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3.1 The Time-Independent Schrodinger Equation

- Time-independent Schrodinger equation: a vibration equation

2m o’y 0w Oy
Viy +—(E-V)y =0 Viy=—2+—+
v E-TY PPN R

where, m = the (rest) mass of the electron,
E = the total energy of the system, E=E_ +V
E,;, = Kinetic energy,
V' = the potential energy (or potential barrier)

- Applicable to the calculation of the properties of atomic systems in
stationary conditions
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3.2 The Time-Dependent Schroédinger Equation

Time-dependent Schrodinger equation: a wave equation
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3.3 Special Properties of Vibrational Problems

- When boundary conditions are imposed, only certain vibrational
forms are possible. ex) a vibrating string

- Vibration problems determined by boundary conditions:
boundary (or eigenvalue) problems

A pecularity of these problems : not all frequency values are
possible and therefore, not all values for the energy are allowed
because of FE =i

The allowed values : eigenvalues

The function belonging to the eigenvalues as a solution of the
vibration equation : eigenfunctions

The normalized eigenfunction: J‘Wy*df _ “w‘zdf 1
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4;1 Free Electrons

Suppose electrons propagating freely (i.e., in a potential-free space) to the
positive x-direction.

Then 7 = 0 and thus
d’ v 2m
doc? h

The solution for the above differential equation for an undamped vibration with
spatial periodicity, (see Appendix 1)

V2w+;—T(E—V)w=O — - Ey =0

w(x) = Ae™
/2 2
h h no A A
Thus ‘P(X):Aeiax'eiwt
2 2
E:h_aZ — E:h_kz
2m m

“energy continuum?

Figure 4.1. Energy continuum of a free electron (compare with Fig. 4.3).
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4 2 Electron in a Potential Well (Bound Electron)
Consider an electron bound to its atomic nucleus.
Suppose the electron can move freely between two infinitely high potential barriers

vt

©
X

o nucleus ©

Figure 4.2. One-dimensional potential well. The walls consist of infinitely high
potential barriers.

At first, treatl-dim propagation along the x-axis inside the potential well

d’ v 2m
E 0
dx? h V=
- 10 —iox 2m
The solution 1/ = Ae' ™ + Be where a=.——EF
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4.2 Electron in a Potential Well (Bound Electron)
Applying boundary conditions,

x =0, v =0 —— B=-4

X =a l//:O . O:Aeiaa.Be—iaa:A(eiaa_e—iaa)

- - . 1 . J
With Euler equation, SIn p = — (e’p — e_lp)
l

Al —e ] =24i-sinaa =0
aa=nr, n=012.3,.... “energy levels”

2 2 _2
e, 'z ,

Finally, £ =2—a = L "
m Zma Es=26C { ——— n=5
n :1’2’3""' E.<16C { ——— n=4
E;=9C {4 ———— n=3
“energy quantization” o e s — =

Figure 4.3. Allowed energy values of an electron that is bound to its atomic nucleus.
E is the excitation energy in the present case. C = h°n*/2ma*, see (4.18). (E) is the
zero-point energy.)
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4.2 Electron in a Potential Well (Bound Electron)

Now discuss the wave function

w=2A4i-Sinax v =2A4i-sinax

2

(//W* = 4A2 Sin2 ax joagm//*dz' = 4A2j0asin2(ax)dx= 4j [—%Sin OOCCOSOOCJF%]S =1

A= |+
2a

b

| e &‘ ' rzgn

L a -—! L a J
(a) (b) (c)

Figure 4.4. (a) ¢ function and (b) probability function Yy " for an electron in a
potential well for different n-values. (c) Allowed electron orbit of an atom.
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4.2 Electron in a Potential Well (Bound Electron)

4
For a hydrogen atom, me 1 1
yarogen ak E = - =-13.6-—(eV)
Coulombic potential 2(4re,h)” n n
2
e
V = — E‘O Hoies
Are,r n=3
n=2
-13.6eV .
(lonization energy)
Figure 4.5. Energy levels of atomic hydrogen. E is the binding energy.
2 2
i . hr 2 2 2
In 3-dim potential E = ~(n, " +n,"+n
y Z
2ma

The same energy but different quantum numbers: “degenerate” states
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4 3 Finite Potential Barrier (Tunnel Effect)

Suppose electrons propagating in the positive x-direction encounter a potential
barrier VV, (> total energy of electron, E)

- Region (1) x<0 Vv
d* 2 Vo
T Ey =0 °
dx h I
- Region (I1) x>0
0
d’ l/2/ 2m " (E—V,)y =0 0 X
dx e . . :
Figure 4.6. Finite potential barrier.
The solutions (see Appendix 1)
. _; 2m
w]:Aew“-l—Be “ o= h—ZE

W, = Ce'™ + De ,6’=\/h—2(E—VO)
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4.3 Finite Potential Barrier (Tunnel Effect)

Since £ - VIs negative, [ = \/i—’? (E—V,) becomes imaginary.

To prevent this, define a new parameter, y =if3

2 ' —ifx -
Thus, y:\/h—T(VO—E) and y, =Ce”™ +De ., v, =Ce” +De™

Determinationof Cor Dby B.C. Forx > o Y, = C-0+D-0

Since ¥ ¥*can never be lager than 1, ¥ ; — < is no solution, and thus C — 0,
which reveals P-function decreases in Region Il

w, =De™
Using (A.27) + (4.39) in textbook, the damped wave becomes

Y = De .t h)
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4.3 Finite Potential Barrier (Tunnel Effect)

As shown by the dashed curve in Fig 4.7, a potential barrier is penetrated by
electron wave : Tunneling

* For the complete solution,

(1) Atx=0 y, =, : continuity of the function
Ae'™ + Be* =D —— A+B=D

(2) Atx =0 dy, = dy
dx dx
Aiqe'™ — Bioe™™ = —yDe ™

. continuity of the slope of the function

withx=0 Aia—Bia =—yD

Consequently, 4 = 2 (a+ ZZ)
I 2 o

B=— (l— l_) Figure 4.7. -function (solid line) and electron wave (dashed line) meeting a finite
o potential barrier.
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4.3 Finite Potential Barrier (Tunnel Effect)

)
TN

N\

I
FN\\\

a > X

Figure 4.8. Square well with finite potential barriers. (The zero points on the vertical
axis have been shifted for clarity.)
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4 4 Electron in a Periodic Field of Crystal (the Solid State)

The behavior of an electron in a crystal — A motion through periodic repetition
of potential well 7

well length : a 1% 7] B

barrier height : 7,

barrier width : b

-b 0 a L "'Jb'l- X
Reg|0n (l) Figure 4.9. One-dimensional periodic potential distribution (simplified) (Kronig-
Penney model ).

2
d 2m

f+ —Ey =0 "
dx h

~ Surface potential
Region (I1)
d’ v, 2m
T (E Vo)y =0
T nuclel = "'

Figure 4.10. One-dimensional periodic potential distribution for a crystal (muffin tin
potential ).
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4., 4 Electron in a Periodic Field of Crystal (the Solid State)

'L,‘ >

(Continued) For abbreviation

azzz—mE 7/222—m(V E)

The solution of this type equation (not simple but complicate)
l//(x) — u(x) ™ (Bloch function)

Where, u(x) is a periodic function which possesses the periodicity of the lattice
In the x-direction

The final solution of the Schrodinger equations;

SIN aa
P +COSaa = Coska where p =" Vb

aaq K2




e 4. Solution of Schrodinger Equation
t 4 N QN R
4.4 Electron in a Periodic Field of Crystal (the Solid State)

Mathematical treatment for the solution : Bloch function

w (x) =u(x) ™

Differentiating the Bloch function twice with respect to x

2
d 1’2” = (d L; du 2ik — k*u)e™
dx dx® dx

Insert 4.49 into 4.44 and 4.45 and take into account the abbreviation

Y
[
b 4

2
ot ™ k2 —atu=0 ) 9 Mgy 0

dx’ dx o’ dx

The solutions of (1) and (11)

u=e (4" +Be™™) (1) u=e ™ (Ce” +De”) ()
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4.4 Electron in a Periodic Field of Crystal (the Solid State)
(Continued) From continuity of the function  and ci’_l//
X

A+B=C+D

du/dx values for equations (1) & (1) are identical at x =0
A(ia —ik)+ B(—-ia —ik) = C(y —ik) + D(y —ik)
Further, ¥ and u is continuous at x = a + » — EQq. (I) at x = 0 must be equal to
Eq. (1) atx =a + b, Similarly, Eq. (1) atx =a isequal to Eq. (1) at x = b
Ae(ia—ik)a +Be(—ia—ik)a _ Ce(ik+y)b _I_De(ik—;/)b

Finally, du/dx is periodicina + b
Ai(a—k)e"“™ - Bi(a + k)e “*™ = —C(y +ik)e"™ " + D(y —ik)e"™ "

limiting conditions : using 4.57- 4.60 in text and eliminating the four constant A-D, and

using some Euler eq.(see Appendix 2)
2

' -a sin(yb) -sin(aa) + cos(yb) - cos(aa) = cos k(a + b)
20y
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4.4 Electron in a Periodic Field of Crystal (the Solid State)

If V, is very large, then £ in 4.47 is very small compared to V, so that

2m /Zm
V= ?\/70 xXb — j/b: h_ZWI(I/Ob)b

Since Vb has to remain finite and » — 0, yb becomes very small.

For a small yb, we obtain (see tables of the hyperbolic function)

cosh(»p) =1 and SInh(yb) = y

Finally, neglect o> compared to y2 and, b compared to a so that 4.61 reads as follow

m .
~V,bsIn aa + COS ca = COS ka
ah

et P:maVob then PSInaa

> + COS aa = COS ka
h aa
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4.4 Electron in a Periodic Field of Crystal (the Solid State)

“Electron that moves in a periodically varying potential field can only occupy
certain allowed energy zone”

} Ssinaa
P T +COSo¢a
6_4-
L+
3.@
24
/ | 3
-3;[ -T U N 7 S
b -1n 1 7 bt o0
R

Figure 4.11. Function P(sinaa/oa) + cosoa versus aa. P was arbitrarily set to be

(3/2)m.
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4.4 Electron in a Periodic Field of Crystal (the Solid State)

\
p 30&0 5'”“0 + COSQ

The size of the allowed and forbidden
energy bands varies with P.

For special cases T}—\—-—-—————— ————

(a) If the potential barrier strength, Vb 0 = . —~
Is large, P is also large and the ¢ \U/ \
curve on Fig 4.11 steeper. The % A Ve e SR s il il
allowed band are narrow.

2...

Figure 4.12. Function P(sinoa/aa) + cosaa with P = /10.

(b) Vb and P are small, the allowed

band becomes wider.
] 77777
(c) If Vb goes O, thus, P— 0 ‘
From 4.67, COSaa = COSka | ———
272 B ks —
E — (a) (b) (c)
2m Figure 4.13. Allowed energy levels for (a) bound electrons, (b) free electrons, and

(c) electrons in a solid.
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4.4 Electron in a Periodic Field of Crystal (the Solid State)

(d) If the Vb is very large, P — ©©

sin aa
—— >0
oa e A—

sinaa — 0 Aa =nJjl

¢

for n=123...

2 2
» N7

2
A

Combining 4.46 and 4.69

(04

Figure 4.14. Widening of the sharp energy levels into bands and finally into a quasi-
continuous energy region with decreasing interatomic distance, a, for a metal (after
calculations of Slater). The quantum numbers are explained in Appendix 3.
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