Double layer structure & adsorption (Ch. 13)

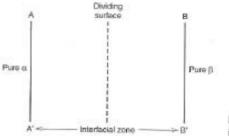
Thermodynamics of the double layer Experimental evaluation of surface excesses & electrical parameters Models for double layer structure Helmholtz model Gouy-Chapman theory Stern's modification Specific adsorption Studies at solid electrodes Double layer at solids Single-crystal electrode surfaces Solid metal-solution interface Extent & rate of specific adsorption Nature of specific adsorption Adsorption isotherms Rate of adsorption Effect of adsorption of electroinactive species Double layer effects on electrode reaction rates

Thermodynamics of the double layer

Gibbs adsorption isotherm

Suppose an interface of surface area A separating two phases, α & β

→ interfacial zone (~ 100 Å) → excesses and deficiencies in the concentration of components



Surface excess (in # of moles of any species) $|_{A' = ---- Interfacial zone ------B'}$ $n_i^{\sigma} = n_i^{S} - n_i^{R}$ n_i^{σ} : excess quantity (any extensive variable, e.g., electrochemical free energy), $n_i^{S} \& n_i^{R}$: # of moles of species i in interfacial region for actual & reference systems

 $\begin{array}{l} \underline{ Electrochemical free energy} \\ \hline For the reference system, \overline{G}^R = \overline{G}^R(T, P, n_i^R) \\ For the actual system, \overline{G}^S = \overline{G}^S(T, P, A, n_i^S) \\ d\overline{G}^R = (\partial \overline{G}^R / \partial T) dT + (\partial \overline{G}^R / \partial P) + \sum (\partial \overline{G}^R / \partial n_i^R) dn_i^R \\ d\overline{G}^S = (\partial \overline{G}^S / \partial T) dT + (\partial \overline{G}^S / \partial P) dP + (\partial \overline{G}^S / \partial A) dA + \sum (\partial \overline{G}^S / \partial n_i^S) dn_i^S \end{array}$

At const T & P $\rightarrow 1^{st}$ two terms can be dropped $(\partial \overline{G}^{R}/\partial n_{i}^{R}) = \overline{\mu}_{i}$ (electrochemical potential) \rightarrow const at equilibrium

$$\overline{\mu_i} = (\partial \overline{\mathbf{G}}^{\mathbb{R}} / \partial \mathbf{n}_i^{\mathbb{R}}) = (\partial \overline{\mathbf{G}}^{\mathbb{S}} / \partial \mathbf{n}_i^{\mathbb{S}})$$

 $(\partial \overline{G}^{S}/\partial A) = \chi$ (surface tension): a measure of the energy required to produce a unit area of new surface

Differential excess free energy

$$d\overline{G}^{\circ} = d\overline{G}^{S} - d\overline{G}^{R} = \chi dA + \sum \overline{\mu}_{i} d(n_{i}^{S} - n_{i}^{R})$$

$$d\overline{G}^{\circ} = \chi dA + \sum \overline{\mu}_{i} dn_{i}^{\circ}$$

Euler's theorem for variables, A and n_i (const T and P) $\overline{G}^{\circ} = (\partial \overline{G}^{\circ} / \partial A)A + \sum (\partial \overline{G}^{\circ} / \partial n_i^{\circ})n_i^{\circ}$ $\overline{G}^{\circ} = \chi A + \sum \overline{\mu}_i n_i^{\circ}$

$$\rightarrow \qquad d\overline{G}^{\circ} = \chi dA + \sum \overline{\mu}_{i} dn_{i}^{\circ} + Ad\chi + \sum n_{i}^{\circ} d\overline{\mu}_{i}$$
$$Ad\chi + \sum n_{i}^{\circ} d\overline{\mu}_{i} = 0$$

Surface excess concentration, $\Gamma_i = n_i^{\circ}/A$ (excesses per unit area of surface)

 $-dy = \sum \Gamma_i d\overline{\mu_i}$

Gibbs adsorption isotherm: importance of surface tension for interfacial structure

Electrocapillary equation

Consider

Cu'/Ag/AgCl/K+, Cl-, M/Hg/Ni/Cu

M: neutral species

Gibbs adsorption isotherm; components of Hg electrode, ions, neutral

 $-d \chi = (\Gamma_{Hg} d \overline{\mu}_{Hg} + \Gamma_{e} d \overline{\mu}_{e}^{Hg}) + (\Gamma_{K+} d \overline{\mu}_{K+} + \Gamma_{Cl-} d \overline{\mu}_{Cl-}) + (\Gamma_{M} d \overline{\mu}^{M} + \Gamma_{H2O} d \overline{\mu}_{H2O})$

 $\overline{\boldsymbol{\mu}}_{e}^{\mbox{ Hg}}:$ electrons in the mercury phase

Some linkages: $\overline{\mu}_{e}^{Hg} = \overline{\mu}_{e}^{Cu}$ $\overline{\mu}_{KC1} = \mu_{KC1} = \overline{\mu}_{K+} + \overline{\mu}_{C1-}$ $\overline{\mu}_{H20} = \mu_{H20}$ $\overline{\mu}_{M} = \mu_{M}$ $d\overline{\mu}_{Hg} = d\overline{\mu}_{Hg}^{0} = 0$ $-d\chi = \Gamma_{e}d\overline{\mu}_{e}^{Cu} + (\Gamma_{K+}d\overline{\mu}_{KC1} - \Gamma_{K+}d\overline{\mu}_{C1-} + \Gamma_{C1-}d\overline{\mu}_{C1-}) + (\Gamma_{M}d\mu_{M} + \Gamma_{H20}d\mu_{H20})$ From the equilibrium at the reference interface $\overline{\mu}_{AgC1} + \overline{\mu}_{e}^{Cu'} = \overline{\mu}_{Ag} + \overline{\mu}_{C1}$. Since $d\overline{\mu}_{AgC1} = d\overline{\mu}_{Ag} = 0$, $d\mu_{e}^{Cu'} = d\mu_{C1}$.

 $-d \chi = \Gamma_e d \overline{\mu_e}^{Cu} - (\Gamma_{K^+} - \Gamma_{Cl^-}) d \overline{\mu_e}^{Cu'} + \Gamma_{K^+} d \mu_{KCl} + \Gamma_M d \mu_M + \Gamma_{H2O} d \mu_{H2O}$

Excess charge density on the metallic side of the interface

$$\sigma^{M} = -F\Gamma_{e}$$

Opposite charge density on the solution side

$$\sigma^{S} = -\sigma^{M} = F(\Gamma_{K^{+}} - \Gamma_{C1^{-}})$$
$$d\mu_{e}^{Cu} - d\mu_{e}^{Cu'} = -Fd(\phi^{Cu} - \phi^{Cu'}) = -FdE_{-}$$

E: potential of the mercury electrode with respect to the reference

$$-d\gamma = \sigma^{M}dE_{-} + \Gamma_{K+}d\mu_{KC1} + \Gamma_{M}d\mu_{M} + \Gamma_{H2O}d\mu_{H2O}$$

Gibbs-Duhem relation at const T and P

$$\sum X_i d\mu_i = 0$$

Xi: mole fraction

$$X_{H2O}d\mu_{H2O} + X_{KCI}d\mu_{KCI} + X_Md\mu_M = 0$$

Remove dµ_{H2O}

 $-d\chi = \sigma^{M}dE_{-} + [\Gamma_{K^{+}} - (X_{KC1}/X_{H2O})\Gamma_{H2O}]d\mu_{KC1} + [\Gamma_{M} - (X_{M}/X_{H2O})\Gamma_{H2O}]d\mu_{M}$

Relative surface excess: measurable parameters

 $\Gamma_{\text{K+(H2O)}} = \Gamma_{\text{K+}} - (X_{\text{KCI}}/X_{\text{H2O}})\Gamma_{\text{H2O}}$ $\Gamma_{\text{M(H2O)}} = \Gamma_{\text{M}} - (X_{\text{M}}/X_{\text{H2O}})\Gamma_{\text{H2O}}$

Cannot measure absolute surface excess of K⁺, but only excess relative to water e.g., zero excess: same mole ratio of adsorption of K⁺ and H₂O positive excess: K⁺ > H₂O Water: reference component Dilute solutions: negligible (X_i/X₈)Γ₈

Electrocapillary equation

 $-d\gamma = \sigma^{M}dE_{-} + \Gamma_{K+(H2O)}d\mu_{KC1} + \Gamma_{M(H2O)}d\mu_{M}$

→ all measurable parameters

Experimental evaluation of surface excesses & electrical parameters Electrocapillarity and the DME For DME,

$$t_{max} = 2\pi r_c \gamma/mg$$

 t_{max} : drop lifetime $\rightarrow t_{max}$ vs. E has same shape as the electrocapillary curve

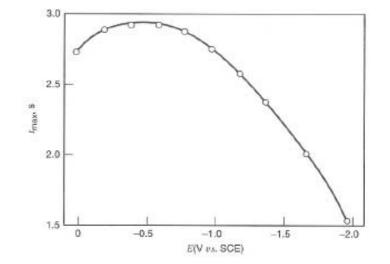
Excess charge and capacitance

From electrocapillary equation,

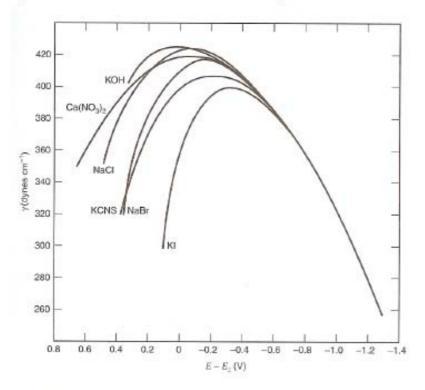
$$\sigma^{\rm M} = (\partial \gamma / \partial E_{\rm J})_{\mu \rm KC1, \mu \rm M}$$

the excess charge on the electrode \rightarrow slope of electrocapillary curve at any E

Drop time of a DME in 0.1 M KCl vs. E



Electrocapillary curve in different electrolyte



 \rightarrow the existence of a <u>maximum</u> in surface tension

→ potential at maximum: "electrocapillary maximum (ECM)"

 \rightarrow curve slope = 0 at ECM \rightarrow "potential of zero charge" (PZC)

 $\sigma^{M} = \sigma^{S} = 0$

 $C_i = \int C_d dE / \int dE$

Average of C_d over the potential range from E_Z to E
 Differential capacitance is the more useful quantity, in part it is precisely measurable by impedance techniques
 Capacitance can be obtained from the electrocapillary curves by double differentiation

$$\chi = \int \int C_d dE$$

Relative surface excesses

From electrocapillary equation, relative surface excess of K⁺ at the interface

$$\Gamma_{K+(H2O)} = -(\partial \chi / \partial \mu_{KCl})_{E-,\mu}$$

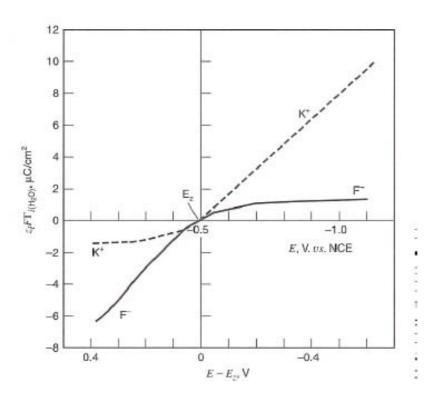
Since $\mu_{\text{KCl}} = \mu_{\text{KCl}}^0 + \text{RT} \ln a_{\text{KCl}}$

 $\Gamma_{K+(H2O)} = -(1/RT)(\partial \gamma / \partial lna_{KCI})_{E-,\mu M}$

→ relative surface excess Γ_{K+(H2O)} at any potential E- by measuring surface tension for several KCl activities (at const M)

Relative surface excess of Cl⁻: from the charge balance ($\sigma^{S} = -\sigma^{M} = F(\Gamma_{K+} - \Gamma_{Cl-})$)

Fig. 13.2.9: relative surface excess of 0.1 M KF in contact with mercury At potentials positive of E_Z → surface excess of K⁺: negative → K⁺ conc in the interface is smaller than in the bulk (reverse for Cl⁻) At potentials negative of E_Z → opposite



<u>Models for double layer structure</u> The Helmholtz model

Two sheets of charge, having opposite polarity, separated by a distance of molecular order → equivalent to a parallel-plate capacitor Relation of stored charge density, σ, and voltage drop V between the plate

 $\sigma = (\varepsilon \varepsilon_0/d)V$

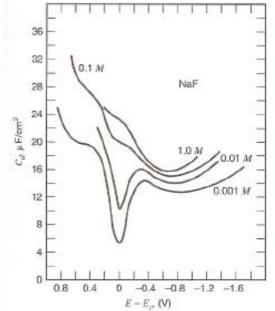
 ϵ : dielectric const of the medium, ϵ_0 : permittivity of free space, d: spacing

Differential capacitance

 $\partial \sigma / \partial V = C_d = \epsilon \epsilon_0 / d$

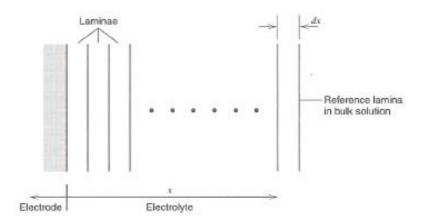
Weakness of this model: predict C_d is const e.g., Fig. 13.3.1 Differential capacitance vs. E in Hg/NaF interface → potential dependence

 \rightarrow more sophisticated model needed



The Gouy-Chapman theory

Charge on the electrode is confined to the surface Charge in the solution: *diffusion layer*



Population in any lamina (number concentration of species) $n_i = n_i^0 \exp(-z_i e \phi/kT)$

 n_i^{0} : bulk concentration, ϕ : electrostatic potential (ϕ measured with respect to the bulk)

Total charge per unit volume in any lamina $\rho(x) = \sum n_i z_i e = \sum n_i^0 z_i e \exp(-z_i e \phi/kT)$ $\rho(x)$ is related to the potential at distance x by the Poisson equation $\rho(x)=-\epsilon\epsilon_0(d^2\varphi/dx^2)$

Poisson-Boltzmann equation

 $\begin{aligned} d^2\varphi/dx^2 &= -(e/\epsilon\epsilon_0)\sum n_i^0 z_i exp(-z_i e\varphi/kT) \\ d^2\varphi/dx^2 &= (1/2)(d/d\varphi)(d\varphi/dx)^2 \end{aligned}$

 $\rightarrow \qquad (d\phi/dx)^2 = (2kT/\varepsilon\varepsilon_0)\sum_i n_i^0 [exp(-z_ie\phi/kT) - 1]$

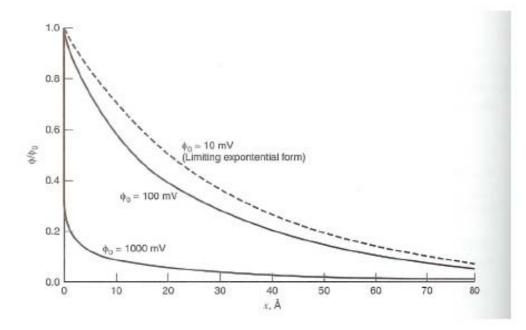
For z:z electrolyte $d\phi/dx = -(8kTn^0/\epsilon\epsilon_0)^{1/2}\sinh(ze\phi/2kT)$

(a) Potential profile in the diffusion layer

For dilute aqueous solution ($\epsilon = 78.49$) at 25°C $\kappa = (3.29 \text{ x } 10^7)\text{zC}^{*1/2}$ C*: bulk z:z electrolyte conc in mol/L, κ : cm⁻¹ Potential profile for several different ϕ_0 : potential decay away from the surface

At large ϕ_0 (a highly charged electrode), the drop is precipitous because the diffusion layer is relatively compact As ϕ_0 smaller, the decline is more gradual If ϕ_0 is sufficiently low $(tanh(ze\phi/kT) \sim ze\phi/kT) = \frac{\phi}{\phi_0} = e^{-\kappa x}$

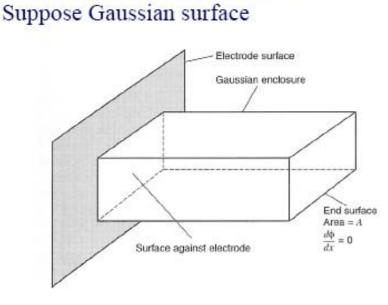
Good approximation for $\phi_0 \leq 50/z \text{ mV}$ at $25^{\circ}C$



Reciprocal of κ : unit of distance and characterizes the spatial decay of potential \rightarrow kind of characteristic thickness of the diffusion layer

 \rightarrow thicker as conc of electrolyte falls

(b) Relation between σ^{M} and ϕ



	-
C*(M) ^b	1/κ(Å)
1	3.0
10^{-1}	9.6
10^{-2}	30.4
10^{-3}	96.2
10^{-4}	304

Gauss law, charge

 $q = \varepsilon \varepsilon_0 \int_{\text{surface}} E \cdot dS$ = $\varepsilon \varepsilon_0 A (d\phi/dx)_{x=0}$ Using $q/A = \sigma^S$ and $d\phi/dx = -(8kTn^0/\varepsilon \varepsilon_0)^{1/2} \sinh(ze\phi/2kT)$ $\sigma^{\rm S} = -\sigma^{\rm M} = (8kTn^0 \epsilon \epsilon_0)^{1/2} \sinh(ze\varphi_0/2kT)$

For dilute solution at 25°C $\sigma^{M} = 11.7C^{*1/2}\sinh(19.5z\varphi_{0})$ Where C^{*} is in mol/L for σ^{M} in μ C/cm²

(c) Differential capacitance

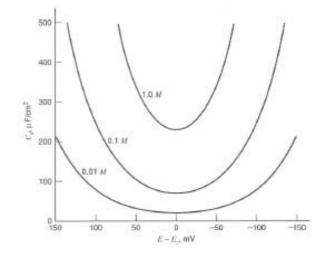
 $C_{d} = d\sigma^{M}/d\phi_{0} = (2z^{2}\varepsilon\varepsilon_{0}n^{0}/kT)^{1/2}\cosh(ze\phi_{0}/2kT)$

For dilute aqueous solutions at 25°C

 $C_d = 228zC^{*1/2}\cosh(19.5z\phi_0)$

where C_d is in µF/cm²

Predicted plot (V-shape) vs. observed one i) low conc & near PZC에서만 유사 ii) 실험치가 예측치보다 훨씬 작음 → need better theory!

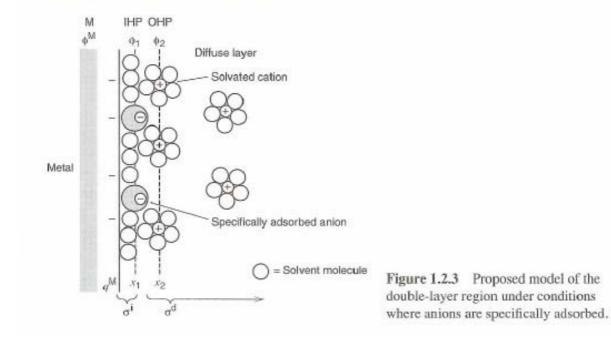


Stern's modification

Gouy-Chapman model: unlimited rise in differential capacitance with ϕ_0

- → ions are not restricted with respect to location in solution phase (point charge can approach the surface arbitrarily closely)
- → not realistic: ions have a finite size & cannot approach the surface any closer than the ionic radius. If solvated, larger radius. Solvent layer should be considered

X₂: outer Helmholtz plane (OHP)



Poisson-Boltzmann equation for $x \ge x_2$

 $\frac{\tanh(ze\varphi/4kT)/\tanh(ze\varphi_2/4kT)}{=e^{-\kappa(x-x^2)}}$ Where φ_2 is the potential at x_2 Field strength at x_2 , $(d\varphi/dx)_{x=x^2} = -(8kTn^0/\epsilon\epsilon_0)^{1/2}\sinh(ze\varphi_2/2kT)$

Total potential drop across the double layer

 $\varphi_0 = \varphi_2 - (d\varphi/dx)_{x=x2}x_2$

 $\sigma^{M} = -\sigma^{S} = -\epsilon\epsilon_{0} (d\phi/dx)_{x=x2} = (8kTn^{0}\epsilon\epsilon_{0})^{1/2} \sinh(ze\phi_{2}/2kT)$

 $\sigma^{M} = (8kTn^{0}\epsilon\epsilon_{0})^{1/2}sinh[ze/2kT(\varphi_{0} - \sigma^{M}x_{2}/\epsilon\epsilon_{0})]$

Differential capacitance

$$\begin{split} \mathrm{C}_{d} &= d\sigma^{M}\!/d\varphi_{0} = (2z^{2}\epsilon\epsilon_{0}n^{0}\!/kT)^{1/2} \mathrm{cosh}(ze\varphi_{2}\!/2kT)/[1 + (x_{2}\!/\epsilon\epsilon_{0})(2\epsilon\epsilon_{0}z^{2}e^{2}n^{0}\!/kT)^{1/2} \mathrm{cosh}(ze\varphi_{2}\!/2kT)] \end{split}$$

 $1/C_{d} = x_{2}/\varepsilon\varepsilon_{0} + 1/[(2\varepsilon\varepsilon_{0}z^{2}e^{2}n^{0}/kT)^{1/2}\cosh(ze\varphi_{2}/2kT)]$

Two components

$$1/C_{d} = 1/C_{H} + 1/C_{D}$$

C_D: capacitance of the charge at OHP, C_D: truly diffuse charge

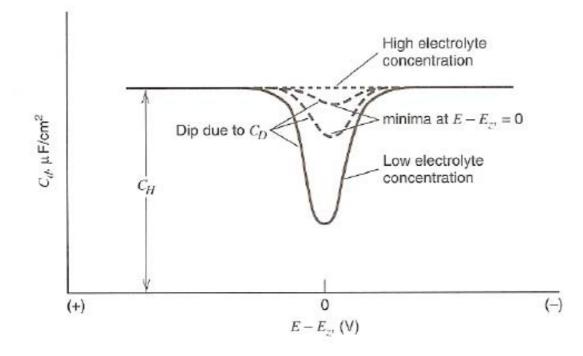
C_H: independent of potential

C_D: varies in V-shaped depending potential

Cd: V-shaped near PZC with low electrolyte conc (characteristic of CD)

At large electrolyte conc or large polarization $\rightarrow C_D$ is so large $\rightarrow C_H$

→ Gouy-Chapman-Stern (GCS) model



Specific adsorption

Fig.13.2.2

- Potential more negative than PZC: decline & same regardless composition (GCS model)
- Potential more positive than PZC: depend specifically on the composition
- \rightarrow <u>specific adsorption</u> of anions: their center: *inner Helmholtz plane* (IHP), x₁

Fig.13.2.6 Br-

(i) Specifically adsorbed ion \rightarrow considering the slopes of $z_i F \Gamma_{i(H2O)}$ vs. $\sigma^M = -[F \Gamma_{K+(H2O)} - F \Gamma_{Br-(H2O)}]$

In the absence of specific adsorption: charge on the electrode is counterbalanced by the excess of one ion and a deficiency of the other (Fig.13.2.5)

→ Fig. 13.2.6: more positive than PZC → superequivalent adsorption of bromide (considering slopes & compare with Fig. 13.2.5)

(ii) Esin-Markov effect: shift in PZC with change in electrolyte conc

```
Table by "Grahame"

\rightarrow shift : linear with ln[activity]

\rightarrow slope: Esin-Markov coefficient at \sigma^{M} = 0

(non-specific adsorption: EM coeff = 0
```

 $(1/RT)(\partial E_{\pm}/\partial \ln a_{salt})_{\sigma M} = (\partial E_{\pm}/\partial \mu_{salt})_{\sigma M}$

Studies at solid electrodes

Double layer at solids

대부분 mercury에 대에 집중

→ solid electrode: difficulty to reproduce same & clean surface, not atomically smooth...

Well-defined single crystal electrode surfaces

Different crystal faces exhibit different properties (e.g., PZC, work function..)

- Pt, Pd, Ag, Ni, Cu: FCC crystal structures
- \rightarrow low-index crystal faces: stable, polishable
- \rightarrow higher-index planes: more edges, step & kink sites

Reconstruction: minimize surface energy

Carbon: highly oriented pyrolytic graphite (HOPG)

Potential of zero charge

cf. Pt: 0.18 V, Ni: -0.33 V

Different crystal faces exhibit different properties (e.g., PZC, work function..) e.g., PZC on Ag(111) (-0.69 V vs. SCE), Ag(110) (-0.98 V), \rightarrow -0.8 V: carry negative charge in (111), positive charge in (110)

Different catalytic & adsorption properties e.g., different CV in Pt (0.5 M H_2SO_4)

Solid metal-solution interface

Information on PZC & interface from capacitance measurements Capacitance curves for Ag(100) at different conc of KPF₆ and NaF (top to bottom 100, 40, 20, 10, and 5 mM) Independence of min in capacitance \rightarrow weakly specifically adsorbed on Ag PZC from capacitance minimum PZC depends upon crystal faces (e.g., Ag) calculated: polycrystalline (46% (110), 23% (100), 31% (111)) Another complication: surface reconstruction Au(100): reconstructed (5 x 20) during flame heating <+0.5 V: maintained (5 x 20) ~+0.7 V: converted to original (100)

Extent and rate of specific adsorption Nature and extent of specific adsorption

Commensurate: molecules adsorb in exact corresponding pattern with surface atoms e.g., 1.5×10^{15} Au atoms/cm² on Au(111), spacing 2.9 Å

 \rightarrow if adsorbate atoms on atop sites: (1 x 1) superlattice (2.5 x 10⁻⁹ mol/cm²)

Iodine or 4-aminothiophenol: $(\sqrt{30} \times \sqrt{30})R30^\circ \rightarrow 1/3$ Au (8.3 x 10⁻¹⁰ mol/cm²) Lower coverage for larger molecules Roughness factor: actual area/projected area ($\sim 1.5 - 2$ for smooth electrode)

Adsorption isotherms

Equal electrochemical potentials for bulk & adsorbed species i at equilibrium

$$\mu_{i}^{A} = \mu_{i}^{b}$$

$$\mu_{i}^{0,A} + RT \ln a_{i}^{A} = \mu_{i}^{0,b} + RT \ln a_{i}^{b}$$

Standard free energy of adsorption

$$\begin{split} \Delta G_i^{\ 0} &= \mu_i^{\ 0,A} - \mu_i^{\ 0,b} \\ a_i^{\ A} &= a_i^{\ b} \ e^{\text{-}\Delta Gi0/RT} = \beta_i a_i^{\ b} \\ \beta_i &= exp(\text{-}\Delta G_i^{\ 0}/RT) \end{split}$$

Where

Langmuir isotherm

Assumption:

- (a) No interactions between the adsorbed species on the electrode surface
- (b) No heterogeneity of the surface
- (c) At high bulk activities, saturation coverage of the electrode by adsorbate (e.g., to form a monolayer) of amount of Γ_s

$$\Gamma_i/(\Gamma_s - \Gamma_i) = \beta_i a_i^{t}$$

Fractional coverage, $\Theta = \Gamma_i / \Gamma_s$

$$\Theta/(1-\Theta) = \beta_i a_i^t$$

$$\Gamma_{i} = \Gamma_{s}\beta_{i}C_{i}/(1 + \beta_{i}C_{i})$$

If two species i & j are adsorbed competitively,

$$\Gamma_{i} = \Gamma_{i,s}\beta_{i}C_{i}/(1 + \beta_{i} + \beta_{j})$$

$$\Gamma_{j} = \Gamma_{j,s}\beta_{j}C_{j}/(1 + \beta_{i} + \beta_{j})$$

<u>Logarithmic Temkin isotherm</u> Interactions between adsorbed species $\Gamma_{i} = (RT/2g)\ln(\beta_{i}a_{i}^{b}) \quad (0.2 < \Theta < 0.8)$

Frumkin isotherm

Electrochemical free energy of adsorption is linearly related to Γ_i ΔG_i^0 (Frumkin) = ΔG_i^0 i (Langmuir) – $2g\Gamma_i$

$\beta_i a_i^{b} = [\Gamma_i / (\Gamma_s - \Gamma_i)] exp(-2g\Gamma_i / RT)$

g: J/mol per mol/cm² \rightarrow increased coverage changes the adsorption E of i Positive g: interactions between adsorbed molecules are attractive Negative g: repulsive interactions As g \rightarrow 0, Frumkin isotherm approaches the Langmuir isotherm

Rate of adsorption When $\beta_i C_i \ll 1$, $\Gamma_i = \Gamma_s \beta_i C_i = b_i C_i$ Where $b_i = \beta_i \Gamma_s$ $\Gamma_i(t) = b_i C_i(0,t)$ $C_i(x,0) = C_i^*$, $\lim C_i(x,t) = Ci^*$ $\Gamma_i(t) = \int D_i [\partial C_i(x,t)/\partial x]_{x=0} dt$ $\rightarrow \qquad \Gamma_i(t)/\Gamma_i = 1 - \exp(D_i t/b_i^2) \operatorname{erfc}[(D_i t)^{1/2}/b_i]$

 $\Gamma_i(t)/\Gamma_i$ is independent of C_i^* , but actually depend on.

 bC^*/Γ_s

Effect of adsorption of electroinactive species

→ such adsorption inhibit (or poison) an electrode reaction or accelerate the electrode reaction (e.g., hydrogen or oxygen)

 $k^0 = k_{\Theta=0}^{0}(1-\Theta) + k_c^{0}\Theta$

Where $k_{\Theta=0}^{0}$ is the standard rate const at the bare surface & k_c^{0} that at the filmed portions

For completer blockage by the film, $k_c^0 = 0$ For catalysis by the filmed area, $k_c^0 > k_{\Theta=0}^0$

Effect of adsorbed substances Hydrogen & oxygen CO & organics

Summary

Electrochemical potential (μ_i) = ($\partial G / \partial n_i$): const at equilibrium

Surface tension (γ) = (∂ G/ ∂ A): a measure of the energy required to produce a unit area of new surface

Surface excess concentration (Γ_i) = n_i/A : excess per unit area of surface

Gibbs adsorption isotherm: -d $\gamma = \sum \gamma_i d \mu_i$ <u>for general interface</u>

Electrocapillary equation: $-\mathbf{d} \chi = \sigma^{\mathbf{M}} \mathbf{d} \mathbf{E} + \Sigma \Gamma_{\mathbf{i}} \mathbf{d} \mu_{\mathbf{i}}$

for electrochemical interface

The excess charge density on the metallic side of interface: $\sigma^{M} = -\sigma^{S}$

 \rightarrow surface tension (χ) vs. charge density: $\sigma^{M} = -(\partial \chi / \partial E)_{u}$

Surface tension (γ) vs. charge density: $\sigma^{M} = (\partial \gamma / \partial E)_{\mu}$

Curve slope = 0: "potential of zero charge"(pzc)

$$\sigma^{M} = \sigma^{S} = 0$$

- excess charge

Exp.

 $\mathbf{C}_{\mathbf{d}} = (\partial \sigma^{\mathbf{M}} / \partial \mathbf{E})$