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5. Energy Bands in Crystals COCCCCQ

5.1 One-Dimensional Zone Schemes

Energy E vs momentum of the electrons p (or k)

For free electrons, the wave number in 1-dim
2

E=—1%F" — k. = const.E"*
2m

In a crystal 2 K*

Figure 5.1. Electron energy E versus the wave vector k, for free electrons.

+cosaa = cos ka IfP=0, cosaa=coska

SIn aa
P

ad

cosaa = cosk a =cos(k .a+n2rx) : more general form in 1-dim

n=0, £1, £2,.... aa=ka+n2x /2
} k. +n h’lel/z
Combining with ¢ = 1/ e E'?
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E is a periodic function of £_ with
the periodicity of 277/ a

Figure 5.2. Periodic repetition of Fig. 5.1 at the points k, = n-2n/a. The figure
depicts a family of free electron parabolas having a periodicity of +2r/a.

If an electron propagates in a periodic potential, discontinuities of the electron energies
are observed when cosk,.a has a maximum or a minimum, i.e., when  cos kxa =41

ka=nr, n=+x1,£243..  or k.=n-—
a

At these singularities, a deviation from the parabolic £ vs k_occurs and the branches of the
individual parabolas merge into the neighboring ones (see Fig.5.3)
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5.1 One-Dimensional Zone Schemes

£
7 The electrons in a crystal behave
7 / .
/\/\/\ / \/\/\ 7 like free electrons for most &, value
\N\NNNNNN Y except k, —n 7t/

N DN R periodic zone scheme (see Fig 5.3)

A . 4 0 n In Jn k
a a a a a a

£l

Sl
/ \ %_Bm reduced zone scheme (see Fig 5.4)

r/a <k =< m/a

Figure 5.4. Reduced zone scheme. (This is a section of Fig. 5.3 between —n/a and
+?Tf-".u_j]
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Figure 5.6. “Free electron bands™ plotted in the reduced zone scheme (cubic primi-
tive crystal structure). Compare this figure with the central portion of Fig. 5.2, that is,
with the region from zero to n/a. Note the sameness of the individual bands

free electron bands (see Fig 5.6)
free electrons in a reduced zone scheme

Figure 5.5. Extended zone scheme. The first and second Brillouin zones (BZ) are
shown, see Section 5.2.

extended zone scheme (see Fig 5.5)

the deviations from the free electron from 27z 2m i
. ) B k.+n—= —FE
parabola at the critical points k. = nw/a a

are particularly easy to identify. #2
2—(k +n—) n==20+1%2,....
m
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5.1 One-Dimensional Zone Schemes

hz
:2_(k +n—) n==x0+1,%2,....

By inserting different n-values, one can calculate the shape of branches of the
free electron bands

2

n=0, E=—Fk’ (parabola with 0 as origin)

2m
2
2
=-1, £ —;—(k ——7[) (parabola wzth — as origin)
a

212
Fork =0, E=4 d h2
2ma
T T°h’

Fork =—, E=1 5
a 2ma
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5.2 One- and Two-Dimensional Brillouin Zones

1-d Brillouin Zone :
- The first Brillouin Zone (BZ) : ) /
7
n/a =k .= m/a : n-Band \ / %mﬂaand
- The second Brillouin Zone (BZ): \ /
n/a <k, < 2m/a, -w/a <k <-2m/a : m-band L% / | %d
2t n 0 x In k

T 0 gy ___cr‘#*a

2":;, 2" BZ
- Individual branches in an eXtended zone Figure 5.5. Extended zone scheme. The first and second Brillouin zones (BZ) are

shown, see Section 5.2.

scheme (Fig. 5.5) can be shifted by 2z/a to left or to right.
Shift the branches of 27d BZ to the positive side of E- k_diagram by 2z/a to the left, and
likewise the left band by 2z/a to the right — The result i1s shown in Fig. 5.4
(a reduced zone scheme)
- The same can be done in 3" BZ, and all BZ (because of the 27/a periodicity) —

relevant information of all BZ can be contained in the 15t BZ (a reduced zone scheme)
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5.2 One- and Two-Dimensional Brillouin Zones

2-d Brillouin Zone
Description for the movement of an electron in the potential of 2-d lattice
- Wave vector kK = (k,, k) : 2-d reciprocal lattice (Fig 5.7)

- A 2-d field of allowed energy regions which correspond to the allowed
energy band — 2-d BZ

-1st zone 1n 2-d: the area enclosed by four “Bragg planes” having four
shortest lattice vectors, G;: bisectors on the

lattice vectors
- For the following zone —

construct the bisectors of the next

shortest lattice vectors, G,, G;...

- For the zone of higher order the
extended limiting lines of the zones of
lower order are used as additional limiting

@ El T e ®
lines.
Figure 5.7. Four shortest lattice vectors in a k, — k, coordinate system and the
first Brillouin zone in a two-dimensional reciprocal lattice. (Cubic primitive crystal

structure.)
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5.2 One- and Two-Dimensional Brillouin Zones
The first four BZ shown in Fig 5.8 ky
“Usefulness of BZ”
- energy bands of solids (discussed in ﬁ N4

later section) )4
- the behavior of electrons which travel K—r

in a specific direction in reciprocal space If,f
Example: in 2-d lattice, an electron travels \ __________________________
at 45° to k_-axis, then the boundary of ‘ |
the BZ is reached, |

Figure 5.8. The first four Brillouin zones of a two-dimensional, cubic primitive

according to Fig 5.8, for k . =—- [7 reciprocal atiice.

. . .a . ’h’
this yields with (4.8) a maximal attainable energy of F = =—
T am
If the boundary of a BZ is reached at £, = —
" 1 7°h’
the largest energy of electrons moving parallel to &, or &, axis E_ =—( 5 )

2 am
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5.2 One- and Two-Dimensional Brillouin Zones

- Once the maximal energy has been reached, the electron waves (those of the incident
and the Bragg-reflected electrons) form standing waves (the electrons are reflected
back into the BZ.)

- Overlapping of energy bands: bands are drawn 1n different directions
in k-space (Fig 5.9) :
the consequence of

7
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Figure 5.9. Overlapping of allowed energy bands.
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5.2 One- and Two-Dimensional Brilloujn ones

A different illustration of the occurrence
of critical energies at which a reflection
of the electron wave takes place :

Bragg relation

2asmb=nA, n=1,273,...

Figure 5.10. Bragg reflection of an electron wave in a lattice. The angle of incidence

Since A =21 /k =
. 27T T
2a Sln g — n - - kcril‘ =n .
asin &
For a perpendicular incidence, 0 =90°, £k . =—

crit

— 0 T
if9=45, p _Z [
a

For increasing electron energies, a critical k-value 1s finally reached for which
“reflection” of the electron wave at the lattice plane occurs. At £, the transmission
of electron beam through the lattice 1s prevented.

rit ’
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5.3 Three-Dimensional Brillouin Zones

- In previous section, it was shown that at the boundaries of the

zones the electron waves are Bragg-reflected by the crystal.

- The wave vector, |[K| =2 Jt /A, was seen to have the unit of

reciprocal length and thus is defined in the reciprocal lattice.

- The construction of 3-d Brillouin zones for two important crystal
structures of face centered cubic (FCC) and body centered cubic
(BCC) : important features in common with “Wigner- Seitz cells”
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5.4 Wigner - Seitz Cells
Crystals have symmetrical properties fT
- An accumulation of “unit cell” |
| cell A
- Smallest possible cell “primitive cell” " ‘
(consist of 1 atom) =
: . y
- BCC, FCC : conventional non-primitive .
unit cells ’
Figure 5.11. Wigner-Seitz cell for the body-centered cubic (bee) structure.

- Wigner-Seitz cell : a special type of
primitive unit cell that shows the cubic symmetry of cubic cells

- W-S cell construction: bisects the vectors from a given atom to its nearest
neighbors and place a plane perpendicular to these vectors at the bisecting
points. For BCC (Fig 5.11) & FCC (Fig. 5. 13)
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5.4 Wigner - Seitz Cells

- The atomic arrangement of FCC:
corners and faces of cube,
or center points of the edges and the
center of the cell (Fig 5.12)
-The W-S cell for FCC shown

Figure 5.12. Conventional unit cell of the fcc structure. In the cell which is marked

1n Flg 5 . 1 3 black. the atoms are situated on the corners and faces of the cubes. In the white cell,

the atoms are at the centers of the edges and the center of the cell.

Figure 5.13. Wigner—Seitz cell for the fcc structure. It is constructed from the white
cell which is marked in Fig. 5.12.
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5.5 Translation Vectors and the Reciprocal Lattice

Fundamental vectors or primitive vectors : t;, t,, t; I
Translation vectors, R : combination of primitive vectors e
R=nt, +n,t, +nt, .
where n,, n,, and n, are integers. T, Y
‘ @

Three vectors for the reciprocal lattice: by, b,, b,
a translation vector for the reciprocal lattice, G

G=2x(hb,+hb,+hDb,)

where h,,h,, and £ 1s integer

(b)

A - -
tl:E(_HHI)

Figure 5.14. (a) Fundamental lattice vectors t;,t2, t; in a cubic primitive lattice. (b)
Fundamental lattice vectors in a conventional (white) and primitive, noncubic unit
cell (black) of a bee lattice. The axes of the primitive (noncubic) unit cell form angles
of 109° 28",
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5.5 Translation Vectors and the Reciprocal Lattice

The relation between real and reciprocal lattices |

By definition,

D, ot, =1, Kronecker-Delta symbol >
01 ® t2 — O’ } b t — 5 Figure 5.15. Plane formed by t; and t; with perpendicular vector b;.
0, ot =0. where 5, =1 forn=m and 5, =0 forn#m
B 1
b, = const. t,xt, — b, et =const. t,et,xt, =1 — const = { ot xt.
b L, xt, b. — t; xt, b, — L, xt,
1~ 2 37
t ot xt, t, et xt, t el, xt,
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5. 5 Translation Vectors and the Reciprocal Lattice
Calculation for the reciprocal lattice of a BCC crystal

Real crystal

a: lattice constant , t,, L, t;: primitive lattice vectors
I, J, | : unit vectors in the X, y, z coordinate system (see Fig. 5.14(b))

a - .
tl:E(_HHI)

a — a . —

Abbreviated, t1:5(111) '[2:5(111) t,
a2l J k a2

t,xt,=—|1 -1 1|=—(>O+]J+I+1-1+]

2T . 1 4( J ),

2 2

a .. a- .
—7(2J+2|)—7(J+|)

a

= (17)

Figure 5.16. Lattice vectors in reciprocal space of a bee crystal. The primitive vectors
in the reciprocal lattice are (because of (5.13 3)) larger by a factor of 2z. The lattice

constant of the cube then becomes 27 -

2/a.
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5.5 Translation Vectors and the Reciprocal Lattice

(continued)
a3 : . . a3 a3
tot,xt,=—(-i+j+DHe(0+j+)=—O0+1+1)=—
4 4 2 3
2
a” .
t, xt —(J+1)
b =1 2t o b =2 =l(j+|),
ot X1, a’ a
2

1 1 1
b, =—(011) b, =—(@101) b;=—(110)
a a a Figure 5.17. First Brillouin zone of the bce crystal structure.
BCC (reciprocal lattice) —» FCC (real lattice)

st Brillouin zone for BCC ——  Wigner-Seitz cell for FCC

—

Vice versa
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5.6 Free electron Bands

Periodicity of E(K) — all information of electron contained in the 1st Brillouin
Zone (BZ)

E,. for k' for outside 1t BZ — E, with in 13*BZ with a suitable translation vector
G
k =k+G

“Energy bands are not alike in different directions in K-space”

for the demonstration, “free electron band” is used (Fig 5.6 ).

2

h
In 3-D, from (5.7) E =2—(k+G)2
m

2
2
E = h_(kx + n—”)z, n==x0,x1,+2,.... (5.7
2m a

N N RN RN



5.6 Free electron Bands

In Fig 5.17, three important directions
[100] from [{origin) to point H: A
[110] from [to N: 3
[111] from JtoP: A

5¢C F[ W

[ f
N
A

Fig 5.18 calculated by using the following = |\ e
equation
h2 5 = i
E . =—(k+G)’
2m T

rr 4 H H F P P A I T £ NN G H

Energy (Arbitrary Units)

Figure 5.18. Energy bands of the free electrons for the bec structure. The numbers
given on the branches are the respective h; values (see the calculation in the text).
mpare to Fig. 5.6. C = h”2n2 /ma’, see (5.38).
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5.6 Free electron Bands
band calculation for BCC I'—H [100] direction
Kiy =K, between 0 and 2 7z/a (boundary of BZ)
For this direction (5.35) becomes
W' 2 .
E=—(F=xi+G)’
2m a
Where x may take values between 0 and 1. to start with, let G = 0, then
W 2rx . W 2r. 2h'w
E=-—(Z)(xi) =’ where 0= (=2
2m a 2m a ma

this curve 1s labeled (000) in Fig 5. 18 since h;,h,,h; =0,0,0 for G=0




15+ 5. Energy Bands in Crystals

5.6 Free electron Bands
For the case of h,h,,h; =0,-1,0

combined (5.36) and (5.38)

ht 2me. 2

E = |
2m  a

A

TG+DP = CliGx=1) =17

N N RN RN

C=[(x-1)°"+1]=C(x* -2x+2)

For x=02>FE=2C

and for x=1->FE=1C

The band labeled
in Fig 5.18 obtained.

(010)

Similarly, For FCC, see

Figs. 5.19 & 5. 20

Ky
R A Ry
i bty LG Z
PR
- 4.4y
2 5
3 A, L% 2
g 1 5
L
E 5
A,
Fy
0 I
r r'r KX

Figure 5.20. Free electron bands of the fcc structure. The letters on the bottom of
the graphs correspond to letters in Fig. 5.19 and indicate specific symmetry points in

k-space.
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5.7 Band Structures for Some Metals and Semiconductors

- Band structure

of actual solids :
Figs. 5.21~5.24
(results of extensive,
computer-aided

calculations)

- Directions 1n k-space
100): [ — X
110]: ' - K
111): 1 - L

o
-

- —_
Mo Hno<
|
B
:.N
~N
==
- V
e

Fermi Energy

/ o~
L8 o Wal |@Qf I
> 3 Qf
5 [ Xy ¥z A Ko~
c B} 3 L 4
wl

el (i

4: A,

P

0 | | L

I X w L r K X

Figure 5.21. Energy bands for aluminum. Adapted from B. Segal, Phys. Rev. 124,
1797 (1961). (The meaning of the Fermi energy will be explained in Section 6.1.)

Band diagram for aluminum

- parabola-shaped band: free- electron like
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Band diagram for copper

-Lower half of the diagram closely
spaced and flat running bands (due to
3d-bands of Cu)

Figure 5.22. Band structure of copper (fcc). Adapted from B. Segal, Phys. Rev. 125,
109 (1962). The calculation was made using the /-dependent potential. (For the defi-
nition of the Fermi energy, see Section 6.1.)

E (ev)

' ' ' L
AWM - O — N oW

Figure 5.23.

r‘ﬁn| s
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5.7 Band Structures for Some Metals and Semiconductors

Calculated energy band structure of silicon (diamond-cubic crystal

structure). Adapted from M.L. Cohen and T.K. Bergstresser, Phys. Rev. 14, 789
(1966). See also J.R. Chelikowsky and M.L. Cohen, Phys. Rev. B14, 556 (1976).

Band diagram for silicon

- band gap : near 0~ leV —
“semiconductor properties”



N N N N NN
5.7 Band Structures for Some Metals and Semiconductors

-Band diagram gallium arsenide 10

: so called III — IV semiconductor

—

Important for “optoelectonic devices”

ENERGY (eV)

Figure 5.24. Calculated energy band structure of GaAs. Adapted from F. Herman
and W.E. Spicer, Phys. Rev. 174, 906 (1968).
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5.8 Curves and Planes of Equal Energy

Figure 5.25. Electron energy E versus wave vector k (two-dimensional). This figure Figure 5.26. Curves of equal energy inserted into the first Brillouin zone for a two-
demonstrates various curves of equal energy for free electrons. dimensional square lattice.

Energy vs. wave vector, k
Fig 5.25: curves of equal energy for free electrons

Fig 5.26: near boundary of BZ- deviation from a
circular form (2-d)

Fig 5.27: 3-d BZ for Cu

Figure 5.27. A particular surface of equal energy (Fermi surface, see Section 6.1) and
the first Brillouin zone for copper. Adapted from A.B. Pippard, Phil. Trans. Roy.
Soc. London, A 250, 325 (1957).
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