9 zk-snark

tkkwon@snu.ac.kr

source: Ariel Gabizon, https://z.cash/blog/snark-explain

outline

- zk-snark?
- Homomorphic Hidings (HH)
- polynomials and linear combinations
- knowledge of Coefficient (KC) test
- extended KCA
- verifiable blind evaluation protocol
- Quadratic Arithmetic Program (QAP)
- Pinocchio Protocol

zk-snark

- "Zero-Knowledge Succinct Non-Interactive Argument of Knowledge"
- "Zero-knowledge" proofs allow one party (the prover) to prove to another (the verifier) that a statement is true, without revealing any information beyond the validity of the statement itself
- "Succinct" zero-knowledge proofs can be verified within a few milliseconds, with a proof length of only a few hundred bytes even for statements about programs that are very large
- "non-interactive" constructions, the proof consists of a single message sent from prover to verifier
 - we need initial setup phase that generates a common reference string shared between prover and verifier.
- "argument of Knowledge" the prover can convince the verifier not only that the number exists, but that they know such a number – again, without revealing any information about the number

homomorphic hiding (HH)

- An HH E(x) of a number x is a function satisfying the following:
 - for most x's, given E(x), it is hard to find x
 - different inputs lead to different outputs
 - if $x \neq y$, $E(x) \neq E(y)$
 - if someone knows E(x) and E(y), he can generate the HH of arithmetic expressions in x and y
 - e.g. E(x+y) can be calculated from E(x) and E(y)

HH example

- Alice wants to prove to Bob that she knows number x, y such that x+y=7
 - 1. Alice sends E(x), E(y) to Bob
 - 2. Bob computes E(x+y) from these values
 - 3. Bob also computes E(7), and now checks whether E(x+y) = E(7)
- in this case, we say HH supports addition

before HH: revisit modular multiplication

- group: a set of elements with a binary operation
 - the outcome of the operation should satisfy four properties below
- The group of positive integers modulo a prime *p*
 - $Z_p^* \equiv \{1, 2, 3, ..., p-1\}$ $*_p \equiv$ multiplication modulo p Denoted as: $(Z_p^*, *_p)$
- Required properties
 - 1. Closure. Yes.
 - 2. Associativity. Yes.
 - 3. Identity. 1.
 - 4. Inverse. Yes.
- Example: $Z_7^* = \{1, 2, 3, 4, 5, 6\}$ $1^{-1} = 1, 2^{-1} = 4, 3^{-1} = 5, 6^{-1} = 6$

HH construction

(mod p) is omitted below

- if we want to prove we know x, y with x+y=7
 - g: generator of group of order p where DLP is hard.
 - Prover: sends $E(x) = g^x$, $E(y) = g^y$
 - Verifier: Checks $E(x+y) = g^{x+y \mod (p-1)} = g^x g^y = E(x)E(y)$

polynomial

- F_p is the field of size p; the elements of F_p are {0,...,p-1} and addition and multiplication are done mod p
- a polynomial P of degree d over is an expression as follows: $P(X) = a_0 + a_1 X^1 + a_2 X^2 + ... + a_d X^d \text{ for some } a_0, ..., a_d \in F_p$
- we can evaluate P at a point $s \in F_p$ P(s) = $a_0 + a_1 s^1 + a_2 s^2 + ... + a_d s^d$
- note that P(s) is a linear combination of 1,s¹,s²,...,s^d
- HH supports linear combinations, which means
 - given a,b,E(x),E(y), we can compute E(ax+by)

$$E(ax+by) = g^{ax+by} = g^{ax} g^{by} = (g^x)^a (g^y)^b = E(x)^a E(y)^b$$

blind evaluation of a polynomial: a naïve approach

- Alice has a polynomial P of degree d, Bob has a point $s \in F_p$
- Bob wishes to learn E(P(s)); how?
- two naïve ways
 - Alice sends P to Bob; he computes E(P(s))
 - Bob sends s to Alice; she computes E(P(s)) and sends it back to Bob
- however, in blind evaluation problem,
 - we want Bob to learn E(P(s)) without learning P
 - d is order of millions in Zcash; sending P is too much overhead; recall succinct!
 - we don't want Alice to learn s (so-called blind evaluation)

Henceforth, Alice is prover and Bob is verifier

blind evaluation of a polynomial

- Using HH, we perform blind evaluation as follows
 - 1. Bob sends to Alice the hidings E(1), E(s), ..., E(s^d)
 - 2. Alice computes E(P(s)) from the linear combination of the elements in the 1st step, and sends E(P(s)) to Bob
- why do we need this?
 - verifier (Bob) has a correct polynomial in mind and wishes to check the prover knows it
 - making the prover (Alice) blindly evaluate the polynomial at a random point not known to prover
 - if the prover has the wrong polynomial, she will give the wrong answer

Schwartz-Zippel Lemma: different polynomials are different at most points

operation change in finite group

- from now on, we write the finite group additively rather than multiplicatively
- For $\alpha \in F_p$, we used to write $g^{\alpha} \mod p$
- Now we write $\alpha \cdot g \mod p$,
 - \bullet the result of summing α copies of g
 - if someone receives $\alpha \cdot g$, she cannot know α
- recall ECC

Knowledge of Coefficient (KC)

- Prover (Alice) can compute E(P(s)) but may not send E(P(s))
- how can we enforce the prover to send E(P(s))?
- KC test

for $\alpha \in F_p^*$, a pair of elements (a,b) in G is an α -pair if $b = \alpha \cdot a$

- 1. Bob chooses random $\alpha \in F_p^*$, $a \in G$; he computes $b = \alpha \cdot a$
- 2. He sends to Alice the "challenge" pair (a,b), which is an α -pair
- 3. Alice must respond with a different pair (a',b'), another α -pair
- 4. Bob accepts Alice's response only if (a',b') is an α -pair

Again, Alice is prover and Bob is verifier; only Bob knows α

How can Alice generate another α -pair?

- Alice knows only $\alpha \cdot a$, not α
 - since G is a group for DLP
- Alice chooses some $\gamma \in F_p^*$, and responds with (a', b') = (γa , γb)
 - $b' = \gamma b = \gamma \alpha a = \alpha a'$,
- Knowledge of Coefficient Assumption (KCA)
 - if she sends (a', b') in response to Bob's challenge (a,b), then she knows the ratio γ such that a' = γ a

Make Blind Evaluation Verifiable

- Want to construct a protocol that allows Bob to learn E(P(s)) with two additional properties
 - 1. blindness: Alice will not learn s (and Bob will not learn P)
 - 2. Verifiability: the probability that Alice sends a value not E(P(s)), but Bob still accepts is negligible

An extended KCA

- Bob sends Alice several α -pairs $(a_1, b_1),...,(a_d, b_d)$ (for the same α)
- After receiving these pairs, Alice is challenged to generate another $\alpha\mbox{-pair}$ (a', b')
- Alice now takes a linear combination of the given d pairs

 $(a',b') = (\sum_{i=1}^{d} c_i a_i, \sum_{i=1}^{d} c_i b_i)$, where Alice chooses any $c_i \in F_p$

- The extended KCA states that this is the only way Alice can generates an α -pair; she knows a linear relation between a' and $a_1,...,a_d$ called d-power knowledge of coeff. assumption (d-KCA)
- d-KCA: Bob sends Alice (g, α g),(sg, α sg),..., (s^dg, α s^dg); then Alice outputs another α -pair (a',b')

 $\rightarrow \text{Alice knows } c_0, c_1, ..., c_d \in \mathsf{F}_{\mathsf{p}} \text{ s.t. } \sum_{i=0}^d c_i s^i g = a' \quad (and \ \sum_{i=0}^d \alpha c_i s^i g = b')$

Verifiable Blind Evaluation Protocol

- HH is the mapping $E(x) = x \cdot g$ for generator g of G
- We present the protocol for this E(x)
- Bob chooses a random α∈F^{*}_p, and sends Alice the following
 the hidings of 1,s¹,s²,...,s^d, which are g,s⋅g,...,s^d⋅g

 - the hidings of $\alpha, \alpha \cdot s, \alpha \cdot s^2, \dots, \alpha \cdot s^d$, which are $\alpha \cdot g, \alpha \cdot s \cdot g, \dots, \alpha \cdot s^d \cdot g$
- 2. Alice computes $a=P(s)\cdot g$ and $b=\alpha \cdot P(s)\cdot g$, which are sent to Bob
- 3. Bob checks that $b = \alpha \cdot a$, and accepts iff this equality holds
- P(s)·g is a linear combination of g,s·g,...,s^d·g, which is E(P(s))
- $\alpha \cdot P(s) \cdot g$ is a linear combination of $\alpha \cdot g$, $\alpha \cdot s \cdot g$,..., $\alpha \cdot s^d \cdot g$
- by d-KCA, if Alice sends a,b s.t. $b=\alpha \cdot a$, then she knows $c_0, c_1, ..., c_d \in F_p$ s.t. $a = \sum_{i=0}^{d} c_i s^i g$

Quadratic Arithmetic Program (QAP)

- QAP: translation of computations into polynomials
- suppose Alice wants to prove to Bob she knows $c_1, c_2, c_3 \in F_p$ s.t. $(c_1 \cdot c_2)(c_1 + c_3) = 7$
- 1st step: expression to arithmetic circuit
 - An arithmetic circuit consists of gates computing arithmetic operations like addition and multiplication, with wires connecting the gates

constructing an arithmetic circuit

- bottom wires are the input, and the top wire is the output
- When the same outgoing wire goes into more than one gate, we still think of it as one wire like w_1 in the example.
- We assume multiplication gates have exactly two input wires, which we call the left wire and right wire
- We don't label the wires going from an addition to a multiplication gate, nor the addition gate; we think of the inputs of the addition gate as going directly into the multiplication gate. So in the example we think of w_1 and w_3 as both being right inputs of g_2 .
- A legal assignment for the circuit, is an assignment of values to the labeled wires where the output value of each multiplication gate is indeed the product of the corresponding inputs.

$$c_4 = c_1 \cdot c_2 \text{ and } c_5 = c_4 \cdot (c_1 + c_3)$$

 c_4 is for w_4 ; c_5 is for w_5

• what Alice wants to prove is that she knows a legal assignment ($c_1,...,c_5$) such that $c_5=7$

reduction to a QAP

- We associate each (label of) multiplication gate with a field element
 - g_1 will be associated with $1 \in F_p$ and g_2 with $2 \in F_p$
- We call the points {1,2} our target points. Now we need to define a set of "left wire polynomials" L₁,...,L₅, "right wire polynomials" R₁,...,R₅ and "output wire polynomials" O₁,...,O₅.
- the polynomials will usually be zero on the target points
 - they will be ones at the target point's corresponding multiplication gate.

reduction to a QAP: an example

- w_1 , w_2 , w_4 are the left, right and output wire of g_1
- we define L₁=R₂=O₄=2-X as the polynomial 2-X is one on the point 1 corresponding to g₁ and zero on the point 2 corresponding to g₂
- w_1 and w_3 are *both* right inputs of g_2 . Therefore, we define similarly $L_4 = R_1 = R_3 = O_5 = X 1$ as X 1 is one on the target point 2 corresponding to g_2 and zero on the other target point

 $(c_1 \cdot c_2)(c_1 + c_3)$

W₂

W₄

W₂

 g_1

- We set the rest of the polynomials to be the zero polynomial
- Thus, $L = \sum_{i=1}^{5} c_i L_i$, $R = \sum_{i=1}^{5} c_i R_i$, $O = \sum_{i=1}^{5} c_i O_i$
- then we define the polynomial P=L· R-O
- (c₁,...,c₅) is a legal assignment to the circuit iff P vanishes on all the target points.

illustration of the QAP reduction

- $L(1) = c_1 \cdot L_1(1) = c_1; R(1) = c_2; O(1) = c_4$
- $P(1) = c_1 \cdot c_2 c_4$ $P=L \cdot R-0$
- $P(2) = c_4 (c_1 + c_3) c_5$

• P vanishes on the target points if
$$(c_1,...,c_5)$$
 is a legal assignment

- For a polynomial P and a point $a\!\in\! F_p,$ we have P(a) = 0 iff the polynomial (X-a) divides P
 - P = (X-a). H for some polynomial H
- Define a target polynomial T(X) = (X-1)(X-2)
 - T divides P iff $(c_1,...,c_5)$ is a legal assignment

QAP summary

- A Quadratic Arithmetic Program Q of degree d and size m consists of polynomials, $L_1,...,L_m$, $R_1,...,R_m$, $O_1,...,O_m$. and a target polynomial T of degree d
- As assignment $(c_1,...,c_m)$ satisfies Q if, defining $L = \sum_{i=1}^m c_i L_i$, $R = \sum_{i=1}^m c_i R_i$, $O = \sum_{i=1}^m c_i O_i$, and $P = L \cdot R O$, we have that T divides P
- Alice want's to prove that "I know c_1, c_2, c_3 s.t. $(c_1 \cdot c_2) \cdot (c_1 + c_3) = 7$ " can be translated into an equivalent statement about polynomials using QAPs

Background before Pinocchio Protocol

- Alice can send a very short proof to Bob showing she has a satisfying assignment to a QAP
- If Alice know the legal assignment, there exists a polynomial H such that $\mathsf{P}{=}\mathsf{H}{\cdot}\mathsf{T}$

• in particular $s \in F_p$, $P(s) = H(s) \cdot T(s)$

- if Alice *doesn't* have a satisfying assignment, but she still constructs L,R,O,P as above from some unsatisfying assignment (c₁,...,c_m).
 - Then we are guaranteed that T does not divide P
 - if p is much larger than 2d, the prob. that $P(s)=H(s)\cdot T(s)$ for a randomly chosen $s \in F_p$ is very small

Schwartz-Zippel Lemma: different polynomials are different at most points two different polynomials of degree at most 2d can agree on at most 2d points, $s \in F_p$

Pinocchio Protocol

- sketch of proving Alice has a satisfying assignment
 - 1. Alice chooses polynomials L,R,O,H of degree at most d
 - 2. Bob chooses a random point $s \in F_p$, and computes E(T(s)).
 - 3. Alice sends Bob the hidings of all these polynomials evaluated at s, i.e. E(L(s)), E(R(s)), E(O(s)), E(H(s))
 - 4. Bob checks if the desired equation holds at s. That is, he checks whether $E(L(s)\cdot R(s) O(s)) = E(T(s)\cdot H(s))$

a non-interactive evaluation protocol

- setup: random F_r^{*} , s are chosen and the common reference string (CRS) is published
 - CRS: E(1),E(s¹),E(s²,),...,E(s^d) and E(α),E(α ·s),E(α ·s²),...,E(α ·s^d)
- Proof: Alice computes a = E(P(s)) and $b = E(\alpha P(s))$ using the CRS