Kinetics of electrode reactions (Ch. 3)

<u>Review of homogeneous kinetics</u> Dynamic equilibrium. Arrhenius equation. Transition state theory

Essentials of electrode reactions

Butler-Volmer model of electrode kinetics 1-step, 1-e process. Standard rate const. Transfer coefficient

Implications of Butler-Volmer model for 1-step, 1-e process Exchange current. Current-overpotential equation. Exchange current plots. Very facile kinetics & reversible behavior. Effects of mass transfer

Multistep mechanisms

<u>Microscopic theories of charge transfer (생략)</u> Marcus theory

<u>Review of homogeneous kinetics</u> Dynamic equilibrium

$$\mathbf{O} + \mathbf{e} = \mathbf{R} \\ \mathbf{k}_{\mathbf{b}} \mathbf{R}$$

Rate of the forward process

$$v_f (M/s) = k_f C_A$$

Rate of the reverse reaction

$$v_b = k_b C_B$$

Rate const, k_f , k_b : s⁻¹ Net conversion rate of A & B

$$v_{net} = k_f C_A - k_b C_B$$

At equilibrium, $v_{net} = 0$

$$k_f / k_b = K = C_B / C_A$$

*<u>kinetic theory predicts a const conc ratio at equilibrium, just as thermodynamics</u> At equilibrium, kinetic equations \rightarrow thermodynamic ones

 \rightarrow dynamic equilibrium (equilibrium: nonzero rates of k_f & k_b, but <u>equal</u>)

Exchange velocity

$$v_0 = k_f(C_A)_{eq} = k_b(C_B)_{eq}$$

Arrhenius equation & potential energy surfaces

 $k = Ae^{-EA/RT}$

E_A: activation energy, A: frequency factor

Transition state or activated complex \rightarrow Standard internal E of activation: ΔE^{\ddagger} Standard enthalpy of activation: ΔH^{\ddagger} $\Delta H^{\ddagger} = \Delta E^{\ddagger} + \Delta (PV)^{\ddagger} \sim \Delta E^{\ddagger}$

 $k = Aexp(-\Delta H^{\ddagger}/RT)$

 $A = A' exp(\Delta S^{\ddagger}/RT)$ $\Delta S^{\ddagger}: \text{ standard entropy of activation}$

 $k = A' exp[-(\Delta H^{\ddagger} - T\Delta S^{\ddagger})/RT]$ = A' exp(-\Delta G^{\ddagger}/RT)

 ΔG^{\ddagger} : standard free energy of activation

Transition state theory (absolute rate theory, activated complex theory)

General theory to predict the values of A and E_A

Rate constants

 $\mathbf{k} = \kappa (kT/h) e^{-\Delta G \ddagger/RT}$

K: transmission coefficient, k: Boltzmann const, h: Planck const

Essentials of electrode reactions

*accurate kinetic picture of any dynamic process must yield an equation of the thermodynamic form in the limit of equilibrium

$$O + ne = R = R = k_b$$

Equilibrium is characterized by the Nernst equation

$$E = E^{0'} + (RT/nF)ln(C_0^*/C_R^*)$$

bulk conc

Kinetic: dependence of current on potentialOverpotentialn = a + blogi

Tafel equation

Forward reaction rate $v_f = k_f C_0(0,t) = i_c/nFA$ $C_0(0,t)$: surface concentration. Reduction \rightarrow cathodic current (i_c) Backward reaction rate $v_b = k_b C_R(0,t) = i_a/nFA$

Net reaction rate

$$v_{net} = v_f - v_b = k_f C_O(0,t) - k_b C_R(0,t) = i/nFA$$

$$i = i_c - i_a = nFA[k_fC_O(0,t) - k_bC_R(0,t)]$$

Butler-Volmer model of electrode kinetics Effects of potential on energy barriers

Hg $Na^{+} + e = Na(Hg)$

Equilibrium $\rightarrow E_{eq}$

positive potential than equilibrium

negative potential than equilibrium

One-step, one-electron process

 $O + e \stackrel{k_f}{=} R$ k_b Potential change from $E^{0'}$ to E $\rightarrow \text{ energy change } -F\Delta E = -F(E - E^{0'})$

 ΔG^{\ddagger} change: α term (<u>transfer coefficient</u>)

$$\Delta G_a^{\ddagger} = \Delta G_{0a}^{\ddagger} - (1 - \alpha)F(E - E^{0'})$$

$$\Delta G_c^{\ddagger} = \Delta G_{0c}^{\ddagger} + \alpha F(E - E^{0'})$$

 $k_{f} = A_{f} exp(-\Delta G_{c}^{\ddagger}/RT)$ $k_{b} = A_{b} exp(-\Delta G_{a}^{\ddagger}/RT)$

 $k_{f} = A_{f} exp(-\Delta G_{0c}^{\ddagger}/RT) exp[-\alpha f(E - E^{0'})]$ $k_{b} = A_{b} exp(-\Delta G_{0a}^{\ddagger}/RT) exp[(1 - \alpha)f(E - E^{0'})]$

f = F/RT

At $C_0^* = C_R^*$, $E = E^0$ $k_f C_0^* = k_b C_R^* \rightarrow k_f = k_b$; standard rate constant, k^0

At other potential E

 $k_{f} = k^{0} exp[-\alpha f(E - E^{0'})]$ $k_{b} = k^{0} exp[(1 - \alpha)f(E - E^{0'})]$ Put to $i = i_{c} - i_{a} = nFA[k_{f}C_{O}(0,t) - k_{b}C_{R}(0,t)]$

Butler-Volmer formulation of electrode kinetics

 $i = FAk^{0}[C_{O}(0,t)e^{-\alpha f(E - E0')} - C_{R}(0,t)e^{(1 - \alpha)f(E - E0')}]$

k⁰: large k⁰ → equilibrium on a short time, small k⁰ → sluggish (e.g., 1 ~ 10 cm/s) (e.g., 10⁻⁹ cm/s)

 k_f or k_b can be large, even if small k^0 , by a sufficient high potential

The transfer coefficient (α)

 α : a measure of the symmetry of the energy barrier

 $tan\Theta = \alpha FE/x$ $tan\varphi = (1 - \alpha)FE/x$

 $\rightarrow \alpha = tan\Theta/(tan\varphi + tan\Theta)$

 $\Phi = \Theta \& \alpha = \frac{1}{2} \rightarrow \text{symmetrical}$

In most systems α : 0.3 ~ 0.7

Implications of Butler-Volmer model for 1-step, 1-electron process Equilibrium conditions. The exchange current

At equilibrium, net current is zero

 $i = 0 = FAk^{0}[C_{0}(0,t)e^{-\alpha f(Eeq - E0')} - C_{R}(0,t)e^{(1-\alpha)f(Eeq - E0')}]$

 $\rightarrow e^{f(Eeq - E0')} = C_0^* / C_R^*$ (bulk concentration are found at the surface)

This is same as Nernst equation!! $(E_{eq} = E^{0'} + (RT/nF)ln(C_{0}^{*}/C_{R}^{*}))$ "Accurate kinetic picture of any dynamic process must yield an equation of the thermodynamic form in the limit of equilibrium"

At equilibrium, net current is zero, but faradaic activity! (only $i_a = i_c$) \rightarrow exchange current (i_0)

 $i_0 = FAk^0C_0^*e^{-\alpha f(Eeq - E0')} = FAk^0C_0^*(C_0^*/C_R^*)^{-\alpha}$

 $i_0 = FAk^0 C_0^{*(1-\alpha)} C_R^{*\alpha}$

 i_0 is proportional to k^0 , exchange current density $j_0 = i_0/A$

Current-overpotential equation Dividing

$$i = FAk^{0}[C_{O}(0,t)e^{-\alpha f(E - E0')} - C_{R}(0,t)e^{(1 - \alpha)f(E - E0')}]$$

By $i_0 = FAk^0C_0^{*(1-\alpha)}C_R^{*\alpha}$

 \rightarrow current-overpotential equation

$$i = i_0 [(C_0(0,t)/C_0^*)e^{-\alpha f\eta} - (C_R(0,t)/C_R^*)e^{(1-\alpha)f\eta}]$$

cathodic term anodic term

where $\eta = E - E_{eq}$

Approximate forms of the i-∩ equation

(a) No mass-transfer effects

If the solution is well stirred, or low current for similar surface conc as bulk

 $i = i_0 [e^{-\alpha f \eta} - e^{(1 - \alpha) f \eta}]$ Butler-Volu

Butler-Volmer equation

good approximation when i is <10% of $i_{l,c}$ or $i_{l,a}$ (C₀(0,t)/C₀^{} = 1 - i/i_{l,c} = 0.9)

For different j_0 ($\alpha = 0.5$): (a) 10⁻³ A/cm², (b) 10⁻⁶ A/cm², (c) 10⁻⁹ A/cm² \rightarrow the lower i_0 , the more sluggish kinetics \rightarrow the larger "activation overpotential" ((a): very large $i_0 \rightarrow$ engligible activation overpotential) (a): very large $i_0 \rightarrow$ engligible activation overpotential \rightarrow any overpotential: "concentration overpotential"(changing surface conc. of O and R)

 $i_0 \rightarrow 10 \text{ A/cm}^2 \sim < pA/cm^2$

The effect of α

(b) Linear characteristic at small η For small value of $x \rightarrow e^x \sim 1 + x$

 $\mathbf{i} = \mathbf{i}_0[\mathbf{e}^{-\alpha f\eta} - \mathbf{e}^{(1-\alpha)f\eta}] = -\mathbf{i}_0 f\eta$

Net current is linearly related to overpotential in a narrow potential range near E_{eq}

 $-\eta/i$ has resistance unit: "charge-transfer resistance (R_{ct})"

 $R_{ct} = RT/Fi_0$

(c) Tafel behavior at large n

 $i = i_0 [e^{-\alpha f\eta} - e^{(1-\alpha)f\eta}]$

For large η (positive or negative), one of term becomes negligible e.g., at large negative η , exp(- $\alpha f\eta$) >> exp[(1 - $\alpha)f\eta$]

$$i = i_0 e^{-\alpha f\eta}$$

 $\eta = (RT/\alpha F)lni_0 - (RT/\alpha F)lni = a + blogi$

Tafel equation

 $a = (2.3 RT/\alpha F) logi_0, b = -(2.3 RT/\alpha F)$

(d) Tafel plots (i vs. η) \rightarrow evaluating kinetic parameters (e.g., i_0, α)

anodic

cathodic

e.g., real Tafel plots for Mn(IV)/Mn(III) system in concentrated acid

- At very large overpotential: mass transfer limitation

Exchange current plots

$$i_0 = FAk^0 C_0^* e^{-\alpha f(Eeq - E0')}$$

 $\rightarrow logi_0 = logFAk^0 + logC_0^* + (\alpha F/2.3RT)E^{0'} - (\alpha F/2.3RT)E_{eq}$

A plot of $logi_0$ vs. E_{eq} at const $C_0^* \rightarrow$ linear with a slope of $-\alpha F/2.3RT \rightarrow$ obtaining α and i_0

Another way to determining α $i_0 = FAk^0C_0^{*(1-\alpha)}C_R^{*\alpha}$

$$\rightarrow \qquad logi_0 = logFAk^0 + (1 - \alpha)logC_0^* + \alpha logC_R^*$$

 $(\partial log i_0 / \partial log C_0^*)_{CR^*} = 1 - \alpha \text{ and } (\partial log i_0 / \partial log C_R^*)_{CO^*} = \alpha$

Or from $i_0 = FAk^0C_0^{*(1-\alpha)}C_R^{*\alpha}$

 $\rightarrow [dlog(i_0/C_0^*)]/[dlog(C_R^*/C_0^*)] = \alpha$ Not require holding C_0^* or C_R^* constant

Very facile kinetics and reversible behavior

$$i/i_0 = (C_0(0,t)/C_0^*)e^{-\alpha f\eta} - (C_R(0,t)/C_R^*)e^{(1-\alpha)f\eta}$$

At very large i_0 (big standard rate constant k^0) \rightarrow $i/i_0 \rightarrow 0$

 $C_{O}(0,t)/C_{R}(0,t) = (C_{O}^{*}/C_{R}^{*})e^{f(E - Eeq)}$

Put Nernst eqn: $e^{f(Eeq - E0')} = C_0^* / C_R^*$ $(E_{eq} = E^{0'} + (RT/nF)ln(C_0^* / C_R^*))$

$$C_{O}(0,t)/C_{R}(0,t) = e^{f(Eeq - E0')} e^{f(E - Eeq)} = e^{f(E - E0')}$$

Rearrangement

 $E = E^{0'} + (RT/F)ln[C_0(0,t)/C_R(0,t)]$

Potential vs. surface concentration regardless of the current flow No kinetic parameters due to very facile kinetics

Effects of mass transfer

Put
$$C_O(0,t)/C_O^* = 1 - i/i_{l,c}$$
 and $C_R(0,t)/C_R^* = 1 - i/i_{l,a}$
to $i = i_0[(C_O(0,t)/C_O^*)e^{-\alpha f\eta} - (C_R(0,t)/C_R^*)e^{(1-\alpha)f\eta}]$

$$i/i_0 = (1 - i/i_{l,c})e^{-\alpha f\eta} - (1 - i/i_{l,a})e^{(1 - \alpha)f\eta}$$

i- η curves for several ratios of i_0/i_l

Multistep mechanisms Rate-determining electron transfer

- In electrode process, rate-determining step (RDS) can be a heterogeneous to electron-transfer reaction

→ <u>n-electrons process</u>: n distinct electron-transfer steps → RDS is always a oneelectron process!! one-step, one-electron process 적용 가능!!

 $\rightarrow \text{ mechanism:} \qquad \begin{array}{l} O + ne = R \\ O + n'e = O' \quad (net \text{ result of steps preceding RDS}) \\ O' + e \stackrel{k_f}{=} R' \quad (RDS) \\ R' + n''e = R \quad (net \text{ result of steps following RDS}) \\ n' + 1 + n'' = n \end{array}$

Current-potential characteristics

 $i = nFAk_{rds}^{0}[C_{O'}(0,t)e^{-\alpha f(E - Erds 0')} - C_{R'}(0,t)e^{(1 - \alpha)f(E - Erds 0')}]$

 k_{rds}^{0} , α , $E_{rds}^{0'}$ apply to the RDS

Multistep processes at equilibrium

At equilibrium, overall reaction \rightarrow Nernst equation

 $E_{eq} = E^{0'} + (RT/nF)ln(C_{O}^{*}/C_{R}^{*})$

Nernst multistep processes

Kinetically facile & nernstian (reversible) for all steps

 $E = E^{0'} + (RT/nF)ln[C_0(0,t)/C_R(0,t)]$

 \rightarrow E is related to surface conc of initial reactant and final product regardless of the details of the mechanism

Quasireversible and irreversible multistep processes

pp. 111-115