Photoelectrochemistry (ch. 18)

Semiconductor electrodes

Photoelectrochemistry at semiconductors

Radiation energy \Leftrightarrow electrical or chemical energy

• photoelectrochemical system: <u>absorption of light</u> by the system (e.g., sun light) \rightarrow <u>chemical reactions</u> & <u>flow of current</u>

• semiconductor: absorb photons \rightarrow electron-hole pairs \Rightarrow oxidation/reduction reactions \rightarrow products (photocurrent)

Semiconductor electrodes Band model

intrinsic semiconductor; undoped

- intrinsic semiconductor; # of $e^{-}(n_i) \& h^+(p_i)$ per cm³ at T

Where T(K), m_n, m_p ; reduced masses of $e^- \& h^+, m_e^*, m_h^*$; relative effective masses where $m_e^* = m_n/m_0, m_h^* = m_p/m_0$ (m_0 ; rest mass of an electron)

 $n_i = p_i \sim 2.5 \text{ x } 10^{19} \exp(-E_g/2kT) \text{ cm}^{-3} (\text{near } 25^{\circ}\text{C})$

For Si, $n_i = p_i \sim 1.4 \times 10^{10} \text{ cm}^{-3}$ $E_g > 1.5 \text{ eV} \rightarrow \text{few carriers: electrical insulators}$ Extrinsic semiconductors; doped

- dopants or impurity; ~ppm, typical donor densities (N_D) are 10¹⁵-10¹⁷ cm⁻³

n-type: total density (n) of electrons in CB $n = p + N_D$, p; hole density (thermal activation of VB atoms) most cases for moderate doping $N_D >> p$, $n \sim N_D$ For any materials (intrinsic or extrinsic)

For n-type SC

e.g., 10^{17} cm⁻³ As doped Si \rightarrow electron density ~ 10^{17} cm⁻³, hole density ~ 460 \rightarrow majority carrier: electron

p-type dopant (acceptor) density; N_A , electron density (by thermal promotion); n \rightarrow total density of holes (p)

 $p = n + N_A$ when $N_A >> n$, $p = N_A \rightarrow$ hole; majority carriers

 $n = n_i^2/N_A$ e.g., Si: N_A = 5 x 10¹⁶ acceptor/cm³, n ~ 4000 cm⁻³

•compound semiconductor (e.g., GaAs or TiO₂); n-type or p-type \rightarrow replacement of impurity atoms to the constituent lattice atoms, impurity atoms in an interstitial position, lattice vacancy or broken bond

e.g., n-TiO₂: oxygen vacancies in the lattice

Fermi level

1) probability that an electronic level at energy E is occupied by an electron at thermal equilibrium $f(E) \rightarrow$ Fermi-Dirac distribution function

- Fermi level E_F ; value of E for which f(E) = 1/2 (equally probable that a level is occupied or vacant) - At T = 0, all levels below E_F (E < E_F) are occupied (f(E) \rightarrow 1); all levels $E > E_F$ vacant -intrinsic SC: E_F in the middle of CB and VB edges • extrinsic SC; E_F move up & down depending upon doping

e.g., $10^{17} \text{ cm}^{-3} \text{ As doped Si} \rightarrow \text{N}_{\text{D}} \sim 10^{17} \text{ cm}^{-3}, \text{N}_{\text{C}} = 2.8 \text{ x } 10^{19} \text{ cm}^{-3}, 25 \text{ °C}$ $\Rightarrow \text{E}_{\text{F}} = \text{E}_{\text{C}} - (25.7 \text{ x } 10^{-3} \text{ eV}) \ln(\text{N}_{\text{C}}/\text{N}_{\text{D}}) \sim \text{E}_{\text{C}} - 0.13 \text{ eV}$ $- \text{ if } \text{N}_{\text{D}} < \text{N}_{\text{C}}, \text{N}_{\text{A}} < \text{N}_{\text{V}} \rightarrow \text{SC}$

- if higher doping levels; Fermi level moves into VB or $CB \Rightarrow$ show metallic conductivity

e.g., transparent SnO₂ (E_g = 3.5 eV) + heavily doping with Sb(III) (N_D > 10^{19} cm^{-3}) \Rightarrow the material becomes conductive

useful in thermodynamic considerations of reactions and interfaces; at equilibrium electrically, the electrochemical potential of electrons in all phases must be same by charge transfer → same Fermi level
Fermi levels difference between two phases; function of the applied potential

• Fermi level (uncharged phase) vs. work function (Φ)

 $\Phi = -E_F$

Semiconductor/solution interface

• electron transfer at the interface (same principles as those given above) + chemical reaction (if possible, e.g., decomposition of SC , oxide film formation) \rightarrow complicate

- Si; SiO₂ (if oxygen or oxidant in solution); hinder electron transfer

 \bullet The distribution of charge (e⁻/h⁺ in SC & ions in solution) and potential; depend on their relative Fermi level

• Fermi level in solution: electrochemical potential of electrons in solution phase ()

- governed by the nature and concentration of the redox species present in the solution and is directly related to the solution redox potential as calculated by the Nernst equation

- at the point of zero charge, no surface state, no specifically adsorbed ions, no excess charge \rightarrow the distribution of carriers (e⁻, h⁺, anions, cations) is uniform from surface to bulk, and the energy bands are flat "<u>flat band</u> <u>potential</u>" (E_{fb}); no space charge layer in SC & no diffuse layer in solution

n-type

• potential difference (by applied voltage or Fermi level difference); charged interface \rightarrow space charge layer (thickness W); potential difference ΔV , dopant density N_D

50 ~ 2000 Å

• <u>band bending</u>: because of non uniform carrier density in SC (upward (with respect to the bulk SC) for a positively charged SC and downward for a negatively charged one) \rightarrow electric field in the space charge region \rightarrow direction of motion

The capacitance of the space charge layer

Mott-Schottky plot

Mott-Schottky plot: useful in characterizing SC/liquid interface where a plot of $(1/C_{SC}^2)$ vs. E should be linear \rightarrow values of E_{fb} and N_D from the intercept and slope

Photoeffects at semiconductor electrodes

1: dark

- 2: irradiation
- 3: Pt electrode

n-type

p-type

p-type

Photoelectrochemical cells

Photovoltaic cells: convert light to electricity

Photoelectrosynthetic cells: Radiant E to chemical energy

Photocatalytic cells: Light E to overcome activation E of the process Band gap vs. wavelength \rightarrow limit to utilize sunlight (e.g., TiO₂ (3.0 eV)) \rightarrow dye sensitization of a semiconductor

Semiconductor particles

Grains Nanocrystalline films Quantum particles (Q-particles or quantum dots)