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Step-functional changes in WE potential & mass transport only by diffusion

Overview of step experiments
Types of techniques
Potentiostat: control of potential

Basic potential step experiment: O + e → R   (unstirred solution, E2: mass-
transfer (diffusion)-limited value (rapid kinetics → no O on surface))

chronoamperometry (i vs. t)



-Series of step experiments (between each step: stirring for same initial condition)
4, 5: mass-transfer (diffusion)-limited (no O on electrode surface))

sampled-current voltammetry (i(τ) vs. E)

Potential step: E1→ E2→ E1 (reversal technique)
double potential step chronoamperometry



Chronocoulometry & double potential step chronocoulometry (Q vs. t)
(Q: integral of i)

Current-potential characteristics
Controlled potential experiment for the electrode reaction

kf

O + e = R
kb

Current-potential characteristic

i = FAk0[CO(0,t)e-αf(E – E0′) - CR(0,t)e(1 – α)f(E – E0′)

Fick’s law → time-dependent surface conc CO(0, t) & CR(0, t)



(a) Large-amplitude potential step (to mass-transfer controlled region)
CO(0, t) ~ 0, current is totally controlled by mass transfer & electrode kinetics no 

longer influence the current → I is independent of E

(b) small-amplitude potential changes
For small η,           i = -i0fη (Eq. 3.4.2 in p.102)

(c) Reversible (Nernstian) electrode process
For very rapid electrode kinetics, i-E relation → Nernst form 

E = E0' + (RT/nF)ln[CO(0, t)/CR(0, t)]                 (Eq. 3.4.28 in p. 106)
No kinetic parameter (k0 & α) involved

(d) Totally irreversible e-transfer
If electrode kinetics are very sluggish (very small k0), anodic & cathodic terms 

are never simultaneously significant → Tafel region                     (Sec. 3.4.3)

(e) Quasireversible systems



Potential step under diffusion control
A planar electrode
For diffusion-limited, concentration profile, CO(x, t)

∂CO(x, t)/∂t = DO(∂2CO(x, t)/∂x2)

→ boundary conditions: CO(x, 0) = CO*
lim CO(x, t) = CO*
x→∞

CO(0, t) = 0  (for t > 0)                                        

Laplace transformation
→ i vs. t

i(t) = id(t) = (nFADO
½CO*)/(π½ t½)         Cottrell equation

id(t): diffusion-limited current

-JO(0, t) = i(t)/nFA = DO[∂CO(x, t)/∂x]x = 0



Instrumental & experimental limitations of i-t behavior under Cottrell conditions
(a) Potentiostat limitations: very high current at short times
(b) Recording device limitations
(c) Limitations by Ru & Cd: overlap with nonfaradaic current (time constant 

RuCd) Fig.1.2.7 (p. 16). t > 5RuCd
(d) Limitations due to convection:  convective effect > 300 s or 20 s

Concentration profile

CO(x, t) = CO*erf[x/2(DOt)1/2]               (erf(x): page 779)

Diffusion layer thickness: (DOt)1/2

(다양하게정의됨)

e.g., DO = 1 x 10-5 cm2/s 
→ (DOt)1/2 = 30 μm for 1 s



Semi-infinite spherical diffusion
e.g., hanging mercury drop

∂CO(r, t)/∂t = DO[(∂2CO(r, t)/∂r2) + (r/2)(∂CO(r, t)/∂r)]

r: radial distance from electrode center
→ boundary conditions: CO(r, 0) = CO*     (r > r0)

lim CO(r, t) = CO*
r→∞

CO(r0, t) = 0  (for t > 0)                                        
r0: radius of the electrode

→ i vs. t
id(t) = (nFADOCO*){[1/(πDOt)½] + (1/r0)}

id(spherical) = id(linear) + (nFADOCO*)/r0

For a planar electrode           lim id = 0
t→∞

For a spherical case               lim id = (nFADOCO*)/r0
t→∞



Concentration profile

CO(r, t) = CO*{1 – (r0/r)erfc[(r – r0)/2(DOt)1/2] }

- Diffusion layer grows much larger than r0 (e.g., UME): (r – r0) << 2(DOt)1/2

CO(r, t) = CO*[1 – (r0/r)]
→ conc profile: independent of time

- Linear diffusion approximation

Within a% error: 2nd term/1st term ≤ a/100  
id(t) = (nFADOCO*){[1/(πDOt)½] + (1/r0)}

Microscopic & geometric areas
(Am)                (Ag)

Roughness factor ρ = Am/Ag

Typically 2~3
Smooth single crystal < 1.5



In chronoamperometry long time (1 ms to 10 s)               short time (~100 ns)
diff. layer: 10 ~ 100 μm               diff. layer:  10 nm

Geometric area for Cottrell eqn microscopic area

Electrode 
with active/inactive areas

Time                                    Area for Cottrell eqn



Diffusion-controlled currents at ultramicroelectrodes
UME: < 25 μm ~ 10 nm (nanodes)

Types of UME: disk, spherical, hemispherical, band, cylindrical

Responses to a large-amplitude potential step
(a) Spherical or hemispherical UME
For spherical
i vs. t

i = [(nFADO
1/2CO*)/(π1/2t1/2)] + [nFADOCO*/r0]

Short time: 1st term dominates (= Cottrell eqn) (diff. layer is thin vs. r0)
Long time: 2nd term dominates → steady-state current (iss)

iss = nFADOCO*/r0 = 4πnFDOCO*r0

Hemispherical UME: half of the current of sphere UME            



(b) Disk UME (practically most important!)

Diffusion equation

cf. General formulation of Fick’s 2nd law (Ch. 4)

∂CO/∂t = DO∇
2CO



r: radial distance from electrode center
z: linear normal to the plane

→ boundary conditions: 
CO(r, z, 0) = CO*

lim CO(r, z, t) = CO*
r→∞

lim CO(r, z, t) = CO*
z→∞

∂CO(r, z, t)/∂z  z=0 = 0   (r > r0)
CO(r, 0, t) = 0 (r ≤ r0, t > 0)

i = 4nFADOCO*f(τ)/πr0
τ = 4DOt/rO

1/2

f(τ ) = 0.88623τ-1/2 + 0.78540 + 0.094τ1/2 when τ <1  (at short times)
f(τ ) = 1 + 0.71835τ-1/2 + 0.05626τ-3/2 ….   when τ >1      (at long times)



Short time
Diff. layer: thin vs. r0
→ Cottrell current

Triangle: Cottrell current
Filled square: τ → 0

Intermediate time

Long time                                                       dashed line: i/iss = 1
(steady-state)

iss = 4nFADOCO*/(πr0) 
= 4nFDOCO*r0



(c) Cylindrical UME
(d) Band UME

Summary of behavior at UME
- At short time: any UME → Cottrell equation!
- At long time: UME approaches a steady state

iss = nFAmOCO*

mO: mass-transfer coefficient



Sampled-current voltammetry for reversible electrode reactions
Voltammetry based on linear diffusion at a planar electrode
(a) A step to an arbitrary potential
O + ne = R & assume rapid charge-transfer kinetics

E = E0' + (RT/nF)ln[CO(0, t)/CR(0, t)]                 

→ θ = CO(0, t)/CR(0, t) = exp[nF (E – E0′)/RT]

i(t) = [nFADO
1/2CO*]/[π1/2t1/2(1 + ζθ)]

ζ = (DO/DR)1/2

Cottrell equation is a special case for the diffusion-limited region (very negative 
E – E0′ : θ→ 0) : Cottrell current as id(t)

i(t) = id(t)/(1 + ζθ)

For very positive E ; θ→∞; i(t) → 0        i(t): 0 to id(t)  (Fig. 5.1.3 in p. 158)



(b) Shape of i-E curve
For a fixed sampling time τ

i(τ) = id(τ)/(1 + ζθ)
→ ζθ = [id(τ) – i(τ)]/i(τ)
→ E = E0' + (RT/nF)ln[DR

1/2/DO
1/2] + (RT/nF)ln{[id(τ) – i(τ)]/i(τ)}

When i(τ) = id(τ)/2, 3rd term → 0

Half-wave potential,    E1/2 = E0' + (RT/nF)ln[DR
1/2/DO

1/2] 
E = E1/2 + (RT/nF)ln{[id(τ) – i(τ)]/i(τ)}

For reversibility
E vs. log{[id(τ) – i(τ)]/i(τ)} →
Linear with a slope of
2.303RT/nF or 59.1/n mV

DR ≠ DO→ E1/2 ≠ E0′



(c) Concentration profile
CO(0, t) = CO*{1 – [i(t)/ id(t)]}

CR(0, t) =  ζCO*[i(t)/id(t)]

Steady-state voltammetry at a UME
A step to an arbitrary potential at a spherical electrode

O + ne = R & reversible
θ = CO(r0, t)/CR(r0, t) = exp[nF(E – E0′)/RT]

Steady-state regime
i = nFADOCO*/(1 + ζ2θ)r0

Steady-state limiting current is the special case for the diffusion limited region (θ
→ 0)

i = id/(1 + ζ2θ)
Shape of the wave
Reversible steady-state voltammogram

E = E0' + (RT/nF)ln[DR/DO] + (RT/nF)ln[(id – i)/i]

Half-wave potential,    E1/2 = E0' + (RT/nF)ln[DR/DO]                                   



Concentration profile
CO(r0, t) = CO*[1 – (i/ id)]

CR(r0, t) =  ζ2CO*(i/id)



Sampled-current voltammetry for quasi- & irreversible electrode rxns
Responses based on linear diffusion at a planar electrode
(a) Current-time behavior
O + ne = R & governed by both mass transfer & charge-transfer kinetics
For the quasireversible one-step, one-electron case

i/FA = DO(∂CO(x, t)/∂x)x=0 = kfCO(0, t) – kbCR(0, t)

where kf = k0e–αf(E – E0′) & kb = k0e(1 – α)f(E – E0′),   f = F/RT

→ i(t) = FAkfCO
*exp(H2t)erfc(Ht1/2)

where H = (kf/DO
1/2) + (kb/DR

1/2)

Using erf(x) & erfc(x) = 1- erf(x) in page 779
exp(H2t)erfc(Ht1/2): 1 for Ht1/2 = 0, but approaches 0 as Ht1/2↑



Current-time curve (with R initially absent)
- Kinetics limit the current at t = 0 to a finite value proportional to kf

(d) Sampled-current voltammetry

- Very facile kinetics, large k0→
reversible shape, E1/2 ~ E0' ‘ ‘ ‘

- Smaller k0→ kinetics driven: 
displaced potentials, broadened 
wave



Multicomponent systems & multistep charge transfers
For O + ne→ R & O′ + n′e→ R′
For chronoamperometry or sampled-current voltammetry based on linear diff

(id)total = (FA/π1/2t1/2)(nDO
1/2CO

* + n′DO′
1/2CO′

*)
For sampled-current voltammetry based on steady-state at UME

(id)total = FA(nmOCO
* + n′mO′CO′

*)

(id)total = id + id′



Chronoamperometric reversal techniques
E(t) = Ef + Sτ(t)(Er – Ef) (t > 0)      Sτ(t) is 0 for t ≤ τ, and 1 for t > τ

Initial: CO(x, 0) = CO
*, CR(x, 0) = 0

Forward step: CO(0, t) = CO′, CR(0, t) = CR′
CO′ = θ′CR′ (O/R couple: nernstian)

Where θ′ = exp[nf(Ef – E0′)]

Reversal step: CO(0, t) = CO′′, CR(0, t) = CR′′
CO′′ = θ′′CR′′

Where θ′′ = exp[nf(Er – E0′)]



lim CO(x, t) = CO*
x→∞

lim CR(x, t) = 0
x→∞

JO(0, t) = -JR(0, t)

Current-time response
For 0 ≤ t ≤ τ

if(t) = [nFADO
1/2CO

*]/[π1/2t1/2(1+ ζθ′)] 
Stepping in forward phase to diffusion plateau (θ′ ~ 0, CO′~ 0), then reversing to 

the diffusion plateau for reoxidation (θ′′→ ∞, CR′′ ~0)

-ir(t) = (nFADO
1/2CO

*/π1/2)[1/(t - τ)1/2 – 1/t1/2]    Kambara eqn

*could be derived under CO′′ = 0 & CR′′ = 0 (also for irreversible system)

→ - ir/if = [tf/(tr - τ)]1/2 – (tf/tr)1/2

For tr - τ = tf - ir/if = 1 – (1- τ/tr)1/2

-ir(2τ)/if(τ) = 0.293 → reference to indicate complicated rxn or not



Chronocoulometry
To integrate current → charge passed as a ftn of t (Q(t))
Advantages: better signal-to-noise, distinguish contributions of double layer 

charge & adsorbed species

Large-amplitude potential step
Cottrell condition (quiescent, planar, diffusion-limited)

Qd = ∫iddt = 2nFADO
1/2CO

*t1/2/π1/2

From double-layer charging & from adsorbed species,

Q = Qd + Qdl + nFAΓO

ΓO: Surface excess of adsorbed species O (mol/cm2)
Plot of Q vs. t1/2 for O + supporting electrolyte & supporting electrolyte itself →

distinguish roughly Qdl and nFA ΓO



Reversal experiments under diffusion control
For t > τ

-ir(t) = (-nFADO
1/2CO

*/π1/2)[1/(t - τ)1/2 – 1/t1/2]    Kambara eqn
Cumulative charge after τ

Qd(t > τ) = 2nFADO
1/2CO

*τ1/2/π1/2 + ∫ irdt
= (2nFADO

1/2CO
*/π1/2) [t1/2 - (t - τ)1/2]

Removed charge in reversal
Qr(t > τ) = Q(τ) – Q(t > τ) = Qdl + (2nFADO

1/2CO
*/π1/2)[τ1/2 + (t - τ)1/2 – t1/2]

two plots: Q(t < τ) vs. t1/2

Q(t > τ) vs. Θ (= [τ1/2 + (t - τ)1/2 – t1/2]) (Anson plot)



For O is adsorbed & R is not, the difference between two intercepts: nFAΓO
Generally nFA(ΓO – ΓR)



Qd(t ≤ τ)/Qd(τ) = (t/τ)1/2

Qd(t > τ)/Qd(τ) = (t/τ)1/2 – [(t/τ) – 1]1/2

Special applications of UME
Cell time constants and fast electrochemistry
Charging dl charge: RuCd (cell time const) → potential step requires ~5RuCd
→ electrode size controls the cell time const 
In disk-shaped UME, Cd = πr0

2Cd
0 (Cd

0: 10 ~ 50 μF/cm2)
e.g., 1 nm radius: Cd = 0.3 ~ 1.5 μF. 1 μm r0: 0.3 ~ 1.5 pF (6 orders smaller!!)

Ru (uncompensated resistance) also depends on the electrode size: Ru = 1/4πκr0

CdRu = r0Cd
0/4κ

Smaller electrode → much short time domains
e.g., normal size electrode: ms domain, 
UME (r0 = 5 μm): 170 ns
→ UME (0.5 μm): < 10 ns domain



Voltammetry in media of low conductivity
Displacement of voltammetry due to iRu
e.g., 
normal size in high conductive medium (few ohms): few mV in less than ~ mA
nonaqueous or viscous media: 0.1 M TBABF4 (Ru ~ kΩ), toluene (very high!)

At UME, current is extremely small: error in potential in voltammetry is small
→ negligible iRu: low conductive media & two-electrode cells!!

Applications based on spatial resolution
UME: physically small → probe small spaces

Scanning electrochemical microscopy (SECM) Ch. 16
Double-band microarray electrode


