Ch. 4

MASS TRANSFER
BY MIGRATION
AND DIFFUSION



4.1 DERIVATION OF A GENERAL MASS TRANSFER EQUATION

= The difference of electrochemical potential over a distance

- due to a concentration gradient or potential gradient

Point s
@

i(s) = W+ RT In ai(s) + z,Fo(s)

Point
2

(r) = W+ RT In ar) + z;Fo(r)

(a) (b)
Figure 4.1.1 A gradient of electrochemical potential.

= A flux of species J occurs to alleviate any difference of electrochemical potential
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: Nernst-Einstein relation



4.1 DERIVATION OF A GENERAL MASS TRANSFER EQUATION

= Consider the Nernst-Planck equations
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4.1 DERIVATION OF A GENERAL MASS TRANSFER EQUATION

= Consider the Nernst-Planck equations
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= In this chapter, we are concerned with systems in which convection is absent.

- Convective mass transfer (Chapter 9)

= In an unstirred or stagnant solution with no density gradients

—> solution velocity (v) = 0

- the general flux equation for species j becomes
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4.1 DERIVATION OF A GENERAL MASS TRANSFER EQUATION
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= If species j is charged,
- then the flux, J, is equivalent to a current density.
= If we consider a linear system with a cross-sectional area, A, normal to the axis of mass
flow.
- J; (mol s cm) is equal to -i,/zFA [C/s per (C mol-1 cm?)]

- where i is the current component at any value of x arising from a flow of species j

= Then,



4.1 DERIVATION OF A GENERAL MASS TRANSFER EQUATION
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4.2 MIGRATION

1) In the bulk solution (away from the electrode)
—> concentration gradients are generally small

- the total current is carried mainly by migration

= For species j in the bulk region of a linear mass-transfer system having a cross-sectional

Area A,
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= Einstein-Smoluchowski equation

- relationship between the mobility of species j and the diffusion coefficient
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4.2 MIGRATION
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= For a linear electric field
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: where AE/| is the gradient (V/cm) arising from the change in potential AE over distance |.

= The total current in bulk solution is given by
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4.2 MIGRATION

= The conductance of the solution, L (Q1),
- the reciprocal of the resistance, R (QQ),

- given by Ohm's law
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: where k, the conductivity (Q1 cm) is given by

K= FZ IzjlujCj (discussed in Ch. 2)
]

» The fraction of the total current that a given ion j carries

>t the transference number of j
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4.3 MIXED MIGRATION AND DIFFUSION NEAR AN ACTIVE ELECTRODE

2) Near the electrode,

: an electroactive substance is transported by both diffusion and migration processes.

= That current can be separated into diffusion and migration currents
- reflect the diffusive and migrational components to the flux of the electroactive species

at the surface:

I‘:I‘d+fm

= Note that i, and iy may be in the same or opposite directions

- depending on the direction of the electric field and the charge on the electroactive

species.



4.3 MIXED MIGRATION AND DIFFUSION NEAR AN ACTIVE ELECTRODE

= Examples of three reductions

. a positively charged, a negatively charged, and an uncharged substance
Cu?" +2¢ - Cu Cu(CN)Z™ + 2¢ — Cu + 4CN- Cu(CN), + 2¢ — Cu + 2CN™

i I':I‘d'l‘l.m

(@) i=iz+ iy @ i=ig=liyl ()i=iy
Figure 4.3.1 Examples of reduction processes with different contributions of the migration
current: (a) positively charged reactant, (b) negatively charged reactant, (c¢) uncharged reactant.

» The migrational component is always in the same direction as iy for cationic

species reacting at cathodes and for anionic species reacting at anodes.

= It opposes iy when anions are reduced at cathodes and when cations are oxidized at

anodes.



4.3.1 Balance Sheets for Mass Transfer During Electrolysis

= For many electrochemical systems, the mathematical treatments can be simplified if the
migrational component to the flux of the electroactive substance is made negligible.

- discuss the conditions under which that approximation holds.

= Although migration carries the current in the bulk solution during electrolysis,
diffusional transport also occurs in the vicinity of the electrodes, because concentration
gradients of the electroactive species arise there.

- Under some circumstances, the flux of electroactive species to the electrode is due
almost completely to diffusion.

- To illustrate these effects, let us apply the "balance sheet" approach to transport in

several examples.



4.3.1 Balance Sheets for Mass Transfer During Electrolysis

Example 4.1

= Consider the electrolysis of a solution of hydrochloric acid at platinum electrodes

Q 9
Pt/H*, CI'/Pt
(@)

= Since the equivalent ionic conductance of H*, A*, and of Cl, A, relate as A* = 4\

] :
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4.3.1 Balance Sheets for Mass Transfer During Electrolysis

= Assume that a total current equivalent to 10e per unit time is passed through the cell,
- producing five H, molecules at the cathode and five Cl, molecules at the anode.

= The total current is carried in the bulk solution by the movement of 8H* toward the
cathode and 2C- toward the anode
>t,=08andt =0.2
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4.3.1 Balance Sheets for Mass Transfer During Electrolysis

= To maintain a steady current,

- 10H* must be supplied to the cathode per unit time,

- so an additional 2H* must diffuse to the electrode, along with 2CI-
= Similarly at the anode, to supply 10Cl- per unit time,

> 8ClI- must arrive by diffusion, along with 8H*.
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4.3.1 Balance Sheets for Mass Transfer During Electrolysis

= Thus,

- the current for H*: iy = 2, i, =
- the current for Cl: iy = 8, i, =
=> The total current, i = 10.

8 at the cathode

2 at the anode

: the migration current is in the same direction as the diffusion current
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4.3.1 Balance Sheets for Mass Transfer During Electrolysis

Example 4.2
= Consider the electrolysis of a solution of 10-3 A Cu(NH,),%*, 103 M Cu(NH;),*, and 3
X 103 MCl-in 0.1 M NH; at two Hg electrodes

0,9

Hg/Cu(NH,),Cl,(107® M), Cu(NH,), CI(107 M), NH, (0.1 M)/Hg
(a)




4.3.1 Balance Sheets for Mass Transfer During Electrolysis

= Assuming the limiting

equivalent conductances of

all ions are equal, that is,

Hg/Cu(NH,),Cl,(1072 M), Cu(NH,), CI(107° M), NH; (0.1 M)/Hg
(a)
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4.3.1 Balance Sheets for Mass Transfer During Electrolysis

= With an arbitrary current of 6e per unit time being passed,
- the migration current in bulk solution is carried by movement of one Cu(ll) and one

Cu(l) toward the cathode, and three Cl- toward the anode.

SIfo

Hg/Cu(NH,),Cl,(107 M), Cu(NH,), CI(107° M), NH, (0.1 M)/Hg
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4.3.1 Balance Sheets for Mass Transfer During Electrolysis

Example 4.3
= Let us consider the same cell as in Example 4.2, except with the solution containing

0.10 M NaClO, as an excess electrolyte

2 Il

g P
Hg/Cu(NH,),Cl,(107° M), Cu(NH,), CI(107° M)/Hg
NH, (0.1 M), NaClO, (0.10 M)

2+ -5 + 3
lons in cell: Cu(NH;);" (107 M), Cu(NHg), (107 M),

CI"(8 x 10 M), Na* (0.1 M), CIO; (0.1 M)
(a)



4.3.1 Balance Sheets for Mass Transfer During Electrolysis

®4M ©

E ) = Assuming the limiting equivalent
. conductances of all ions are equal,

Hg/Cu(NH,),Cl,(107* M), Cu(NH,), CI(10~ M)/Hg
NH, (0.1 M), NaCIO, (0.10 M) that is,
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4.3.1 Balance Sheets for Mass Transfer During Electrolysis
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4.3.1 Balance Sheets for Mass Transfer During Electrolysis

= Thus, when the solution contains additional 0.10 M NaClO, as an excess
electrolyte (supporting electrolyte)

2>1=6

> Cu(ll): iy = 597, i, = 0.03 at the cathode

> Cu(l): iy = 6.03, i, = -0.03 at the anode

= Note that, when the solution contains no supporting electrolyte,
2>i=6

> Cu(ll): iy =5, i, = 1 at the cathode

> Cu(l): iy =7, i, = -1 at the anode

=> Thus, the addition of an excess of nonelectroactive ions (a supporting electrolyte)
nearly eliminates the contribution of migration to the mass transfer of the

electroactive species.





