Residual Stress & Treatment

2018. 04. 18. Jun Sang Lee

Principle of Residual Stress Generation

Masubuchi, K. (1980). Analysis of Welded Structures: Residual Stress, Distortion, and their Concequences, Pergamon Press Ltd, London.

- AB-curve : Compressive stress increases in linear elastic manner the yield stress of material
- BC curve : Plastic deformation is encountered which affects in decreasing compressive stress.
- CD curve : Cooling stage, the stress sign is dramatically changed from compressive to tension stress, increases in linear elastic way up to the yield stress at point D.
- DE curve : Non-linear plastic behaviour takes place in room temperature resulting in a tensile residual stress in the middle bar and contrary a compressive residual stress in both side bars which are equal to one-half of tensile stress in the middle bar.

Figure 1. Illustration of residual stress mechanism in welding (source: Masubuchi, 1980)

Welding Residual Stress

Masubuchi, K. (1980). Analysis of Welded Structures: Residual Stress, Distortion, and their Concequences, Pergamon Press Ltd, London.

Figure 2. Schematic illustrations of heat cycles in welding and residual stress results (source: Masubuchi, 1980)

Temperature change makes stress distribution

- A-A : Before welding
- B-B : When weldment is dropped
- C-C : Cooling stage
- D-D : Room T

Material Reliability & Forensic Safety Lab.

Welding Residual Stress Distribution

Masubuchi, K. (1980). Analysis of Welded Structures: Residual Stress, Distortion, and their Concequences, Pergamon Press Ltd, London.

Figure 3. Typical distributions of residual stress in plate butt joints (source: Masubuchi, 1980)

- Tension & Compression both are distributed (For force equilibrium)
- The maximum stress of transverse direction is bigger than the maximum stress of longitudinal direction

Material Reliability & Forensic Safety Lab.

Residual Stress Effect on Fatigue Life

Fatemi, A., 2011, "Fatigue Tests and Stress-Life (S-N) Approach. Lecture Notes," University of Toledo, OH. Available at: https://www.efatigue.com/

Fig. 4 S-N curves for various mean stress distributions [44]

- Tensile mean stresses are the worst since their impact on fa-tigue life is significantly more adverse than that of other stresses.
- Compressive stresses have an effect of closing up the crack and retarding crack propagation, which result in fatigue life extension.

Residual Stress Treatment

-120.0

-140.0

-160.0

0.000

0.010

ser Peened Ti-6AI-4V

Depth (in.)

0.020

not Peened Ti-6Al-2Sn-4Zr-2Mo

0.030

0.040

-800

-1,000

0.050

Residual stress could be treated by PWHT & Peening methods -

400 600 800 1000 1200 1400 1600 1800 2000

Depth (microns)

(AW Sample)

+Location#3

(PWHT Sample

Material Reliability & Forensic Safety Lab.

100

50

0

200 0

Post Weld Heat Treatment

Conventional Purpose of PWHT

- To achieve following two advantages;
 - * Reduce the welding residual stress
 - * Improve microstructure and mechanical properties

Recent Issue of PWHT

- Issue : Degradation of toughness and tensile strength after PWHT was shown in some cases;
 - * Several quenched and tempered steels
 - * Long PWHT time
- PWHT exemption for quenched and tempered steel is needed in terms of mechanical properties and saving costs of the process.

LTT(Low Transformation Temperature) Welding

Definition

The novel welding method with relatively low temperature martensitic transformation of welding filler

> Purpose

Reducing tensile residual stress or inducing compressive residual stress in weld material

Basic Principle

(Application of low Ms temperature consumable to dissimilar welded joint, 2014)

Material Reliability & Forensic Safety Lab.