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6. Electrons in a Crystal

6.1 Fermi Energy and Fermi Surface

The Fermi energy, EF: 

- An important part of an electron band diagram

- Defined as “the highest energy that the electrons assume at T = 0 K”

- Fermi energy for Al and Cu : see Fig 5.21, 5.22

Fermi energy for semiconductor: 

- The above definition can occasionally be misleading, particularly

when dealing with semiconductors

- Fermi function at EF, F(EF) = ½ : see Section 6.2 for more accurate 

definition 

Fermi surface (in 3-d k-space) for Cu : see Fig 5.27



6. Electrons in a Crystal

6.2 Fermi Distribution Function

Fermi function, F(E) : The probability that           
a certain energy level is occupied by electrons

Fermi distribution for T = 0  K (Fig 6.1)

and for higher T (T≠ 0 K)  (Fig 6.2)

At high energy (E >> EF), F(E) is approximated 
by classical Boltzmann distribution

“Boltzmann tail”
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6. Electrons in a Crystal

6.3 Density of States
“How energy levels are distributed over a band?”

Assume free electrons are confined in a square potential well of crystal.

Similar to the case in Sec. 4.2,  by using B.C., the solution of the 

Schrödinger equation

where nx.ny,nz are principal quantum numbers, 

a is the length of the crystal
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6. Electron in a Crystal

6.3 Density of States

A specific energy level, En for each set of nx.ny,nz , called “ energy state”

- Equal values of the energy, En lie on the surface of sphere with radius n

- All points within the sphere represent quantum states with energy 
smaller 

than En

- The  # of quantum state, η, with an energy equal to or smaller than En, is 

proportional to the volume of the sphere 

(n values can be defined in positive octant of the n-space)

In a one-eighth of the volume of the sphere with radius n 
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6. Electrons in a Crystal

6.3 Density of States

Density of state, Z(E) : # of energy states 
per unit energy in the energy interval dE

(a3 =  volume that the electrons can 
occupy)

Z(E) : differentiation of η with respect to 
the energy, E
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6. Electrons in a Crystal

6.4 Population Density

Pauli principle : each energy state can be occupied by one electron of 
positive spin and one of negative spin

Population density

For T→ 0 and E < EF→ N(E) = 2∙Z(E),  F(E) =1

For T≠0, E≈ EF, → the Fermi distribution 

function causes a smearing out of N(E)

(Fig 6.5)
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6. Electrons in a Crystal

6.4 Population Density

# of electrons N*, that have an energy equal to or smaller than the energy
En (The area within the curve in Fig 6.5) For an energy interval between E
and   E + dE

From (6.8) and (6.9) and consider simple case T→ 0 and E < EF  ,F(E) = 1

If we define # of electrons per unit volume as N’ = N*/V,
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6. Electrons in a Crystal

6.5 Complete Density of States Function Within a Band

E vs. Z(E) in actual crystals

- Low energy : free-electronlike

- Higher energy : fewer energy 
state available (Fig 5.26)

→ Z(E) decrease with increasing 
E

- The corners of the BZ : Z(E) 
dropped to zero



6. Electrons in a Crystal

6.6  Consequences of the Band Model

Insulators : solids in which the 
highest filled band is completely 
occupied by electron

Alkali metal: the valence band is 
essentially half-filled,  electrons 
can drift under external field

Bivalent metals: upper band partially overlapped ; weak binding forces of 
the valence electrons on atom

Semiconductors: valence band is completely filled with electron; relatively 
narrow band gap (intrinsic semiconductors); a sufficiently large energy can 
excite electron from valence band to conduction band → some electron 
conduction



6. Electrons in a Crystal

6.7 Effective Mass

Effective mass (of electron), m*

experimentally determined electron mass

- Deviation of m* from free electron mass m0 : usually attributed to 
interaction between drifting electrons and atoms in a crystal

- For example,

Electron accelerated in an electric field might be slowed down slightly 
due to “collisions” with some atom → ratio m*/m0 >1

The electron wave in another crystal might have just the right phase in 
order that the response to an external electric field is enhanced→
m*/m0 <1

- Derivation of effective mass

group velocity (2.10) dk
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6. Electron in a Crystal

6.7 Effective Mass

(continued)
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6. Electron in a Crystal

6.7 Effective Mass

Effective mass is inversely proportional to 
the curvature of and electron band.
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In Fig 6.8, m* is small and positive 
near the center of BZ

Negative m* (upper part of the band 
in Fig 6.8 ) : “particle travels in the 
opposite direction to an applied 
electric force ( and opposite to an 
electron”; called “electron hole”

cf) exciton : an electron/hole pair
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