Basic potential step methods (Ch. 5)

Overview of step experiments Potential step under diffusion control Diffusion-controlled currents at ultramicroelectrodes Sampled-current voltammetry for reversible electrode reactions

Sampled-current voltammetry for quasireversible & irreversible electrode reactions

Multicomponent systems & multistep charge transfers Chronoamperometric reversal techniques Chronocoulometry Special applications of ultramicroelectrodes Step-functional changes in WE potential & mass transport only by diffusion

Overview of step experiments Types of techniques Potentiostat: control of potential

Basic potential step experiment: $O + e \rightarrow R$ (unstirred solution, E_2 : masstransfer (diffusion)-limited value (rapid kinetics \rightarrow no O on surface)) chronoamperometry (i vs. t) -Series of step experiments (between each step: stirring for same initial condition) 4, 5: mass-transfer (diffusion)-limited (no O on electrode surface)) sampled-current voltammetry (i(\alpha) vs. E)

Potential step: $E_1 \rightarrow E_2 \rightarrow E_1$ (reversal technique) double potential step chronoamperometry Chronocoulometry & double potential step chronocoulometry (Q vs. t) (Q: integral of i)

Current-potential characteristics

Controlled potential experiment for the electrode reaction

$$O + e = R$$

$$k_b$$

Current-potential characteristic

$$i = FAk^{0}[C_{O}(0,t)e^{-\alpha f(E - E0')} - C_{R}(0,t)e^{(1 - \alpha)f(E - E0')}]$$

Fick's law \rightarrow time-dependent surface conc C₀(0, t) & C_R(0, t)

(a) Large-amplitude potential step (to mass-transfer controlled region) $C_0(0, t) \sim 0$, current is totally controlled by mass transfer & electrode kinetics no longer influence the current $\rightarrow I$ is independent of E

(b) small-amplitude potential changes For small η , $i = -i_0 f \eta$

```
(Eq. 3.4.2 in p.102)
```

(c) Reversible (Nernstian) electrode process For very rapid electrode kinetics, i-E relation \rightarrow Nernst form $E = E^{0'} + (RT/nF)ln[C_0(0, t)/C_R(0, t)]$ (Eq. 3.4.28 in p. 106) No kinetic parameter (k⁰ & α) involved

(d) Totally irreversible e-transfer

If electrode kinetics are very sluggish (very small k^0), anodic & cathodic terms are never simultaneously significant \rightarrow Tafel region (Sec. 3.4.3)

(e) Quasireversible systems

Potential step under diffusion control

A planar electrode

For diffusion-limited, concentration profile, $C_O(x, t)$

 $\partial C_O(x, t) / \partial t = D_O(\partial^2 C_O(x, t) / \partial x^2)$

→ boundary conditions:
$$C_O(x, 0) = C_O^*$$

 $\lim_{x\to\infty} C_O(x, t) = C_O^*$
 $C_O(0, t) = 0$ (for t > 0)

$$-\mathbf{J}_{O}(0, t) = \mathbf{i}(t)/\mathbf{n}FA = \mathbf{D}_{O}[\partial \mathbf{C}_{O}(x, t)/\partial x]_{x=0}$$

Laplace transformation \rightarrow i vs. t

 $i(t) = i_d(t) = (nFAD_0^{\frac{1}{2}}C_0^{*})/(\pi^{\frac{1}{2}}t^{\frac{1}{2}})$ Cottrell equation

i_d(t): diffusion-limited current

Instrumental & experimental limitations of i-t behavior under Cottrell conditions

- (a) Potentiostat limitations: very high current at short times
- (b) Recording device limitations
- (c) Limitations by $R_u \& C_d$: overlap with nonfaradaic current (time constant R_uC_d) Fig.1.2.7 (p. 16). t > 5 R_uC_d
- (d) Limitations due to convection: convective effect > 300 s or 20 s

Concentration profile

 $C_{O}(x, t) = C_{O}^{*} erf[x/2(D_{O}t)^{1/2}]$

```
(erf(x): page 779)
```

Diffusion layer thickness: (D_ot)^{1/2} (다양하게 정의됨)

e.g., $D_0 = 1 \ge 10^{-5} \text{ cm}^2/\text{s}$ $\rightarrow (D_0 t)^{1/2} = 30 \ \mu\text{m for } 1 \ \text{s}$

Semi-infinite spherical diffusion

e.g., hanging mercury drop

 $\partial C_{\rm O}(r,t)/\partial t = D_{\rm O}[(\partial^2 C_{\rm O}(r,t)/\partial r^2) + (r/2)(\partial C_{\rm O}(r,t)/\partial r)]$

r: radial distance from electrode center → boundary conditions: $C_O(r, 0) = C_O^*$ (r > r₀) $\lim_{r\to\infty} C_O(r, t) = C_O^*$ $C_O(r_0, t) = 0$ (for t > 0)

r₀: radius of the electrode

 \rightarrow i vs. t

 $i_d(t) = (nFAD_OC_O^*)\{[1/(\pi D_Ot)^{\frac{1}{2}}] + (1/r_0)\}$

 $i_d(\text{spherical}) = i_d(\text{linear}) + (nFAD_OC_O^*)/r_0$

For a planar electrode

For a spherical case

 $\lim_{t \to \infty} i_d = 0$ $\lim_{t \to \infty} i_d = (nFAD_OC_O^*)/r_0$

 $C_{O}(r, t) = C_{O}^{*} \{ 1 - (r_{0}/r) erfc[(r - r_{0})/2(D_{O}t)^{1/2}] \}$

- Diffusion layer grows much larger than r_0 (e.g., UME): $(r - r_0) \ll 2(D_0 t)^{1/2}$

 $C_{O}(r, t) = C_{O}^{*}[1 - (r_{0}/r)]$

- \rightarrow conc profile: independent of time
- Linear diffusion approximation

Within a% error: 2^{nd} term/ 1^{st} term $\leq a/100$ $i_d(t) = (nFAD_0C_0^*)\{[1/(\pi D_0t)^{\frac{1}{2}}] + (1/r_0)\}$

Microscopic & geometric areas (A_m) (A_{σ})

Roughness factor $\rho = A_m / A_g$

Typically 2~3 Smooth single crystal < 1.5 In chronoamperometry

long time (1 ms to 10 s) diff. layer: 10 ~ 100 µm Geometric area for Cottrell eqn short time (~100 ns) diff. layer: 10 nm microscopic area

Electrode with active/inactive areas

Time

Area for Cottrell eqn

Diffusion-controlled currents at ultramicroelectrodes UME: < 25 µm ~ 10 nm (nanodes)

Types of UME: disk, spherical, hemispherical, band, cylindrical

Responses to a <u>large-amplitude</u> potential step

(a) <u>Spherical or hemispherical UME</u> For spherical i vs. t $i = [(nFAD_0^{1/2}C_0^*)/(\pi^{1/2}t^{1/2})] + [nFAD_0C_0^*/r_0]$

Short time: 1st term dominates (= Cottrell eqn) (diff. layer is thin vs. r_0) Long time: 2nd term dominates \rightarrow steady-state current (i_{ss})

 $i_{ss} = nFAD_{O}C_{O}^{*}/r_{0} = 4\pi nFD_{O}C_{O}^{*}r_{0}$

Hemispherical UME: half of the current of sphere UME

(b) <u>Disk UME</u> (practically most important!)

Diffusion equation

cf. General formulation of Fick's 2nd law (Ch. 4)

 $\partial C_0 / \partial t = D_0 \nabla^2 C_0$

r: radial distance from electrode center z: linear normal to the plane

 $\rightarrow \text{ boundary conditions:}$ $C_{O}(r, z, 0) = C_{O}^{*}$ $\lim_{r \to \infty} C_{O}(r, z, t) = C_{O}^{*}$ $\lim_{z \to \infty} C_{O}(r, z, t) = C_{O}^{*}$ $\frac{\partial C_{O}(r, z, t)}{\partial z} \Big|_{z=0} = 0 \quad (r > r_{0})$ $C_{O}(r, 0, t) = 0 \quad (r \le r_{0}, t > 0)$

 $i = 4nFAD_OC_O*f(\tau)/\pi r_0$

 $\tau = 4D_0 t/r_0^{1/2}$ $f(\tau) = 0.88623\tau^{-1/2} + 0.78540 + 0.094\tau^{1/2}$ when $\tau < 1$ (at short times) $f(\tau) = 1 + 0.71835\tau^{-1/2} + 0.05626\tau^{-3/2} \dots$ when $\tau > 1$ (at long times) Short time Diff. layer: thin vs. r_0 → Cottrell current

Filled square: $\tau \rightarrow 0$

Intermediate time

Long time

 $i_{ss} = 4nFAD_OC_O^*/(\pi r_0)$ $= 4nFD_OC_O^*r_0$

Triangle: Cottrell current

dashed line: $i/i_{ss} = 1$ (steady-state)

(c) <u>Cylindrical UME</u>(d) <u>Band UME</u>

Summary of behavior at UME

- At short time: any UME \rightarrow Cottrell equation!
- At long time: UME approaches a steady state

 $i_{ss} = nFAm_{O}C_{O}^{*}$

m₀: mass-transfer coefficient

<u>Sampled-current voltammetry for reversible electrode reactions</u> Voltammetry based on linear diffusion at a planar electrode

- (a) <u>A step to an arbitrary potential</u>
- O + ne = R & assume rapid charge-transfer kinetics

 $E = E^{0'} + (RT/nF)ln[C_0(0, t)/C_R(0, t)]$

$$\rightarrow \qquad \Theta = C_0(0, t)/C_R(0, t) = \exp[nF(E - E^{0'})/RT]$$

 $i(t) = [nFAD_0^{1/2}C_0^*]/[\pi^{1/2}t^{1/2}(1+\zeta\theta)]$

 $\zeta = (D_0/D_R)^{1/2}$

Cottrell equation is a special case for the diffusion-limited region (very negative $E - E^{0'}: \Theta \rightarrow 0$): Cottrell current as $i_d(t)$

 $i(t) = i_d(t)/(1 + \zeta \Theta)$

For very positive E; $\Theta \rightarrow \infty$; $i(t) \rightarrow 0$ i(t): 0 to $i_d(t)$ (Fig. 5.1.3 in p. 158)

(b) <u>Shape of i-E curve</u>For a fixed sampling time τ

 $i(\tau) = i_d(\tau)/(1 + \zeta \Theta)$

 $\rightarrow \zeta \Theta = [i_d(\tau) - i(\tau)]/i(\tau)$

 $\to E = E^{0'} + (RT/nF) \ln[D_R^{1/2}/D_0^{1/2}] + (RT/nF) \ln\{[i_d(\tau) - i(\tau)]/i(\tau)\}$ When $i(\tau) = i_d(\tau)/2$, 3^{rd} term $\to 0$

Half-wave potential, $E_{1/2} = E^{0'} + (RT/nF)\ln[D_R^{1/2}/D_0^{1/2}]$ $E = E_{1/2} + (RT/nF)\ln\{[i_d(\tau) - i(\tau)]/i(\tau)\}$

For reversibility E vs. $\log\{[i_d(\tau) - i(\tau)]/i(\tau)\} \rightarrow$ Linear with a slope of 2.303RT/nF or 59.1/n mV

$$D_R \neq D_O \rightarrow E_{1/2} \neq E^{0'}$$

(c) <u>Concentration profile</u>

 $C_{O}(0, t) = C_{O}^{*} \{1 - [i(t)/i_{d}(t)]\}$ $C_{R}(0, t) = \zeta C_{O}^{*} [i(t)/i_{d}(t)]$

Steady-state voltammetry at a UME

A step to an arbitrary potential at a spherical electrode O + ne = R & reversible $\Theta = C_O(r_0, t)/C_R(r_0, t) = exp[nF(E - E^{0'})/RT]$

Steady-state regime

 $i = nFAD_OC_O^*/(1 + \zeta^2\Theta)r_0$

Steady-state limiting current is the special case for the diffusion limited region ($\Theta \rightarrow 0$)

 $i = i_d / (1 + \zeta^2 \Theta)$

Shape of the wave

Reversible steady-state voltammogram

 $E = E^{0'} + (RT/nF)ln[D_R/D_0] + (RT/nF)ln[(i_d - i)/i]$

Half-wave potential, $E_{1/2} = E^{0'} + (RT/nF)\ln[D_R/D_0]$

Concentration profile

$$C_{O}(r_{0}, t) = C_{O}^{*}[1 - (i/i_{d})]$$
$$C_{R}(r_{0}, t) = \zeta^{2}C_{O}^{*}(i/i_{d})$$

Sampled-current voltammetry for quasi- & irreversible electrode rxns Responses based on linear diffusion at a planar electrode

(a) <u>Current-time behavior</u>

O + ne = R & governed by both mass transfer & <u>charge-transfer kinetics</u> For the quasireversible one-step, one-electron case

 $i/FA = D_O(\partial C_O(x, t)/\partial x)_{x=0} = k_f C_O(0, t) - k_b C_R(0, t)$

where $k_f = k^0 e^{-\alpha f(E - E0')} \& k_b = k^0 e^{(1 - \alpha)f(E - E0')}$, f = F/RT

 \rightarrow i(t) = FAk_fC₀^{*}exp(H²t)erfc(Ht^{1/2})

where $H = (k_f/D_O^{1/2}) + (k_b/D_R^{1/2})$

Using erf(x) & erfc(x) = 1- erf(x) in page 779 exp(H²t)erfc(Ht^{1/2}): 1 for Ht^{1/2} = 0, but approaches 0 as Ht^{1/2} \uparrow Current-time curve (with R initially absent)

- Kinetics limit the current at t = 0 to a finite value proportional to k_f

(d) <u>Sampled-current voltammetry</u>

- Very facile kinetics, large $k^0 \rightarrow$ reversible shape, $E_{1/2} \sim E^{0'}$ ' ' '
- Smaller k⁰ → kinetics driven: displaced potentials, broadened wave

<u>Multicomponent systems & multistep charge transfers</u> For $O + ne \rightarrow R \& O' + n'e \rightarrow R'$

For chronoamperometry or sampled-current voltammetry based on linear diff

 $(i_d)_{total} = (FA/\pi^{1/2}t^{1/2})(nD_O^{1/2}C_O^* + n'D_{O'}^{1/2}C_{O'}^*)$ For sampled-current voltammetry based on steady-state at UME $(i_d)_{total} = FA(nm_OC_O^* + n'm_O'C_{O'}^*)$

 $(i_d)_{total} = i_d + i_{d^{\,\prime}}$

<u>Chronoamperometric reversal techniques</u>

 $E(t) = E_f + S_{\tau}(t)(E_r - E_f) \quad (t > 0) \qquad S_{\tau}(t) \text{ is } 0 \text{ for } t \le \tau, \text{ and } 1 \text{ for } t > \tau$

Initial: $C_O(x, 0) = C_O^*$, $C_R(x, 0) = 0$ Forward step: $C_O(0, t) = C_O^{\prime}$, $C_R(0, t) = C_R^{\prime}$ $C_O^{\prime} = \Theta^{\prime}C_R^{\prime}$ (O/R couple: nernstian) Where $\Theta^{\prime} = \exp[nf(E_f - E^{0^{\prime}})]$

Reversal step: $C_0(0, t) = C_0^{\prime\prime}, C_R(0, t) = C_R^{\prime\prime}$ $C_0^{\prime\prime} = \Theta^{\prime\prime}C_R^{\prime\prime}$ Where $\Theta^{\prime\prime} = \exp[nf(E_r - E^{0^{\prime}})]$ $\lim_{x \to \infty} C_O(x, t) = C_O^*$ $\lim_{x \to \infty} C_R(x, t) = 0$ $J_O(0, t) = -J_R(0, t)$

Current-time response For $0 \le t \le \tau$

 $i_{f}(t) = [nFAD_{O}^{1/2}C_{O}^{*}]/[\pi^{1/2}t^{1/2}(1+\zeta\Theta')]$

Stepping in forward phase to diffusion plateau ($\Theta' \sim 0, C_{O}' \sim 0$), then reversing to the diffusion plateau for reoxidation ($\Theta'' \rightarrow \infty, C_{R}'' \sim 0$)

 $-i_r(t) = (nFAD_0^{1/2}C_0^*/\pi^{1/2})[1/(t-\tau)^{1/2} - 1/t^{1/2}]$ Kambara eqn

*could be derived under $C_0'' = 0 \& C_R'' = 0$ (also for irreversible system)

$$\rightarrow \qquad - i_r / i_f = [t_f / (t_r - \tau)]^{1/2} - (t_f / t_r)^{1/2} For t_r - \tau = t_f \qquad - i_r / i_f = 1 - (1 - \tau / t_r)^{1/2}$$

 $-i_r(2\tau)/i_f(\tau) = 0.293 \rightarrow$ reference to indicate complicated rxn or not

Chronocoulometry

To integrate current → charge passed as a ftn of t (Q(t)) Advantages: better signal-to-noise, distinguish contributions of double layer charge & adsorbed species

Large-amplitude potential step

Cottrell condition (quiescent, planar, diffusion-limited)

 $Q_d = J i_d dt = 2 n FAD_O{}^{1/2} C_O{}^* t^{1/2} / \pi^{1/2}$

From double-layer charging & from adsorbed species,

 $\mathbf{Q} = \mathbf{Q}_{\mathrm{d}} + \mathbf{Q}_{\mathrm{dl}} + \mathrm{nFA}\Gamma_{\mathrm{O}}$

\[
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[

Reversal experiments under diffusion control

For $t > \tau$

 $-i_r(t)=(-nFAD_O{}^{1/2}C_O{}^*/\pi{}^{1/2})[1/(t-\tau){}^{1/2}-1/t{}^{1/2}]$ Kambara eqn Cumulative charge after τ

$$Q_{d}(t > \tau) = 2nFAD_{O}^{1/2}C_{O}^{*}\tau^{1/2}/\pi^{1/2} + \int i_{r}dt$$
$$= (2nFAD_{O}^{1/2}C_{O}^{*}/\pi^{1/2}) [t^{1/2} - (t - \tau)^{1/2}]$$

Removed charge in reversal

 $Q_r(t > \tau) = Q(\tau) - Q(t > \tau) = Q_{dl} + (2nFAD_O{}^{1/2}C_O{}^*/\pi{}^{1/2})[\tau{}^{1/2} + (t - \tau){}^{1/2} - t{}^{1/2}]$

two plots: $Q(t < \tau)$ vs. $t^{1/2}$ $Q(t > \tau)$ vs. $\Theta (= [\tau^{1/2} + (t - \tau)^{1/2} - t^{1/2}])$ (Anson plot)

For O is adsorbed & R is not, the difference between two intercepts: $nFA\Gamma_O$ Generally $nFA(\Gamma_O - \Gamma_R)$

$$\begin{split} Q_d(t \leq \tau) / Q_d(\tau) &= (t/\tau)^{1/2} \\ Q_d(t > \tau) / Q_d(\tau) &= (t/\tau)^{1/2} - [(t/\tau) - 1]^{1/2} \end{split}$$

Special applications of UME

Cell time constants and fast electrochemistry

Charging dl charge: $R_u C_d$ (cell time const) \rightarrow potential step requires $\sim 5R_u C_d$ \rightarrow electrode size controls the cell time const In disk-shaped UME, $C_d = \pi r_0^2 C_d^{\ 0} (C_d^{\ 0}: 10 \sim 50 \ \mu F/cm^2)$ e.g., 1 nm radius: $C_d = 0.3 \sim 1.5 \ \mu F. 1 \ \mu m r_0: 0.3 \sim 1.5 \ pF$ (6 orders smaller!!)

 R_u (uncompensated resistance) also depends on the electrode size: $R_u = 1/4\pi\kappa r_0$

 $C_{d}R_{u} = r_{0}C_{d}^{0}/4\kappa$

Smaller electrode \rightarrow much short time domains e.g., normal size electrode: ms domain, UME (r₀ = 5 µm): 170 ns \rightarrow UME (0.5 µm): < 10 ns domain

Voltammetry in media of low conductivity

Displacement of voltammetry due to iR_u

e.g.,

normal size in high conductive medium (few ohms): few mV in less than ~ mA nonaqueous or viscous media: 0.1 M TBABF₄ ($R_u \sim k\Omega$), toluene (very high!)

At UME, current is extremely small: error in potential in voltammetry is small \rightarrow negligible iR_u: low conductive media & two-electrode cells!!

Applications based on spatial resolution

UME: physically small → probe small spaces Scanning electrochemical microscopy (SECM) Ch. 16 Double-band microarray electrode