zone exchange

© Non-conservative solutes

~ terms to simulate solute transfers

~ variety of forms and complexity

~ depends on type of solute and use of model
o Uptake of a first-order function

(loss of solute from the water column)

Sol) %:——(QC) Z@—(AD—) k.C

(x=ut)” Ut)? kit

—F——=€X
2A «/ KT p{ 4kt )

C(x,t)=

k, =overall uptake rate coefficient

o Single benthic compartment with first-order release

C__2 ¢, 13(AD—) k.C+1k,C,
ot ox' A AdX h

oC,

= hk,C —k,C,
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C =water column solute concentration

C; =benthic concentration

h =depth

K., Kg =first-order exchange rate coefficients

V; =hkc mass transfer coefficient

Vv
@:_E(QCHEE(AD@) —'c+
ot ox A A ox ot h
oC
?B =V,C -k;C;

o Non-conservative solute

= nutrients  / -nitrogen
-phosphorus
< -sulfer

-dissolved organic carbon

\
-trace metals copper

1
HkBCB

o Stream transport of copper by incorporating first order mass transfer equations for

periphyton and sediment reactions

§:_E(QC)+EQ(AD@)_ P, oCp _ P, oCq
ot ox A A OX OX ot
oC

—2=25(Cy ~Kd,C)
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oC
—5=4(C, ~KdC)

in which C; =periphyton solute concentration
C4 =sediment solute concentration
P, , P, =mass of periphyton and sediment
Ay, As =first-order exchange rate coefficients

kdB , de =partition coefficients, expressing equilibrium ratios of periphyton

to water column and sediment to water column solute conc.

o Non-linear uptake function (Kuwabara & Heliker, 1988)

~ Monod (or Michaelis-Menten) — algal uptake

—
h ~,oc_1U,C
U= UmaxC ot h KS +C
Ks+C
in which U,... = maximum uptake per unit area of stream bottom

K = half-saturation constant

~ solute concentration at which uptake is one-half the maximum

© Concepts and method for assessing solute dynamics in stream ecosystems (1990)

© Solute dynamics
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transport = advection, dispersion
{transfer (transformation) chemical transformations
changes in physical state(phase) = sorption, desorption

biological processes

© Chemical processes in natural water bodies (Orlob p70)

~ oxidation-reduction reactions
acid-base reactions
gas-solution processes and outgassing
coordination reactions of metal ions and ligands

precipitation and dissolution of solid phases

N adsorption-desorption processes at interfaces
o Aquatic organisms influence the concentrations of many substances by metabolic uptake,

transformation, storage, and release.

© Reaction Rates and Reaction Equation (Orlob p79)

o In simplified water quality modeling, chemical, biochemical, and processes are described

by
dc o _ L
(1) pm =KC ~ irreversible diminish (decay)
n=0
linear ) )
n=1 — first-order reaction
nonlinear n-=0,n=#1
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@ L-EE
dt K,+C
~ non-linear

(Michaelis - Menten)

~ uptake rate of external nutrient concentration

dc

3) —=KC;

(3) at 2
dc o
d_tlzK(Cz,o_Cz)

C,, = saturation conc

~ reaeration , adsorption

(4)%:K1C2”+K2C1 , n=0

~ Streeter-Phelps Eq

~ adsorption - desorption processes

dc N
(5) d_tl = K(C1,o - Cl)CZ - K2C1

~ adsorption

© S2-kc
dt K, +C,

(Monod)

~ change of the biomass C, of a primary producer
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dc dc
7) —L=K,—2-K,C
()dt bt 2t

~ very rapid reactions
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