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5. Energy Bands in Crystals

5.1 One-Dimensional Zone Schemes

Energy E vs momentum of the electrons p (or k)

For free electrons, the wave number in 1-dim
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If an electron propagates in  a periodic potential, discontinuities of the electron energies 
are observed when coskxa has a maximum or a minimum, i.e., when

E is a periodic function of      with 
the periodicity of a/2π

kx

5.1 One-Dimensional Zone Schemes

or

At these singularities, a deviation from the parabolic E vs kx occurs and the branches of the 
individual parabolas merge into the neighboring ones (see Fig.5.3)
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The electrons in a crystal behave 
like free electrons for most kx value 
except kx→ nπ/a

periodic zone scheme (see Fig 5.3)

reduced zone scheme (see Fig 5.4)
π/a ≤ kx≤ π/a

5.1 One-Dimensional Zone Schemes



extended zone scheme (see Fig 5.5)

the deviations from the free electron 
parabola at the critical points kx = n∙π/a  
are particularly easy to identify.

free electron bands (see Fig 5.6)
free electrons in a reduced zone scheme 
from
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By inserting different n-values, one can calculate the shape of branches of the 
free electron bands

5.1 One-Dimensional Zone Schemes
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5.2 One- and Two-Dimensional Brillouin Zones

1-d Brillouin Zone

- The first Brillouin Zone (BZ) :

π/a ≤ kx≤ π/a : n-Band

- The second Brillouin Zone (BZ):
π/a ≤ kx≤ 2π/a, -π/a ≤ kx≤-2π/a : m-band

- Individual branches in an extended zone
scheme (Fig. 5.5) can be shifted by 2π/a to left or to  right. 
Shift the branches of 2nd BZ to the positive side of E- kx diagram by 2π/a to the left, and 
likewise the left band by 2π/a to the right  → The result is shown in Fig. 5.4 

(a reduced zone scheme)

- The same can be done in 3rd BZ, and all BZ (because of the 2π/a periodicity)  →
relevant information of all BZ can be contained in the 1st BZ (a reduced zone scheme)
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2-d Brillouin Zone
Description for the movement of an electron in the potential of 2-d lattice
- Wave vector k = (kx, ky) : 2-d reciprocal lattice (Fig 5.7)
- A 2-d field of allowed energy regions which correspond to the allowed
energy band → 2-d BZ
-1st zone in 2-d: the area enclosed by four “Bragg planes” having four 
shortest lattice vectors, G1: bisectors on the
lattice vectors
- For the following zone →
construct the bisectors of the next 
shortest lattice vectors, G2, G3…
- For the zone of higher order the 
extended limiting lines of the zones of 
lower order are used as additional limiting 
lines.

5.2 One- and Two-Dimensional Brillouin Zones



Example: in 2-d lattice, an electron travels 
at 45o to kx-axis, then the boundary of 
the BZ is reached, 
according to Fig 5.8, for

The first four BZ shown in Fig 5.8
“Usefulness of BZ”
- energy bands of solids (discussed in 
later section)

- the behavior of electrons which travel 
in a specific direction in reciprocal space

5. Energy Bands in Crystals
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5.2 One- and Two-Dimensional Brillouin Zones
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- Once the maximal energy has been reached, the electron waves (those of the incident 
and the Bragg-reflected electrons) form standing waves  (the electrons are reflected 
back into the BZ.)

- Overlapping of energy bands:  bands are drawn in different directions 
in k-space (Fig 5.9)  : 
the consequence of
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A different illustration of the occurrence
of critical energies at  which a reflection 
of the electron wave takes place :  

Bragg relation

Since λ = 2π/k

For a perpendicular incidence, θ = 90o,
If θ = 45o, 

For increasing electron energies, a critical k-value is finally reached for which 
“reflection” of the electron wave at the lattice plane occurs. At        ,  the transmission 
of electron beam through the lattice is prevented.
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5.3 Three-Dimensional Brillouin Zones

- In previous section, it was shown that at the boundaries of the
zones the electron waves are Bragg-reflected by the crystal.

- The wave vector, |k| = 2π/λ, was seen to have the unit of 
reciprocal length and thus is defined in the reciprocal lattice.

- The construction of 3-d Brillouin zones for two important crystal 
structures of face centered cubic (FCC) and body centered cubic
(BCC) : important features in common with “Wigner- Seitz cells”
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5.4 Wigner - Seitz Cells

Crystals have symmetrical properties
- An accumulation of “unit cell”
- Smallest possible cell “primitive cell”

(consist of 1 atom)
- BCC, FCC : conventional non-primitive
unit cells

- Wigner-Seitz cell : a special type of 
primitive unit cell that shows the cubic symmetry of cubic cells

- W-S cell construction: bisects the vectors from a given atom to its nearest 
neighbors and place a plane perpendicular to these vectors at the bisecting 
points. For BCC (Fig 5.11) & FCC (Fig. 5. 13)
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5.4 Wigner - Seitz Cells

- The atomic arrangement of FCC:
corners and faces of cube, 
or center points of the edges and the 
center of the cell (Fig 5.12)
-The W-S cell for FCC shown 
in Fig 5.13
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5.5 Translation Vectors and the Reciprocal Lattice

Fundamental vectors or primitive vectors :  t1, t2, t3   

Translation vectors, R : combination of primitive vectors

where n1, n2, and n3 are integers.

Three vectors for the reciprocal lattice: b1, b2, b3

a translation vector for the reciprocal lattice, G

where h1,h2, and h3 is integer
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5. Energy Bands in Crystals

The relation between real and reciprocal lattices

By definition,
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Calculation for the reciprocal lattice of a BCC crystal
Real crystal
a: lattice constant ,         t1, t2, t3 : primitive lattice vectors, 

i, j, l : unit vectors in the x, y, z coordinate system (see Fig. 5.14(b))

Abbreviated,
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(continued)
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Periodicity of E(k) → all information of electron contained in the 1st Brillouin
Zone (BZ)

Ek' for k' for outside 1st BZ → Ek with in 1st BZ with a suitable translation vector 
G

“Energy bands are not alike in different directions in k-space”

for the demonstration, “free electron band” is used (Fig 5.6 ).

In 3-D, from (5.7)
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5.6 Free electron Bands
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In Fig 5.17,  three important directions

[100] from       (origin) to point H :

[110] from        to N :

[111] from        to P:

Fig 5.18 calculated by using the following 
equation
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band calculation  for BCC direction  ]100[   H−Γ

xkk ≡−Γ    Η

For this direction (5.35) becomes
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Where x may take values between 0 and 1. to start with, let G = 0, then

where

this curve is labeled (000) in Fig 5. 18 since h1,h2,h3 = 0,0,0   for G=0

between 0 and 2π/a (boundary of BZ)
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For the case of h1,h2,h3 = 0,-1,0

combined (5.36) and (5.38)
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- Band structure 
of actual solids :
Figs. 5.21~5.24
(results of extensive,
computer-aided 
calculations)

- Directions in k-space

[100] : 

[110] :

[111]:

5.7 Band Structures for Some Metals and Semiconductors

5. Energy Bands in Crystals

X−Γ
K−Γ
L−Γ

Band diagram for aluminum
- parabola-shaped band: free- electron like
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Band diagram for copper

-Lower half of the diagram closely 
spaced and flat running bands (due to 
3d-bands of Cu)

Band diagram for silicon

- band gap : near 0~ 1eV →
“semiconductor properties”

5.7 Band Structures for Some Metals and Semiconductors
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-Band diagram gallium arsenide

: so called III – IV semiconductor 

Important for “optoelectonic devices”

5.7 Band Structures for Some Metals and Semiconductors
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5.8 Curves and Planes of Equal Energy

Energy vs. wave vector, k

Fig 5.25: curves of equal energy for free electrons

Fig 5.26: near boundary of BZ- deviation from a 
circular form (2-d)

Fig 5.27: 3-d BZ for Cu
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