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Thermodynamics of the double laver
Gibbs adsorption isotherm
Suppose an interface of surface area A separating two phases. o & 3
— interfacial zone (~ 100 A) s
. = A surice B

— excesses and deficiencies ' '
in the concentration of components ; -
Surface excess (in # of moles of any species) : ,

o — 5 R A — Iminriacial 7o =B =
n°=n>-n
1n,°: excess quantity (any extensive variable, e.g.. electrochemical free energy).
n° & n;*: # of moles of species i in interfacial region for actual & reference systems

Electrochemical free energy
For the reference system. G* = GNT, P.n®)
For the actual system, GS = GS(T. P, A, n,3)
dGR = (3GR/AT)dT + (3GR/3P) + ¥ (AG¥/anF)dnR
dGS = (9G5/aT)dT + (9GS/aP)dP + (3GS/AA)dA + > (0G%9n5)dn’

Atconst T & P — 1¥ two terms can be dropped
(dGR/anR) = |, (electrochemical potential) — const at equilibrium



B 1. = (3G¥on®) = (3GS/9n)
(0GS/dA) = y (surface tension): a measure of the energy required to produce a
unit area of new surface

Differential excess free energy
dG° = dG® — dG* = ydA + Y d(n® - n®)
dGe = ydA + > udnpe
Euler’s theorem for variables, A and n; (const T and P)
G° = (0G°/dA)A + 2 (0G°/dn)n°
G°=YyA +2un°
— dGe = ydA + > Wdne + Ady + Y nedp,
Ady + >nedy, =0

Surface excess concentration, | . = n.% A (excesses per unit area of surface
© 1 1

-dy = > Mdy;
Gibbs adsorption isotherm: importance of surface tension for interfacial structure




Electrocapillary equation
Consider
Cu'/Ag/AgCl/K*, Cl-, M/Hg/N1/Cu
M: neutral species
Gibbs adsorption isotherm: components of Hg electrode, ions, neutral

-dy = (Mgedig, + 1AW HE) + (Mg dbg, + T die) + (M duM + 1 gpadigyg)
1. electrons in the mercury phase

Some linkages:

UEHg = LIﬂCu

Hrkel = Hka = Hgs ™ Ho
Hio = Hmo

vt = My

Ay = dlig," =0

-dy = M + (Mgadlge — Meedier + Merdben) + (Mydbhyg + ManodUine)



From the equlllbuum at the reference interface
UiLgEl e = Hag + Hey
Since dl gy = d_IJLLE =0, du. " =dug.

-dy = dp . - (Mg, — Me)dl S + Mgdbge + Mydby + ModHino

Excess charge density on the metallic side of the interface
oM=-FT,
Opposite charge density on the solution side
B 08 =-0M=F(l g, — )
dUEC“ dU Cu' — Fd((b'[u q}Cu') = .FdE.
E : potential of the mercury electrode with respect to the reference

-dy = oMdE_+ Mg, dige T MydUy + MipodUao

(G1bbs-Duhem relation at const T and P
2 X du, =0
X1: mole fraction
Xmod o T XgedHge T Xydly =0
Remove diygq



-dy = OMdE_ + [k, - (XxerXso) moldHra + [Ny — X' Xio) [ m20]dHy
Relative surface excess: measurable parameters
ko) = [k« - Xrar'Xmo) mo
Mveno) = v — KXo w0

Cannot measure absolute surface excess of K*, but only excess relative to water
€.g.. Zero excess: same mole ratio of adsorption of K™ and H,0
positive excess: K+ > H,0
Water: reference component
Dilute solutions: negligible (X,/X¢)l ¢

Electrocapillary equation

-dy = 0MdE_ + g gpodHkar T M vgnoydHy

— all measurable parameters



Experimental evaluation of surface excesses & electrical parameters

Electrocapillarity and the DME
For DME.

t. = 271 .Y/ mg

, : 1max
t... drop lifetime

— . VS. E has same shape as the electrocapillary curve

Excess charge and capacitance
From electrocapillary equation.

oM = (0Y/9E) jkcLum

the excess charge on the electrode =

— slope of electrocapillary curve at any E m

Drop time of a DME 1 0.1 M KCl vs. E

2.0




Electrocapillary curve in different electrolyte
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— the existence of a maximum in surface tension
— potential at maximum: “electrocapillary maximum (ECM)”
— curve slope = 0 at ECM — “potential of zero charge” (PZC)
g ol
g =g =i




C,=] C,E/] dE

Average of C, over the potential range from E, to E
Differential capacitance is the more useful quantity, in part it is precisely
measurable by impedance techniques

Capacitance can be obtained from the electrocapillary curves by double
differentiation

y =] C4E
Relative surface excesses

From electrocapillary equation. relative surface excess of K™ at the interface

| ko) = -(9¥/ Uk,

Since Mgy = W% + RT/nag,

[ ko) = -(VRT)(IY/dnagc)e

— relative surface excess [ .ano) at any potential E- by measuring surface tension
for several KCI activities (at const M)



Relative surface excess of CI': from the charge balance (0% =-0™M = F(T . — )

Fig. 13.2.9: relative surface excess of 0.1 M KF in contact with mercury

At potentials positive of E; — surface excess of K™: negative — K™ conc in the
interface 1s smaller than in the bulk (reverse for CI)

At potentials negative of E; — opposite
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Models for double laver structure

The Helmholtz model

Two sheets of charge. having opposite polarity. separated by a distance of molecular
order — equivalent to a parallel-plate capacitor

Relation of stored charge density. ©. and voltage drop V between the plate

0= (egy/d)V
g: dielectric const of the medium. £,: permittivity of free space. d: spacing

Differential capacitance T T T

|
do/dV =C, ;=€¢g,/d = y
- |
Weakness of this model: predict C 15 const 25| 2
e.g., Fig. 13.3.1 L aal
Differential capacitance vs. E £ w| -
in Hg/NaF interface Ve E ;
— potential dependence 2|
— more sophisticated model needed i 8
L1 11 [ N O Y G (O (|
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The Gouy-Chapman theory
Charge on the electrode 1s confined to the surface
Charge in the solution: diffitsion laver

Laminas i d
o .[1 -,

| Reference lamina
o i« & @ @ B In bl solubon

Elacimods Elzctmayts

Population 1in any lamina (number concentration of species)
n, = n’exp(-zed/kT)

1,”: bulk concentration, ¢: electrostatic potential (¢ measured with respect to the
bulk)

Total charge per unit volume in any lamina
o(x) = Tnze = Tnze exp(-zed/kT)



0(x) is related to the potential at distance x by the Poisson equation
0(x) = -eg,(d*dp/dx?)
Poisson-Boltzmann equation
d*¢/dx* = -(e/e€) 3 n'zexp(-z,ed/KT)
d2d/dx? = (1/2)(d/dd)(dd/dx)?

— (do/dx)* = (2kT/egy)> n [exp(-zed/kT) — 1]

For z:z electrolyte  d¢/dx = -(8kTn%eg,)!?sinh(zed/2kT)

(a) Potential profile in the diffusion layer

®gy: potential at x = 0 relative to the bulk solution

= potential drop across the diffusion layer

tanh(zed/4kT)/tanh(zed/4kT) = e =

Where K = (2n'z’e*/eg kT)1?

For dilute aqueous solution (£ = 78.49) at 25°C

K =(3.29 x 10")zC"V?
C™: bulk z:z electrolyte conc in mol/L., K: cm!



Potential profile for several different ¢,: potential decay away from the surface

At large ¢, (a highly charged electrode). the drop is precipitous because the
diffusion layer is relatively compact
As ¢, smaller. the decline 1s more gradual
If ®, 1s sufficiently low (tanh(ze¢/kT) ~ zed/kT)
O/Qy=e "

Good approximation for ¢, = 50/z mV at 25°C
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Reciprocal of K: unit of distance and characterizes the spatial decay of potential
— kind of characteristic thickness of the diffusion layer
— thicker as conc of electrolyte falls :

CH(M)" 1/i(A)
(b) Relation between o™ and ¢
Suppose Gaussian surface l_ | 3
10 9.6
_— Elecimde surfacs 1) 2 30.4
GREUSSEAN Enclosue 10 3 96.2
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Gauss law. charge
q= Egﬂjsurface E-dS
= £€,A(dd/dx),,
Using ¢/A = 0% and dd/dx = -(8kTneg,)!*sinh(zed/2kT)



0% = -oM = (8kTn"c&,) *sinh(zed/2kT)

For dilute solution at 25°C
o™= 11.7C""sinh(19.5z¢,)
Where C™ is in mol/L for o™ in uC/cm?

(c) Differential capacitance
C,=doWdo, = (2z%e’egm”kT)?cosh(zed/2kT)

For dilute aqueous solutions at 25°C
C,=228zC " cosh(19.5z¢,)
where C, is in UF/cm?

5E

Predicted plot (V-shape) vs. observed one -
i) low conc & near PZC | A BF S Al

i) aist il =X E0E B s
— need better theory! % g

T}




Stern’s modification
Gouy-Chapman model: unlimited rise in differential capacitance with @,
— 1ons are not restricted with respect to location in solution phase
(point charge can approach the surface arbitrarily closely)
— not realistic: ions have a finite size & cannot approach the surface any closer than
the 1onic radius. If solvated, larger radius. Solvent layer should be considered

X,: outer Helmholtz plane (OHP)

M IHF OHP

oM L
! Diffuza layar

| —— Salvated cation

fidetal

B

. Specifically adsorbed anion

i
I |
} i { ) = Balvant malecula . "
Ml v Figure 1.2.3  Proposed model of the

e - double-layer region under conditions
d o where anions are specifically adsorbed,




Poisson-Boltzmann equation for x = x,

tanh(ze/4kT)/tanh(zed,/4kT) = e +&x-x2)
Where ¢, 1s the potential at x,

Field strength at x,,  (d¢/dx),_,, = -(8kTn%ee,)*sinh(zed,/2kT)

Total potential drop across the double layer

Oy = 0y — (d/dx)prX,

oM =-0% = -gg,(dd/dx),_, = (8kTn’ce,)*sinh(zed,/2kT)
oM = (8kTncey)  sinh[ze/2kT(¢, — oMx,/e8,)]

Differential capacitance
C,=doMdo, = (2z°e’cen%kT)?cosh(zed,/2kT)/[1 +
(x,/e8,)(28€,z°en%kT)V?cosh(zed,/2kT)]

1/C =x,/e8,+ 1/[(2e5,z’e’n%kT) *cosh(zed,/2KT)]
Two components
1/C = 1/Cy + 1/Cyp,
Cp: capacitance of the charge at OHP, Cp: truly diffuse charge



Cy: independent of potential

Cp: varies 1 V-shaped depending potential

C4: V-shaped near PZC with low electrolyte conc (characteristic of Cp)
At large electrolyte conc or large polarization — Cp 1s so large — Cy

— Gouy-Chapman-Stern (GCS) model

High electrolyte

: minimaatE—E_, =0
Dip due to O, :

Low electrolyte
concentration

C,p. 1 Fiom?

|
(+) 0 i
F



Specific adsorption

Fig.13.2.2

Potential more negative than PZC: decline & same regardless composition (GCS
model)

Potential more positive than PZC: depend specifically on the composition

— specific adsorption of anions: their center: inner Helmholtz plane (IHP), X,

Fig.13.2.6 Br



(i) Specifically adsorbed ion — considering the slopes of z,F";;,0, vs. oM
oM = '[FI_K+(H20) - FI—Br-(HZO)]

In the absence of specific adsorption: charge on the electrode is counterbalanced by
the excess of one ion and a deficiency of the other (Fig.13.2.5)

— Fig. 13.2.6: more positive than PZC — superequivalent adsorption of bromide
(considering slopes & compare with Fig. 13.2.5)

(i1) Esin-Markov effect: shift in PZC with change in electrolyte conc

Table by “Grahame”

— shift : linear with In[activity]

— slope: Esin-Markov coefficientat cM =0
(non-specific adsorption: EM coeff =0

(1/RT)(8 Ei/a I r]a‘salt)oM = (a Ei/a LIsalt)c;M



Studies at solid electrodes

Double layer at solids

CHE 2 mercuryOil CHOl & =

— solid electrode: difficulty to reproduce same & clean surface, not atomically
smooth...

Well-defined single crystal electrode surfaces

Different crystal faces exhibit different properties (e.g., PZC, work function..)
Pt, Pd, Ag, Ni, Cu: FCC crystal structures

— |ow-index crystal faces: stable, polishable

— higher-index planes: more edges, step & Kink sites

Reconstruction: minimize surface energy

Carbon: highly oriented pyrolytic graphite
(HOPG)



Potential of zero charge

cf. Pt: 0.18 V, Ni: -0.33V



Different crystal faces exhibit different properties (e.g., PZC, work function..)
e.g., PZC on Ag(111) (-0.69 V vs. SCE), Ag(110) (-0.98 V),
— -0.8 V: carry negative charge in (111), positive charge in (110)

Different catalytic & adsorption properties
e.g., different CV in Pt (0.5 M H,SO,)



Solid metal-solution interface

Information on PZC & interface from capacitance measurements
Capacitance curves for Ag(100) at different conc of KPF; and NaF
(top to bottom 100, 40, 20, 10, and 5 mM)

Independence of min in capacitance — weakly specificallyadsorbed on Ag
PZC from capacitance minimum



PZC depends upon crystal faces (e.g., Ag)
calculated: polycrystalline (46% (110), 23% (100), 31% (111))



Another complication: surface reconstruction

Au(100): reconstructed (5 x 20) during flame heating
< +0.5 V: maintained (5 x 20)
~+0.7 V: converted to original (100)



Extent and rate of specific adsorption

Nature and extent of specific adsorption

Commensurate: molecules adsorb in exact corresponding pattern with surface atoms
e.g., 1.5 x 10%® Au atoms/cm?2 on Au(111), spacing 2.9 A

— if adsorbate atoms on atop sites: (1 x 1) superlattice (2.5 x 10 mol/cm?)

lodine or 4-aminothiophenol: (+30 x Y30)R30° — 1/3 Au (8.3 x 10-1° mol/cm?)
Lower coverage for larger molecules



Roughness factor: actual area/projected area (~1.5 — 2 for smooth electrode)

Adsorption isotherms
Equal electrochemical potentials for bulk & adsorbed species i at equilibrium
UiA — Uib
uoA+RTIna”A =% +RT InaP
Standard free energy of adsorption
AGO = 1 0A — | 0b
aiA — aib e-AGiO/RT — Biaib

Where B, = exp(-AG;%/RT)

Langmuir isotherm
Assumption:
(a) No interactions between the adsorbed species on the electrode surface
(b) No heterogeneity of the surface
(c) At high bulk activities, saturation coverage of the electrode by adsorbate (e.g., to
form a monolayer) of amount of
/(M=) = BaP

Fractional coverage, © = /[



=BG/ + BiCy)
If two species | & j are adsorbed competitively,

[
I

[sBiCGil (1 + B; + By)
l_j,SBjCj/(l + (3; + BJ)

Logarithmic Temkin isotherm
Interactions between adsorbed species
= (RT/29)In(Ba) (0.2<6<0.8)

Frumkin isotherm
Electrochemical free energy of adsorption is linearly related to [
AG;%(Frumkin) = AG;%i (Langmuir) — 2g[";

Bia® = [[/(Ts - M)Iexp(-291/RT)
g: JJmol per mol/cm? — increased coverage changes the adsorption E of i
Positive g: interactions between adsorbed molecules are attractive
Negative g: repulsive interactions
As g — 0, Frumkin isotherm approaches the Langmuir isotherm



Rate of adsorption
When B,C; << 1, [ =1B,C =Db,C,
Where b, = ;[
[(t) = biCi(0,1)
C.(x,0) =C/7, lim Ci(x,t) = Ci”
() = D,JoC,(x,1)/0X],-, dt

— (/7 =1 - exp(D;t/b?)erfc[(D;t)?/bi]

[~(t)/T; is independent of C., but actually depend on.

bC*IT,



Effect of adsorption of electroinactive species

— such adsorption inhibit (or poison) an electrode reaction or accelerate the
electrode reaction (e.g., hydrogen or oxygen)

kO =ky-2(1-0) + kO

Where k,_,° is the standard rate const at the bare surface & k. that at the filmed
portions

For completer blockage by the film, k.° =0

For catalysis by the filmed area, k.° > kg_,"

Effect of adsorbed substances
Hydrogen & oxygen
CO & organics



Summary
Electrochemical potential (1;) = (@ G/ @ n;): const at equilibrium

Surface tension (y) = (@ G/ @ A): a measure of the energy required to
produce a unit area of new surface

Surface excess concentration (I';) = n,/A: excess per unit area of surface

Gibbs adsorption isotherm: -dy = > y,du; for general interface

Electrocapillary equation: -dy = oMdE+ Z I"''d

for electrochemical interface

The excess charge density on the metallic side of interface: ocM=-0S

— surface tension (y ) vs. charge density: oM=-(0 y/0E),



Surface tension (¥ ) vs. charge density: cM=(0 y/dE),

Curve slope = 0: “potential of zero charge”(pzc)
1 oM=05=0

N

- excess charge

EXp.
/

C,=(8 oM/JE)



