Ch 5 Numerical Models for Buoyant jets

- **5.1 Analytical Solutions**
- **5.2 Jet Integral Model**
- 5.3 3D Hydrodynamic Model
- **5.4 Example Application of Numerical Model**

Objectives:

- Review analysis methods for buoyant jets
- Introduce numerical models of

5.1 Analytical Solutions

5.1.1 Asymptotic solution

- unknowns:

maximum values at the jet centerline (w_m, C_m) ,

jet half width

- dimensional analysis

Buckingham π theorem \rightarrow dimensionless variables

 For Asymptotic cases consider only dominant process (mechanism) → include important parameters

$$w_m \frac{Q}{M} \to a_1 \left(\frac{l_Q}{z}\right)^1$$
$$\frac{w_m}{W} = 7.0 \frac{l_Q}{z} = 6.2 \frac{D}{z}$$

$$\frac{b}{l_Q} = f\left(\frac{z}{l_Q}\right)$$
$$\frac{b}{l_Q} = a_2 \left(\frac{z}{l_Q}\right)^1 \to b = a_2 z^1$$

$$\frac{b_w}{z} = 0.107$$
 (w = 0.37w_m)

$$\frac{b_T}{z} = 0.127$$
 (c = 0.37c_m)

Velocity profile

- Similarity assumption

 \rightarrow Gaussian profile, analytical solution, top-hat profile

$$w = w_m \exp\left[-k_w \left(\frac{x}{z}\right)^2\right] \tag{1}$$

5.1.2 Solution developed from equation of motion

1) continuity eq.

$$\frac{\partial \overline{u}}{\partial x} + \frac{\partial \overline{v}}{\partial y} + \frac{\partial \overline{w}}{\partial z} = 0$$
(2)

2) time-averaged momentum eq. for steady flow (Reynolds eq.)

x -dir.:

$$\frac{\partial}{\partial x} \left(\overline{u}^2 + \overline{u'}^2 + \frac{\overline{\rho}}{\rho_0} \right) + \frac{\partial}{\partial y} (\overline{u'v'}) + \frac{\partial}{\partial z} (\overline{uw} + \overline{u'v'}) = 0$$
(5.63)

3) *z*-dir.:

$$\frac{\partial}{\partial x}(\overline{uw} + \overline{u'v'}) + \frac{\partial}{\partial y}(\overline{w'v'}) + \frac{\partial}{\partial z}\left(\overline{w}^2 + \overline{w'}^2 + \frac{\overline{\rho}}{\rho_0}\right) = g'_z$$
$$= \frac{\Delta\rho}{\rho}g = \frac{\rho_a - \overline{\rho}}{\rho_0}g \qquad (5.64)$$

- Integrate Eq. (5.64) over jet cross section

(1) vertical region

$$\int_{A(z)} \frac{\partial}{\partial z} \overline{w}^2 dx dy = \int_{A(z)} \left(\frac{\rho_a - \overline{\rho}}{\rho_0} \right) dx dy$$
(5.70)

 \rightarrow Rate of change of vertical flow force in vertical direction is equal to buoyancy force.

$$\int_{A(z)} \frac{\partial}{\partial z} \left[\overline{w}(\rho_a - \overline{\rho}) \right] dx dy = 0$$
(5.71)

 \rightarrow Vertical flux of buoyancy is conserved.

(2) Bent over region

Integrate of Eq. (5.64) and Eq. (5.66) across a vertical plane, A(z) with making same kind simplications.

Then we get

$$\int_{A(z)} \frac{\partial}{\partial x} (\overline{uw}) dy dz = \int_{A(z)} \left(\frac{\rho_a - \overline{\rho}}{\rho_0} \right) g dy dz$$
(5.72)

$$\int_{A(z)} \frac{\partial}{\partial x} \left[\overline{u} (\rho_a - \overline{\rho}) \right] dy dz = 0$$
(5.73)

Eq.(5.72): horizontal flux of vertical momentum = buoyancy force acting in a vertical plane

Eq.(5.73): Horizontal flux of buoyancy is conserved.

1. Jet behavior in a crossflow

1-1. Jet vertical region (J.V.)

(1) Maximum(centerline) velocity, $w_m(\overline{z})$

For $z \square l_Q$, consider only Q, M; neglect buoyancy B (or g')

Then, Eq. (5.70) becomes

$$\int_{A(z))} \frac{\partial \overline{w}^2}{\partial z} dx dy = 0 \quad (A)$$

Assume that velocity and tracer conc. profiles are similar in ZEF

 \rightarrow use similarity solution

$$\frac{\overline{w}(x, y, z)}{w_m(\overline{z})} = \Phi\left(\frac{x}{\overline{z}}, \frac{y}{\overline{z}}\right)$$
(5.74)

$$\frac{(\rho_a - \overline{\rho}) / \rho_0}{\theta(\overline{z})} = \psi\left(\frac{x}{\overline{z}}, \frac{y}{\overline{z}}\right)$$
(5.75)

substitute Eq. (5.74) into (A)

$$\int_{A(z)} \frac{\partial}{\partial z} \left[\overline{z}^2 \overline{w}_m^2(\overline{z}) \phi^2 \right] d\left(\frac{x}{\overline{z}}\right) d\left(\frac{y}{\overline{z}}\right) = 0$$

Leibnitz rule:

$$\therefore \frac{d}{dz} \int_{A(z)} \overline{z}^2 \overline{w}_m^2(\overline{z}) \phi^2 d\left(\frac{x}{\overline{z}}\right) d\left(\frac{y}{\overline{z}}\right) = 0$$
(5.76)

Since w_m and \overline{z} don't vary over A(z) at a particular \overline{z} position,

$$\therefore \frac{d}{dz} \left\{ \overline{z}^2 \overline{w}_m^2(\overline{z}) \int_{A(z)} \phi^2 d\left(\frac{x}{\overline{z}}\right) d\left(\frac{y}{\overline{z}}\right) \right\} = 0$$

$$\therefore \frac{d}{dz} \left[\overline{z}^2 \overline{w}_m^2(\overline{z}) \right] = 0$$

$$\overline{z}^2 w_m^2(\overline{z}) = const$$

$$\overline{z}^2 w_m^2(\overline{z}) \sim M$$
(B)

Then
$$\frac{w_m(\overline{z})}{U} = c \cdot \frac{z_m}{\overline{z}}$$
 (5.82)

(2) Centerline concentration

Substitute Eq. (5.74) and Eq. (5.75) into Eq. (5.71)

$$\therefore \int_{A(z)} \frac{\partial}{\partial z} \Big[\rho_0 \overline{z}^2 w_m(\overline{z}) \theta(\overline{z}) \Phi \psi \Big] d\left(\frac{x}{\overline{z}}\right) d\left(\frac{y}{\overline{z}}\right) = 0$$

$$\frac{d}{dz} \Big\{ \overline{z}^2 w_m(\overline{z}) \theta(\overline{z}) \int_{A(z)} \Phi \psi d\left(\frac{x}{\overline{z}}\right) d\left(\frac{y}{\overline{z}}\right) \Big\} = 0$$

$$\therefore \frac{d}{dz} \Big\{ \overline{z}^2 w_m(\overline{z}) \theta(\overline{z}) \Big\} = 0$$

$$(5.77)$$

 $\therefore \overline{z}^{2} w_{m}(\overline{z}) \theta(\overline{z}) = const. \quad \rightarrow \quad \left[L^{3} T^{-4} \right] = \left[Q \right] (volume flux) \quad (volume flux)$ $\therefore \overline{z}^{2} w_{m}(\overline{z}) \theta(\overline{z}) = const. \quad \frac{B}{g} \qquad (9.79)$

$$\frac{Mg}{UB}\theta(z) = const.\frac{M^{1/2}}{U\overline{z}} = const.\frac{\overline{z}_m}{\overline{z}}$$

$$\therefore \ \frac{Mg}{UB}\theta(z) = D_1 \frac{\overline{z}_m}{\overline{z}}$$
(5.83)

(3) Jet trajectory

- A reasonable assumption is

$$\frac{d\overline{z}}{dx} = \frac{w_m(\overline{z})}{U}$$
(5.84)

 \rightarrow slope of jet trajectory

Substitute Eq. (5.84) into Eq. (5.82)

Eq.(5.82):
$$\frac{w_m(\overline{z})}{U} = const. \cdot \frac{z_m}{\overline{z}}$$

 $\therefore \frac{d\overline{z}}{dx} = const. \cdot \frac{z_m}{\overline{z}}$
 $\overline{z}dz = const. z_m dx$
 $\frac{1}{2}d(\overline{z}^2) = const. z_m dx$

Integrate once

$$\int \frac{1}{2} d\left(\overline{z}^{2}\right) = const. \ z_{m} \int dx$$
$$\frac{1}{2} \overline{z}^{2} = const. \ z_{m} x + const.$$
$$\frac{\overline{z}^{2}}{z_{m}^{2}} = const. \ \frac{x}{z_{m}}$$
$$\therefore \frac{\overline{z}}{z_{m}} = C_{1} \left(\frac{x}{z_{m}}\right)^{1/2}$$
(5.85)

5.1.3 Empirical Models

- (1) Empirical Equations
- Description of multiport diffusers

Design goal of diffusers is to minimize detrimental effects of the discharge on the environment. Submerged multiport diffuser are shown in Figure 5.3.

Figure 5.3 Classification of thermal diffusers

• Dilution of multiport diffusers

i) T-Diffuser

Experimental and empirical equations for near field dilution are given below.

a. Dilution for stagnant ambient, S_0

$$S_0 = \sqrt{\frac{H}{2B}} = 0.71 \sqrt{\frac{H}{B}}$$

where H = water depth, B = width of equivalent slot diffuser

Assuming merging of individual jets

$$BL_{D} = n(\pi D_{0}^{2} / 4)$$
$$B = \frac{\pi D_{0}^{2} / 4}{L_{D} / n} = \frac{\pi D_{0}^{2}}{4l}$$

where $D_0 = \text{port diameter}$, $L_D = \text{diffuser length}$, n = number of port, l = port spacing

b. Dilution for flowing ambient, S_t

$$\frac{S_0}{S_t} = \frac{1}{1 - [60 \exp(-5.0m_r^{0.2})]m_r}$$

5-10

where m_r = momentum ratio between ambient flow and effluent discharge

$$m_r = \frac{m_a}{m_0} = \frac{U_a^2 H}{U_0^2 B}$$

ii) Staged Diffuser

a. Dilution for stagnant ambient, S_0

$$S_0 = 0.43 \sqrt{\frac{H}{B}}$$

b. Dilution for flowing ambient, S_t

Weak cross flow: $\frac{S}{S_0} = 1.35$

Strong cross flow:
$$\frac{S}{S_0} = 1.35\sqrt{m_r}$$

	Stagnant Ambient	Flowing	Ambient
	$m_r = 0$	$m_r < 1$	$m_r > 1$
Tee Diffuser	$S_0 = 0.71 \sqrt{\frac{H}{B}}$	$\frac{S}{S_0} = 1 - [60 \text{ exp}]$	$p(-5.0m_r^{0.2})]m_r$
Staged	$S_0 = 0.43 \sqrt{\frac{H}{R}}$	$\frac{S}{-1.35}$	$\frac{S}{-1.35\sqrt{m_r}}$
Diffuser	v V B	S ₀	S_0
Alternating	$S_0 = 0.54 \sqrt{\frac{H}{H}}$	$\frac{S}{-}=0.82$	$\frac{S}{m} = 0.82\sqrt{m}$
Diffuser	• VB	S_0	S_0

Table 5.3 Dilution equations of multiport diffusers

iii) Dilution of single-port diffuser

(1) Stagnant water

For horizontal discharge into un-stratified ambient, minimum dilation at water surface is given below.

$$S_{0} = 0.089 g^{1/3} \frac{H^{5/3}}{Q_{0}^{2/3}}$$
$$Q_{0} = \frac{\pi}{4} D_{0}^{2} U_{0}$$
$$g' = g \frac{\Delta \rho}{\rho_{0}} = g \frac{\rho_{a} - \rho_{0}}{\rho_{0}}$$

(2) Ambient crossflow

For strong deflection,

$$S = 0.32 \frac{U_a H^2}{Q_0}$$

(2) CORMIX

1) Introduction

The CORMIX modeling system is a comprehensive software system for the analysis, prediction, and design of outfall mixing zones resulting from discharge of aqueous pollutants into diverse water bodies. It contains mathematical models of point source discharge mixing within an intelligent computer-aided-design (CAD) interface. Its focus is environmental impact assessment and regulatory management. CORMIX has been developed under several cooperative funding agreements between U.S. EPA, U.S. Bureau of Reclamation, Cornell University, Oregon Graduate Institute (OGI), University of Karlsruhe, Portland State University, and MixZon Inc. during the period of 1985-2007.

CORMIX is a recommended analysis tool on the permitting of industrial, municipal, thermal, and other point source discharges to receiving waters. Although the system's major emphasis is predicting the geometry and dilution characteristics of the initial mixing zone so that compliance with water quality regulatory constraints may be judged, the system also predicts the behavior of the discharge plume at larger distances. CORMIX contains four core hydrodynamic simulation models and two post-processor simulation models. The simulation models are:

- Simulation models for single port discharges (CORMIX1).
- Simulation models for submerged multiport diffusers (CORMIX2).
- Simulation models for buoyant surface discharges (CORMIX3).
- Simulation models for dense brine and/or sediment discharges from single port, submerged multiport, or surface discharges in laterally unbounded coastal environments (DHYDRO).
- Post-processor simulation models for detailed near-field mixing of submerged single port and multiport diffusers in unbounded environments (CorJet).
- Post-processor simulation model for far-field plume analysis (FFL).

CORMIX1 predicts the geometry and dilution characteristics of the effluent flow resulting from a submerged single port diffuser discharge, of arbitrary density (positively, neutrally, or negatively buoyant) and arbitrary location and geometry, into an ambient receiving water body that may be stagnant or flowing and have ambient density stratification of different types.

CORMIX2 applies to three commonly used types of submerged multiport diffuser discharges under the same general effluent and ambient conditions as CORMIX1. It analyzes unidirectional, staged, and alternating designs of multiport diffusers and allows for arbitrary alignment of the diffuser structure within the ambient water body, and for arbitrary arrangement and orientation of the individual ports. For complex hydrodynamic cases, CORMIX2 uses the "equivalent slot diffuser" concept and thus neglects the details of the individual jets issuing from each diffuser port and their merging process, but rather assumes that the flow arises from a long slot discharge with equivalent dynamic characteristics. Hence, if details of the effluent flow behavior in the immediate diffuser vicinity are needed, an

5 - 15

additional CORMIX1 simulation for an equivalent partial effluent flow may be recommended. CORMIX3 analyzes buoyant surface discharges that result when an effluent enters a larger water body laterally, through a canal, channel, or near-surface pipe. In contrast to CORMIX1 and 2, it is limited to positively or neutrally buoyant effluents. Different discharge geometries and orientations can be analyzed including flush or protruding channel mouths, and orientations normal, oblique, or parallel to the bank.

(1) Data Input

Input data groups are arranged in six topical tabs which are: Project descriptions, Effluent properties, Ambient conditions, Discharge conditions, Mixing Zone definitions, and Output control. All the data input requirements of CORMIX are included in the Checklist for Data Preparation.

CORMIX (heo	klist for Data Preparation	– Version v5.0
		PROJECT LEGEND	
Project File Name:		Design Case:	
Site Name:		Prepared By:	Date:
		EFFLUENT DATA	
Non-Fresh Water Effluent Dens	ty	🗆 Fresh Wate	er Effluent Density
Density ρ₀:kg/m		□ Temperature T ₀ :°C	□ Density ρ₀: kg/m³
Discharge Excess Concentration:		□ Effluent Flowrate Q ₀ :m ³ /s	□ Effluent Velocity U ₀ :m/s
Conservative Non Conserv	tive:	Pollutant Types /day □ Heated – Heat L	oss Coefficient:W/m²/°C
Brine Sediment: Chunks Total S	dimen	. % Sand:% Coarse Silt: t Concentration: kg/m³	% Fine Silt:% Clay:%
	MB	ENT GEOMETRY / FLOW FIELD	DATA
Average Depth Ha:	m	Unbounded Bounded: Width BS	: m
Depth at Discharge Hd:	m	Appearance: 🗆 Unifor	m 🗆 Slight Meander 🗆 Highly Irregular
□ Steady	-	Uns	teady
Ambient Flowrate Qa	m³/s	Periodhr Max Velocity Um m	/s I Idal Velocity at this Time U _a :m/s
	m/s		
□ Single Slope	•		r & Far Slope
Slope S:	% m/a	□ Near Shore Slope S ₁ %	□ Far Slope S ₂ : %
Near Shore Darey Weishach f	m/s	Near Shore Velocity Ua1m/s	Far Shore Velocity Ua2: m/s Far Shore Darey Weisbach fe:
Near Shore Darcy-Weisbach I		Breakpoint:	
□ Manning's n:		Wind Speed: m/s	
N/ata	Por		sh Water
	БОС		
Difform Fresh. Difference.		C Density pa	Non-Fresh: Density pa: Kg/ m ³
Stratified Stratified Density of At Surface	- ycn	ka/m3/ 2C At Pottom and	
Density p. At Surface	Pas		
	sity p		12 Density p ₂ : kg/ m ³ Sub 2: m
CORMIX 1 – Single Port	1	CORMIX 2 - Multiport	CORMIX 3 – Surface Discharge
Nearest Bank:	Ne	arest Bank: □ Left □ Right	Discharge Located: Left Right
Dist to Nearest Bank:		Unidirectional	Horiz. Angle σ:°
Vert. Angle θ_0 :°: Horiz. Angle σ_0 :	° №	of openings:; Diffuser Length:m	Local Depth at Discharge Outlet:
□ Port Diameter D₀:m	Dis	t. to 1 nd end-point YB ₁ :m	□ Flush □ Co-flowing
□ Port Area A₀:m²	Dis	t. to 2⁵t far end-point YB₂:m	□ Protruding: Distance from Bank:
Submerged	Po	rt Height h₀: m; Port Diameter D₀: m	Discharge Outlet
Port Height above Bottom h ₀ :	י Co	ntraction Ratio:	□ Channel: Width: m: Depth bo: m
Above Surface		Angles (degrees)	□ Pipe: Diameter Do: m
Port Height above Surface	י Ve	rt. Angle θ :°; Horiz. Angle σ :°	Bottom Invert Depth:
□ Jet-like □ Spray □ Area	Ali	gn. Angle γ:°; Relat.Orient. Angle β: °	Local Bottom Slope at Chanel Entry:
Deflector Plate: . D With or D Withou	No	zzle Direction:	
		MIXING ZONE DATA	
│ Non-Toxic Efflu	ent	lo WO Standard CMC :	oxic Effluent
	⊡ oifics		la Mixing Zona Specified
□ Trajectory:	am Di	stance:	%/m
Region of Interest:m	Grid	I Intervals for Display:	/

Figure A1. COMIX checklist sheet

(2) Data Output

The 'Output' tab form has radio control buttons to control CORMIX output in a simulation. The user can display, print, display and print, or have no output of the prediction file (fn.prd), session report (fn.ses), flow class description (fn.flw), design recommendations (fn.rec), and processing record (fn.jrn). In addition, the user can select radio buttons to show the rule-tree stem and leaf display of the rules used in data processing.

(3) Flow Classification

The table lists and describes categories of flow classes available in CORMIX1 and CORMIX2, consider 70 and 62 distinct flow classifications, respectively. Each flow class identifications consists of an alphanumeric label corresponding to the flow category and a number.

Model	Flow Class	Description
CORMIX1	Classes S	Near bottom discharge flows trapped in a layer
(70 classes)		within linear stratification.
	Classes IS	Near surface discharge flow trapped in a layer within
		linear stratification.
	Classes V, H	Near bottom discharge positively buoyant flows in a
		uniform density layer.
	Classes IV, IH	Near surface discharge positively buoyant flows in a
	,	uniform density layer.

	Classes NV,	Near bottom discharge negatively buoyant flows in
	NH	uniform density layer.
	Classes IPV,	Near surface discharge positively buoyant flows in
	IPH	uniform density layer.
		Near bottom discharge flows affected by dynamic
	Classes A	bottom attachment
	Classes IA	Near surface discharge flows affected by dynamic
	Classes IA	surface attachment
CORMIX2	Classes MS	Near bottom discharge flows trapped in a layer
(62 class)	Classes MS	within linear ambient stratification.
	Classes IMS	Near surface discharge flow trapped in a layer within
		linear ambient stratification.
		Near bottom discharge positively buoyant flows in a
		uniform density layer.
	Classes IMU	Near surface discharge positively buoyant flows in a
		uniform density layer.
	Classes MNU	Near bottom discharge Negatively buoyant flows in
		uniform density layer.
	Classes IMPI	Near surface discharge positively buoyant flows in
		uniform density layer.

Table A1. Flow specification in CORMIX

Diffuser Induced Flows Near Bottom (not fully mixed)

Figure A2. Flow specification of negative buoyant multiport diffuser (MNU1-6)

Figure A3. Flow specification of negative buoyant multiport diffuser (MNU7-14)

CORMIX v5.	0							×
Project Pages P	re-Processinç	Tools Run	Output Data I	Reports	Post-Processi	ng/Advanced	Help	
Load Clear Save	Save As Print	bs kg SI-Units CorData	CorSpy	40} D D 4 FC Tree	CorVue CorJet	FFL CorSens	Onine Help M	1anual
Project	Effluent	Ambient	Discharge	Mixir	ng Zorne	Output	Processing	3
						Project Le	gend	<u>+</u>
		Proj	ect Legend/Iden	tification				
Project File Name:	[Load	
Design Creek	п <u> </u>		C14.	Nama				- 11
beaign clase.			310	- Marries J				22
Prepared By:				Date:		02/02	2/07 Today	
Drojast Natoni								
							-	-

Figure A4. CORMIX GUI window

Figure A5. CORMIX system elements and conceptual linkages

5.2 Jet Integral Model

5.2.1 Governing Equation

Equation of motion for a vertical buoyant jet in a density-stratified ambient

1) volume flux:
$$\frac{d\mu}{dz} = -\lim_{r \to b(z)} (2\pi r \overline{\mu})$$

(5.123)

2) momentum flux:
$$\frac{dm}{dz} = \int_0^{b(z)} 2\pi r g \theta dr$$
 (5.124)

3) buoyancy flux:
$$\frac{d\beta}{dz} = -g \frac{d\varepsilon}{dz} \mu$$
 (5.125)

where

$$\mu = \int_0^{b(z)} 2\pi r \overline{w} dr \tag{5.126}$$

$$m = \int_0^{b(z)} 2\pi r \overline{w}^2 dr \tag{5.127}$$

$$\beta = \int_0^{b(z)} 2\pi r g \bar{w} \theta dr \tag{5.128}$$

Combine Eq. (5.107) and Eq. (5.123)

$$-\lim_{r \to b(z)} 2\pi r \overline{u} = 2\pi \alpha b_w w_m \tag{5.129}$$

Adopt Gaussian distributions for \overline{w} and θ

$$\overline{w} = w_m \exp\left[-\left(\frac{r}{b_w}\right)^2\right]$$
(5.130)

$$\theta = \theta_m \exp\left[-\left(\frac{r}{b_T}\right)^2\right]$$
(5.131)

Adopt constant value for ratio of half-width, b_T / b_w

$$b_T / b_w = \lambda = 1.2 \tag{5.132}$$

Substituting Eqs. (5.129) ~ (5.132) into Eqs. (5.123) ~ (5.128), and assuming $b(z) \rightarrow \infty$ gives a set of 3 ordinary differential equations for w_m, θ_m, b_W

$$\frac{d}{dz}(\pi b_W^2 w_m) = 2\pi \alpha b_W w_m \tag{5.133}$$

$$\frac{d}{dz}\left(\frac{\pi}{2}b_W^2 w_m^2\right) = \pi g \lambda^2 b_W^2 \theta_m \tag{5.134}$$

$$\frac{d}{dz} \left(\frac{\pi g \lambda^2 b_W^2 w_m \theta_m}{1 + \lambda^2} \right) = -g \frac{d\varepsilon}{dz} \pi b_W^2 w_m$$
(5.135)

Initial condition for w_m, θ_m, b_W are given as

$$\left[\pi b_W^2 w_m\right]_0 = Q \tag{5.136}$$

$$\left[\frac{\pi}{2}b_W^2 w_m^2\right]_0 = M \tag{5.137}$$

$$\left[\pi g \frac{\lambda^2}{1+\lambda^2} w_m b_W^2 \theta_m\right]_0 = B$$
(5.138)

General cases:

Governing Equations:

x-momentum eq.

z-momentum eq.

buoyancy flux eq.

geometric eqs - 3 eqs.

closure model: spreading eq. / entrainment eq.

Unknowns: $b_w, w_m, \theta_m, x, y, z, \gamma$

-> system of ODE

-> 4th order Runge Kutta method

5.2.2 Visjet

(1) Introduction

VISJET is a flow visualization tool to portray the evolution and interaction of multiple buoyant jets discharged at different angles to the ambient current. The modeling engine is a robust Lagrangian model, JETLAG, which has been tested extensively against theory, basic laboratory experimental data, field verification studies and applications. It is aimed to facilitate the environmental impact assessment and outfall design studies. It is able to predict the initial mixing of buoyant wastewater discharges in a current, and communicate the predicted impact effectively to the user . The model provides 3D flow visualization of the predicted path and mixing of an arbitrarily inclined buoyant plume in a moving receiving water which may be density-stratified. VISJET can be used to study the impact of either a single or a group of inclined buoyant jets in three-dimensional space. It can be used for outfall design, impact assessment and risk analysis of polluting or natural environmental discharges (e.g. deep sea hydrothermal vents). It can also be used as an educational tool to introduce concepts such as mixing and transport, and assimilative capacity of the receiving water.

(2) Governing equations

In solving arbitrarily-inclined buoyant jet in a crossflow with JETLAG model, there are 7 unknowns with 7 ordinary differential equations, which constitute a closed system. The unknowns are *b* (radius of the jet), *w* (velocity of the jet), θ (angle between discharge port and *x*-axis), *x*, *y*, *z* (center of the disk) and γ_u (angle between excess velocity vector and *x*-axis)

<i>x</i> -momentum	l	$\frac{d}{ds} \left[\cos \gamma_u \left(I_m \overline{U_g^2} b^2 + \overline{u_a} \cos \gamma_u I_q \overline{U_g} b^2 \right) \right] = 0$
<i>z</i> -momentum	l	$\frac{d}{ds} \left[\sin \gamma_u \left(I_m \overline{U_g^2} b^2 + \overline{u_a} \cos \gamma_u I_q \overline{U_g} b^2 \right) \right] = I_\Delta b^2 \overline{\Delta_c}$
buoyancy flux	X	$\frac{d}{ds} \left[\overline{u_a} \cos \gamma_u I_\Delta \overline{\Delta_c} b^2 + \overline{U_g} I_{q\Delta} \overline{\Delta_c} b^2 \right] = 0$
diffusion assu	mption	$db / ds = k_g \overline{U_g} \left(\overline{u_a} \cos \gamma_u + \overline{U_g} \right)$
geometric	x	$dx / ds = \left(\overline{u_a} + \overline{U_g} \cos \gamma_u\right) / \left(\overline{u_a} \cos \gamma_u + \overline{U_g}\right)$
relationships	у	$dy / ds = \left(\overline{U_g} \cos \gamma_u \sin \beta\right) / \left(\overline{u_a} \cos \gamma_u + \overline{U_g}\right)$
	Ζ.	$dz / ds = \overline{U_g} \sin \gamma_u / \left(\overline{u_a} \cos \gamma_u + \overline{U_g}\right)$

Table A2. Governing equations used in VISJET

(3) Input parameters/output results

VISJET simulates the mixing of single or multiple buoyant jets discharged from one or more risers mounted on an ocean outfall. In a particular application, the input parameters for the

ambient condition, the outfall, riser, and jet characteristics are needed. The following Table 2 is a input parameters required to run VISJET.

parameter	assignment	attribute	meaning
	specifying the	depth	depth below surface
ambient	vertical structure	salinity/density	ambient salinity or density
parameter	of the ambient	temperature	ambient temperature
	water:	current	horizontal current speed
		depth	depth below surface
outfall	specifying the	salinity/density	effluent salinity or density
parameter	properties of the	temperature	effluent temperature
F	outfall	length	length of outfall
		diameter	Diameter of the outfall
		flow	sum of the effluent flow of all the ports
			mounted on the riser
riser	specifying the	distance	distance from the offshore end of the
parameter	properties of the		outfall
-	riser	bottom radius	radius at the bottom of the riser
		top radius	radius at the top of the riser
		height	the height of the riser
jet	specifying the	flow	effluent flow from the port
parameter	properties of the	diameter	port diameter
1	jet	port height	port height

Table A3. Input parameters in VISJET

wertical angle	vertical jet discharge angle relative to
vertical angle	Horizontal plane
horizontal angle	horizontal angle of current direction
norizontal angle	with respect to jet discharge
salinity/density	effluent salinity or density
temperature	effluent temperature

After the simulation, you can obtain disk/cross-section information. With the concentration results, dilution rate at a given trajectory can be acquired. The following Table 3 is about output results in VISJET.

result	attribute	meaning
	center position	the (x, y, z) co-ordinates of the center of the selected disk, which is the computed jet trajectory
		disk, which is the computed jet trajectory
	radius	jet half width of the selected disk
	thickness	thickness of the selected disk
disk		vertical angle is the angle between the jet axis and the
information	angle	horizontal plane; horizontal angle is the angle between
	ungio	the x-axis and the projection of the jet axis on the
		horizontal plane
	velocity	jet velocity of the selected disk
	concentration	maximum/average concentration of the selected disk

	nosition	the (x, y, z) co-ordinates at the position of the point
	position	selected by the mouse or pointing device
	total area	total projected area of the jets on the cutting plane
cross-		
		sum of all the projected areas of the
section	sum of areas	
		individual(selected) jets
information		
	horizontal/vertical	the horizontal/vertical span of the projected region for
	span	the selected jet
	concentration	average concentration at the above position

(4) GUI-window and result

VISJET is a Windows-based flow visualization tool to predict initial mixing of buoyant wastewater discharges in a current. The simulation wizard and visual toolbox allow the user to input the field condition easily and manipulate the view of the graphic outputs and the cutting plane. The following figures are captured frames of simulation procedures and 3-D result view in VISJET.

Step 2: Please Select a S	Scenario N	lode	
VISJET can be run in two (1) Outfall without rise	general runi er: a numbe	ning modes. er of jets mounted on a single	-
 Create a Scenario w 	/ith Riser	Outfall Riser Jet	

Figure A6. Simulation procedures in VISJET

Figure A7. 3-D result view in VISJET

5.3 3D Hydrodynamic Model

5.3.1 Mathematical Model

5.3.2 FLUENT

5.3.3 FLOW-3D

5.4 Example Application of Numerical Model

Model Parameter Specifications

B1. CORMIX

(1) Diffuser type

5-36

a. Single port

 Table B1. Model Parameter Specifications (Single port)

Parameter	Value	
Ambient Data		
Average Depth (Ha)	7.5 m	
Discharge Depth (Hd)	6.7 m (= Ha - 0.8 m)	
Manning coefficient (n)	0.031	
Wind Speed (Uw)	2.19 m/s	
Ambient density (pa)	Non-fresh water 1022.17 kg/m ³	
Effluent Data		
Discharge density ($\rho 0$)	Non-fresh water 1024.23 kg/m ³	
Temperature difference (ΔT)	7 °C	
Heat loss coefficient	$25 \text{ W/m}^2 / ^{\mathcal{C}}$	
Discharge Geometry Data		
Nearest bank	Left / Right	
Distance to nearest bank	22 m	
Port height (h0)	0.8 m	
Port diameter (D)	1.0 m	
Vertical angle (θ)	<i>30</i> °	
Horizontal angle (σ)	90°	

b. Tee diffuser Table B2. Model Parameter Specifications (Tee diffuser)

Parameter	Value	
Ambient Data		
Average Depth (Ha)	7.5 m	
Discharge Depth (Hd)	6.7 m (= Ha - 0.8 m)	
Manning coefficient (n)	0.031	
Wind Speed (Uw)	2.19 m/s	
Ambient density (pa)	Non-fresh water 1022.17 kg/m ³	
Effluent Data		
Discharge density (ρ0)	Non-fresh water 1024.23 kg/m ³	
Temperature difference (ΔT)	7 °C	
Heat loss coefficient	$25 \text{ W/m}^2 / ^{\circ} C$	
Discharge Geometry Data		
Nearest bank	Left / Right	
Diffuser length (Ld)	10 m	
Distance to on/ other end point	22 / 22 m	
Port height (h0)	0.8 m	
Port diameter (D)	0.3 m	
Contraction ratio	1 (rounded)	
Total number of opening (N)	4	
Nozzles per riser	Single	
Alignment angle (γ)	0 °	
Diffuser arrangement	$ heta=30^\circ/eta=90^\circ/\sigma=90^\circ$	

c. Staged diffuser Table B3. Model Parameter Specifications (Staged diffuser)

Parameter	Value		
Ambient Data			
Average Depth (Ha)	5.358 m 7.358 m		
Discharge Depth (Hd)	$\begin{array}{c} 4.558 \ m \\ 6.558 \ m \\ (= Ha - 0.8 \ m) \end{array}$		
Manning coefficient (n)	0.031		
Wind Speed (Uw)	2.19 m/s		
Ambient density (pa)	Non-fresh water 1022.17 kg/m^3		
Effluent Data			
Discharge density (p0)	Non-fresh water 1024.23 kg/m ³		
Temperature difference (ΔT)	4.5°C/16 ℃		
Heat loss coefficient	$25 \text{ W/m}^2 / ^{\circ} C$		
Discharge Geometry Data			
Nearest bank	Left / Right		
Diffuser length (Ld)	10 m		
Distance to on/ other end point	160.48 / 170.48 m		
Port height (h0)	0.8 m		
Port diameter (D)	0.3 m		
Contraction ratio	1 (rounded)		
Total number of opening (N)	4		
Nozzles per riser	Single		
Alignment angle (y)	0 °		
Diffuser arrangement	$ heta=30^\circ/eta=0^\circ/\sigma=90^\circ$		

(2) Outfall pit type

Parameter	Value
Ambient Data	
Average Depth (Ha)	0.585 m (= Hd + 30%)
Discharge Depth (Hd)	0.76 m (= 3 h0)
Manning coefficient (n)	0.031
Wind Speed (Uw)	2.19 m/s
Ambient density (pa)	Non-fresh water 1022.17 kg/m ³
Effluent Data	
Discharge density (ρ0)	Non-fresh water 1024.23 kg/m3
Temperature difference (ΔT)	7 °C
Heat loss coefficient	$25 W/m^2/°C$
Discharge Geometry Data	
Nearest bank	Left / Right
Diffuser length (Ld)	11.5 m
Distance to on/ other end point	22 / 22 m
Port height (h0)	$0.25 \ m \ (= D/2)$
Port diameter (D)	0.497 m
Contraction ratio	1 (rounded)
Total number of opening (N)	23
Nozzles per riser	Single
Alignment angle (γ)	0 °
Diffuser arrangement	$ heta=30^\circ/eta=0^\circ/\sigma=90^\circ$

Assumption 1: Port Series (N = 23) Table B4. Model Parameter Specifications (Outfall pit_Assumption1)

Assumption 2: Neutral buoyancy Table B5. Model Parameter Specifications (Outfall pit_Assumption2)

Parameter		Value	
Ambient Data			
Average Depth (Ha)		0.646 m (= Hd + 30%)	
Discharge Depth (Hd)	0.497 m	
Manning coefficient (n)	0.031	
Wind Speed (Uw)		2.19 m/s	
Ambient density (pa)		Non-fresh water 1024.23 kg/m ³	
Effluent Data			
Discharge density (ρ0)		Non-fresh water 1024.23 kg/m ³	
<i>Temperature difference (ΔT)</i>		7 °C	
Heat loss coefficient		$25 \text{ W/m}^2 / ^{\circ} C$	
Discharge Geometry Data			
Discharge located on		Left / Right	
Horizontal angle (σ)		90°	
Bottom slope		2.58°	
Depth at discharge (Hd0)		0.497 m	
Channal	Width (B0)	9 m	
Cnannei	Depth (h0)	0.497 m	

B2. VISJET (1) Diffuser

parameter	assignment	attribute	meaning
effluent parameter effluent properties of the jet		flow rate (m /s)	effluent flow from the port
	specifying the	depth (m)	depth below surface (He)
	properties of the jet	salinity (psu) density (g/ml)	effluent salinity or density
		temperature (°C)	effluent temperature
	specifying the	depth (m)	depth below surface (Ha)
ambient structure of	salinity (psu) density (g/ml)	ambient salinity or density	
parameter	the ambient	temperature (°C)	ambient temperature
	water	current (m/s)	horizontal current speed
	specifying the	length (m)	length of outfall
properties of the outfall	diameter (m)	diameter of the outfall	
	distance (m)	distance from the offshore end of the outfall	
	bottom diameter (m)	diameter at the bottom of the riser (Db)	
geometry	· C · 1	top diameter (m)	diameter at the top of the riser (Dt)
parameter	specifying the	height (m)	the height of the riser (Hr)
the riser	diameter (m)	port diameter (Dp)	
		port height (m)	port height (Hp)
		vertical angle (°)	vertical jet discharge angle relative to Horizontal plane (θ)
		horizontal angle (°)	horizontal angle of current direction with respect to jet discharge

a. Single port

Parameter	Value
Ambient Data	
Ambient Depth	7.5 m
Current Velocity	0 m/s, 1.0 m/s
Current angle	<i>90</i> °
Ambient Salinity	34.44 psu
Ambient Temperature	27.5 ℃
Effluent Data	
Effluent Depth	7.5 m
Effluent Temperature	20.5 ℃
Effluent Discharge	0.944 cms, 1.578 cms
Effluent Salinity	34.44 psu
Discharge Geometry Data	
Riser height	1 m
Top radius of riser	0.5 m
Bottom radius of riser	0.75 m
Port height	0.8 m
Port diameter	1.0 m
Vertical angle	30°
Horizontal angle	90°

 Table B6. Model Parameter Specifications (Single port)

b. Tee diffuser

Parameter	Value
Ambient Data	
Ambient Depth	5.358 m, 7.358 m, 7.5 m
Current Velocity	0 m/s, 1.0 m/s
Current Angle	90°
Ambient Salinity	34.44 psu
Ambient Temperature	27.5 ℃
Effluent Data	
Effluent Depth	5.358 m, 7.358 m, 7.5 m
Effluent Temperature	20.5 °C
Effluent Discharge	0.944 cms, 4.722 cms
Distance between nearby risers	2.5 m
Effluent Salinity	34.44 psu
Discharge Geometry Data	
Riser height	1 m
Top radius of riser	0.4 m
Bottom radius of riser	0.3 m
Port height	0.8 m
Port diameter	0.3 m
Vertical angle	30°
Horizontal angle	90°

 Table B7. Model Parameter Specifications (Tee diffuser)

c. Staged diffuser

Parameter	Value	
Ambient Data		
Ambient Depth	7.5 m	
Current Velocity	0 m/s, 1.0 m/s	
Current Angle	<i>90</i> °	
Ambient Salinity	34.44 psu	
Ambient Temperature	27.5 ℃	
Effluent Data		
Effluent Depth	7.5 m	
Effluent Temperature	20.5 ℃	
Effluent Discharge	0.944 cms, 4.722 cms	
Distance between nearby outfall	2.5 m	
Effluent Salinity	34.44 psu	
Discharge Geometry Data		
Riser Height	1 m	
Top Radius of Riser	0.4 m	
Bottom Radius of Riser	0.3 m	
Port Height	0.8 m	
Port Diameter	0.3 m	
Vertical Angle	30°	
Horizontal Angle	90°	

 Table B8. Model Parameter Specifications (Staged diffuser)

(2) Outfall pit type

Parameter	Value	
Ambient Data		
Ambient Depth (Ha)	0.497 m	
Current Velocity	0 m/s, 1.0 m/s	
Current Angle	90°	
Ambient Salinity	34.44 psu	
Ambient Temperature	27.5 °C	
Effluent Data		
Effluent Depth (He)	0.697 m	
Effluent Temperature	20.5 °C	
Effluent Discharge	0.944 cms, 1.578 cms, 4.722 cms	
Distance between nearby outfall (l_0)	0.497 m	
Effluent Salinity	34.44 psu	
Discharge Geometry Data		
Riser Height (Hr)	0.697 m	
Top Diameter of Riser (Dt)	0.497 m	
Bottom Diameter of Riser (Db)	0.497 m	
Port Height (Hp)	0.4485 m	
Port Diameter (Dp)	0.497 m	
Vertical Angle	<i>30</i> °	
Horizontal Angle	90°	

 Table B9. Model Parameter Specifications (Outfall pit type)

