

Fall Semester, 2007

재료의 전자기적 성질 Electronic Properties of Materials

Instructor : Prof. Sang-Im Yoo Teaching Assistant : Jung-Woo Lee Website : sm2l.snu.ac.kr

Grading

Midterm Exam 30% Final Exam 40% Homework & Attendance 30% (absence more than 4 lectures = F)

Overall Contents

Part I Fundamentals **Electron Theory : Matter Waves Electromagnetic Theory : Maxwell Equations Part II Electrical Properties of Materials Part III Optical Properties of Materials Part IV Magnetic Properties of Materials Part V Thermal Properties of Materials** Lattice Waves

Part I Fundamentals Electron Theory : Matter Waves Chap. 1 Introduction Chap. 2 The Wave-Particle Duality **Chap. 3 The Schördinger Equation** Chap. 4 Solution of the Schördinger Equation for **Four Specific Problems** Chap. 5 Energy Bands in Crystals Chap. 6 Electrons in a Crystal **Electromagnetic Theory : Maxwell Equations** Chap. 4 Light Waves (Electrons in Solids, 3rd Ed., R. H. Bube)

1. Introduction

Three approaches to understand electronic properties of materials

- Continuum theory: consider only macroscopic quantities, interrelate experimental data ex) Ohm's law, the Maxwell equations, Newton's law, and the Hagen-Rubens equation
- Classical electron theory: postulate that free electrons in metals drift as a response to an external force and interact with certain lattice atoms ex) Drude equations
- Quantum theory: explain important experimental observations which could not be readily interpreted by classical means ex) Schrödinger Equation

1. Introduction

Basic equations

Newton's law : F = maKinetic energy: $E_{kin} = \frac{1}{2}mv^2$ Momentum: p = mv $E_{kin} = \frac{p^2}{2m}$

Speed of light: $c = v\lambda$

Velocity of wave: $v = v\lambda$ Angular frequency: $\omega = 2\pi v$ Einstein's mass - energy equivalence: $E = mc^2$

Light : electromagnetic wave light quantum (called a photon)

Energy $E = vh = \omega\hbar$ **Planck constant** $\hbar = \frac{h}{2\pi}$

1924 yr de Broglie $\lambda p = h$

"Wave nature of electrons" "Matter wave"

For a general wave $\upsilon = v\lambda$ "Wave number" $k = \frac{2\pi}{\lambda} \longrightarrow \upsilon = \frac{\omega}{k}$

Description of electron wave

- The simplest waveform : harmonic wave
- A wave function (time- and space-dependent)

$$\Psi = \sin(kx - \omega t)$$

Electron wave : a combination of several wave trains Assuming two waves,

$$\Psi_{1} = \sin[kx - \omega t]$$
$$\Psi_{2} = \sin[(k + \Delta k)x - (\omega + \Delta \omega)t]$$

Description of electron wave

Supposition of two waves:

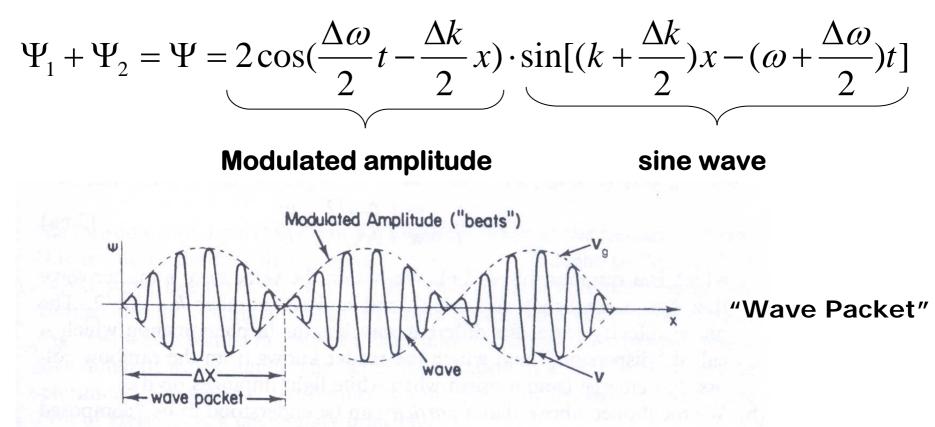


Figure 2.1. Combination of two waves of slightly different frequencies. ΔX is the distance over which the particle can be found.

The extreme conditions

(a) No variation in angular frequency and wave number : monochromatic wave

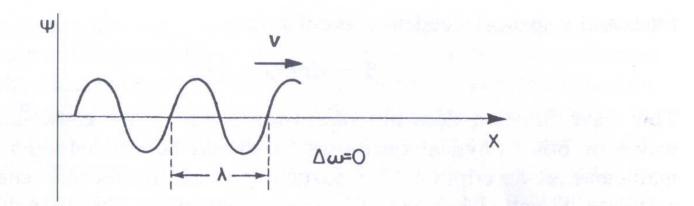


Figure 2.2. Monochromatic matter wave ($\Delta \omega$ and $\Delta k = 0$). The wave has constant amplitude. The matter wave travels with the phase velocity, v.

The extreme conditions

(b) Very large variation in angular frequency and wave number

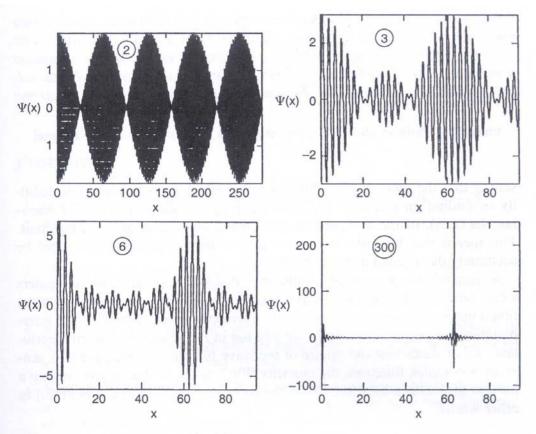


Figure 2.3. Superposition of Ψ -waves. The number of Ψ -waves is given in the graphs. (See also Fig. 2.1 and Problem 2.8.)

Phase velocity :

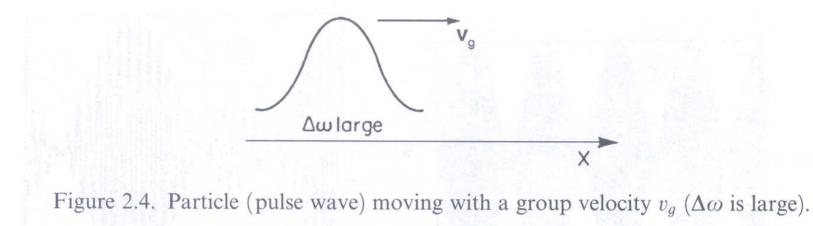
velocity of a matter wave

$$\upsilon = \frac{x}{t} = \frac{\omega + \Delta \omega / 2}{k + \Delta k / 2} = \frac{\omega}{k}$$

Group velocity: velocity of a pulse wave (i.e., a moving particle) $\upsilon_{a} = \frac{x}{2} = \frac{\Delta \omega}{2} = \frac{d\omega}{2}$

The extreme conditions

(b) Very large variation in angular frequency and wave number



 $\Delta p \cdot \Delta X \ge h$ Heisenberg's Uncertainty principle Probability of finding a particle at a certain location

 $\Psi \Psi^* dx dy dz = \Psi \Psi^* d\tau$