
9 zk-snark 

tkkwon@snu.ac.kr 

source: Ariel Gabizon, https://z.cash/blog/snark-explain  



outline 

• zk-snark? 

• Homomorphic Hidings (HH) 

• polynomials and linear combinations 

• knowledge of Coefficient (KC) test 

• extended KCA 

• verifiable blind evaluation protocol 

• Quadratic Arithmetic Program (QAP) 

• Pinocchio Protocol 

 



zk-snark 
• “Zero-Knowledge Succinct Non-Interactive Argument of Knowledge” 
• “Zero-knowledge” proofs allow one party (the prover) to prove to another 
(the verifier) that a statement is true, without revealing any information 
beyond the validity of the statement itself 

• “Succinct” zero-knowledge proofs can be verified within a few 
milliseconds, with a proof length of only a few hundred bytes even for 
statements about programs that are very large 

• “non-interactive” constructions, the proof consists of a single message 
sent from prover to verifier 
• we need initial setup phase that generates a common reference string shared 

between prover and verifier. 

• “argument of Knowledge” the prover can convince the verifier not only 
that the number exists, but that they know such a number – again, 
without revealing any information about the number 

 

 



homomorphic hiding (HH) 

• An HH E(x) of a number x is a function satisfying the following: 
• for most x’s, given E(x), it is hard to find x 
• different inputs lead to different outputs 

• if x ≠ y, E(x) ≠ E(y) 

• if someone knows E(x) and E(y), he can generate the HH of arithmetic 
expressions in x and y 
• e.g. E(x+y) can be calculated from E(x) and E(y) 

 

 

 

 



HH example 

• Alice wants to prove to Bob that she knows number x, y such 
that x+y=7 

1. Alice sends E(x), E(y) to Bob 

2. Bob computes E(x+y) from these values 

3. Bob also computes E(7), and now checks whether E(x+y) = E(7) 

• in this case, we say HH supports addition 

 

 

 

 



before HH: revisit modular multiplication 
• group: a set of elements with a binary operation  

• the outcome of the operation should satisfy four properties below   

• The group of positive integers modulo a prime p 
Zp

*   {1, 2, 3, …, p-1} 
*p   multiplication modulo p 
Denoted as: (Zp

*, *p) 

• Required properties 
1. Closure.  Yes. 
2. Associativity.  Yes. 
3. Identity.  1. 
4. Inverse.  Yes.  

• Example: Z7
*= {1,2,3,4,5,6} 

     1-1 = 1, 2-1 = 4, 3-1 = 5, 6-1 = 6 



HH construction 

• if we want to prove we know x, y with x+y=7 

• g: generator of group of order p where DLP is hard. 

• Prover: sends E(x) = gx, E(y) = gy 

• Verifier: Checks E(x+y) = gx+y mod (p-1) = gx gy = E(x)E(y) 

 

(mod p) is omitted below 



polynomial 

• Fp is the field of size p; the elements of Fp are {0,…,p−1} and addition and 
multiplication are done mod p 

• a polynomial P of degree d over is an expression as follows: 

 P(X) = a0+a1X
1+a2X

2+..+adX
d for some a0,..., ad  Fp       

• we can evaluate P at a point s  Fp    

 P(s) = a0+a1s
1+a2s

2+..+ads
d 

• note that P(s) is a linear combination of 1,s1,s2,...,sd 

• HH supports linear combinations, which means 
• given a,b,E(x),E(y), we can compute E(ax+by) 

 E(ax+by) = gax+by = gax gby = (gx)a (gy)b   = E(x)a E(y)b  

 

 



blind evaluation of a polynomial: a naïve approach 

• Alice has a polynomial P of degree d, Bob has a point s  Fp 

• Bob wishes to learn E(P(s)); how? 

• two naïve ways 
• Alice sends P to Bob; he computes E(P(s)) 

• Bob sends s to Alice; she computes E(P(s)) and sends it back to Bob 

• however, in blind evaluation problem,  
• we want Bob to learn E(P(s)) without learning P 

•  d is order of millions in Zcash; sending P is too much overhead; recall succinct! 

• we don’t want Alice to learn s (so-called blind evaluation) 

Henceforth, Alice is prover and Bob is verifier 



blind evaluation of a polynomial 
• Using HH, we perform blind evaluation as follows 

1. Bob sends to Alice the hidings E(1), E(s), ..., E(sd) 

2. Alice computes E(P(s)) from the linear combination of the elements in the 
1st step, and sends E(P(s)) to Bob 

 

• why do we need this? 
• verifier (Bob) has a correct polynomial in mind and wishes to check the 

prover knows it 

• making the prover (Alice) blindly evaluate the polynomial at a random point 
not known to prover 

• if the prover has the wrong polynomial, she will give the wrong answer 

 

 
Schwartz-Zippel Lemma: different polynomials are different at most points 



operation change in finite group 

• from now on, we write the finite group additively rather than 
multiplicatively  

• For αFp, we used to write gα mod p 

• Now we write α⋅g mod p,  
• the result of summing α copies of g 

• if someone receives α⋅g, she cannot know α 

 

• recall ECC 

 



Knowledge of Coefficient (KC) 

• Prover (Alice) can compute E(P(s)) but may not send E(P(s)) 

• how can we enforce the prover to send E(P(s))? 
 

• KC test 

for αFp
*, a pair of elements (a,b) in G is an α-pair if b=αa 

1. Bob chooses random αFp
*, aG; he computes b=αa 

2. He sends to Alice the “challenge” pair (a,b), which is an α-pair  

3. Alice must respond with a different pair (a’,b’), another α-pair  

4. Bob accepts Alice’s response only if (a’,b’) is an α-pair  

 
Again, Alice is prover and Bob is verifier; only Bob knows α 



How can Alice generate another α-pair? 

• Alice knows only αa, not α 
• since G is a group for DLP 

• Alice chooses some γFp
*, and responds with (a’, b’) = (γa, γb) 

• b’ = γb = γ α a = α a’,  

• Knowledge of Coefficient Assumption (KCA) 
• if she sends (a’, b’) in response to Bob’s challenge (a,b), then she knows 

the ratio γ  such that a’= γ a 

 

 



Make Blind Evaluation Verifiable 

• Want to construct a protocol that allows Bob to learn E(P(s)) 
with two additional properties 

1. blindness: Alice will not learn s (and Bob will not learn P) 

2. Verifiability: the probability that Alice sends a value not E(P(s)), but 
Bob still accepts is negligible 

 

 

 



An extended KCA 
• Bob sends Alice several α-pairs (a1, b1),...,(ad, bd) (for the same α) 

• After receiving these pairs, Alice is challenged to generate another α-pair 
(a’, b’) 

• Alice now takes a linear combination of the given d pairs 

 (a’,b’) = ( 𝑐𝑖𝑎𝑖𝑑𝑖=1 ,  𝑐𝑖𝑏𝑖𝑑𝑖=1 ), where Alice chooses any ciFp  

• The extended KCA states that this is the only way Alice can generates an 
α-pair; she knows a linear relation between a’ and a1,...,ad – called d-
power knowledge of coeff. assumption (d-KCA) 

• d-KCA: Bob sends Alice (g, αg),(sg, αsg),..., (sdg, αsdg); then Alice outputs 
another α-pair (a’,b’) 

→ Alice knows c0,c1,...,cd Fp s.t.  𝑐𝑖𝑠𝑖𝑔 = 𝑎′ (𝑑𝑖=0 𝑎𝑛𝑑  α𝑐𝑖𝑠𝑖𝑔 = 𝑏′)𝑑𝑖=0  



Verifiable Blind Evaluation Protocol 
• HH is the mapping E(x) = xg for generator g of G 

• We present the protocol for this E(x) 

1. Bob chooses a random αFp
*, and sends Alice the following  

• the hidings of 1,s1,s2,...,sd, which are g,sg,...,sdg  
• the hidings of α,αs,αs2,...,αsd, which are αg, αsg,...,αsdg  

2. Alice computes a=P(s)g and b=αP(s)g, which are sent to Bob 

3. Bob checks that b=αa, and accepts iff this equality holds 

• P(s)g is a linear combination of g,sg,...,sdg, which is E(P(s)) 

• αP(s)g is a linear combination of αg, αsg,...,αsdg  

• by d-KCA, if Alice sends a,b s.t. b=αa, then she knows c0,c1,...,cdFp 
s.t. a =  𝑐𝑖𝑠𝑖𝑔𝑑𝑖=0  

 

 



Quadratic Arithmetic Program (QAP) 

• QAP: translation of 
computations into polynomials 

• suppose Alice wants to prove to 
Bob she knows c1,c2,c3Fp s.t. 
(c1〮c2)(c1+c3) = 7 

• 1st step: expression to 
arithmetic circuit 
• An arithmetic circuit consists of 

gates computing arithmetic 
operations like addition and 
multiplication, with wires 
connecting the gates 
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constructing an arithmetic circuit 
• bottom wires are the input, and the top wire is the output 

• When the same outgoing wire goes into more than one gate, we still 
think of it as one wire – like w1 in the example. 

• We assume multiplication gates have exactly two input wires, which 
we call the left wire and right wire 

• We don’t label the wires going from an addition to a multiplication 
gate, nor the addition gate; we think of the inputs of the addition 
gate as going directly into the multiplication gate. So in the example 
we think of w1 and w3 as both being right inputs of g2. 

• A legal assignment for the circuit, is an assignment of values to the 
labeled wires where the output value of each multiplication gate is 
indeed the product of the corresponding inputs.  
• c4 = c1〮c2 and c5 = c4〮(c1+c3)  

• what Alice wants to prove is that she knows a legal 
assignment (c1,...,c5) such that c5=7 

c4 is for w4; c5 is for w5 



reduction to a QAP 

• We associate each (label of) multiplication gate with a field 
element 
• g1 will be associated with 1Fp and g2 with 2Fp   

• We call the points {1,2} our target points. Now we need to 
define a set of “left wire polynomials” L1,…,L5, “right wire 
polynomials” R1,…,R5 and “output wire polynomials” O1,…,O5. 

• the polynomials will usually be zero on the target points 
• they will be ones at the target point’s corresponding multiplication 

gate. 

 



reduction to a QAP: an example 
• w1, w2, w4 are the left, right and output wire of g1 

• we define L1=R2=O4=2−X as the polynomial 2−X is 
one on the point 1 corresponding to g1 and zero 
on the point 2 corresponding to g2 

• w1 and w3 are both right inputs of g2. Therefore, we define 
similarly L4=R1=R3=O5=X−1 as X−1 is one on the target 
point 2 corresponding to g2 and zero on the other target point 

• We set the rest of the polynomials to be the zero polynomial 

• Thus, L =  𝑐𝑖𝐿𝑖5𝑖=1 , R =  𝑐𝑖𝑅𝑖5𝑖=1 , O =  𝑐𝑖𝑂𝑖5𝑖=1  

• then we define the polynomial P=L〮R-O 

• (c1,...,c5) is a legal assignment to the circuit iff P vanishes on all the 
target points. 



illustration of the QAP reduction 

• L(1) = c1 〮 L1(1) = c1; R(1) = c2; O(1) = c4 

• P(1) = c1〮c2 - c4  

• P(2) = c4 (c1+c3)- c5   

• P vanishes on the target points if (c1,...,c5) is a legal assignment 

• For a polynomial P and a point aFp, we have P(a) = 0 iff the 
polynomial (X-a) divides P 
• P = (X-a)〮H for some polynomial H 

• Define a target polynomial T(X) = (X-1)(X-2) 
• T divides P iff (c1,...,c5) is a legal assignment 

 

 

P=L〮R-O 



QAP summary 

• A Quadratic Arithmetic Program Q of degree d and size m 
consists of polynomials, L1,…,Lm, R1,…,Rm, O1,…,Om. and a target 
polynomial T of degree d 

• As assignment (c1,...,cm) satisfies Q if, defining L =  𝑐𝑖𝐿𝑖𝑚𝑖=1 , R = 𝑐𝑖𝑅𝑖𝑚𝑖=1 , O =  𝑐𝑖𝑂𝑖𝑚𝑖=1 , and P = L〮R – O, we have that T divides 
P 

• Alice want’s to prove that “I know c1,c2,c3 s.t. (c1〮c2)〮(c1+c3)=7” 
can be translated into an equivalent statement about 
polynomials using QAPs 

 

 



Background before Pinocchio Protocol 
• Alice can send a very short proof to Bob showing she has a 
satisfying assignment to a QAP 

• If Alice know the legal assignment, there exists a polynomial H 
such that P=H⋅T 
• in particular sFp, P(s) = H(s)⋅T(s) 

• if Alice doesn’t have a satisfying assignment, but she still 
constructs L,R,O,P as above from some unsatisfying assignment 
(c1,...,cm).  
• Then we are guaranteed that T does not divide P 
•  if p is much larger than 2d, the prob. that P(s)=H(s)⋅T(s) for a 

randomly chosen sFp is very small 
 

Schwartz-Zippel Lemma: different polynomials are different at most points 
two different polynomials of degree at most 2d can agree on at most 2d points, sFp 



Pinocchio Protocol 

• sketch of proving Alice has a satisfying assignment 
1. Alice chooses polynomials L,R,O,H of degree at most d 

2. Bob chooses a random point sFp, and computes E(T(s)). 

3. Alice sends Bob the hidings of all these polynomials evaluated at s, 
i.e. E(L(s)), E(R(s)), E(O(s)), E(H(s)) 

4. Bob checks if the desired equation holds at s. That is, he checks 
whether E(L(s)⋅R(s)−O(s))=E(T(s)⋅H(s)) 

 

 

 

 

 

bilinear pairing 



a non-interactive evaluation protocol 

• setup: random Fr
*
 , s  are chosen and the common reference 

string (CRS) is published 
• CRS: E(1),E(s1),E(s2,),...,E(sd) and E(α),E(αs),E(αs2),...,E(αsd)  

• Proof: Alice computes a = E(P(s)) and b = E(αP(s)) using the 
CRS 


