Computer Modeling

Chang-Gun Lee (cglee@snu.ac.kr)

Assistant Professor

The School of Computer Science and Engineering

Seoul National University

Before We Start Passive vs. Active Learning

- After 2 weeks, we tend to remember
- Passive learning
 - 10% of what we read
 - 20% of what we hear
 - 30% of what we see (picture)
 - 50% of what we hear and see
- Active learning
 - 70% of what we say
 - 90% of what we say and do

Everybody! be an Active Learner

- recall prior material
- answer a question (say a lot!)
- guess the solution first (even guessing wrong will help you to remember the right approach)
- raise questions
- think of application
- imagine that you were the professor and think about how you would give a test on the subject material so that key concepts and results will be checked
- summarize a lecture, a set of homework or a lab in your own words concisely

An Active Learner will become an Independent Researcher and Engineer

Course Information

- Office Hour: Tuesday 12 1pm at 301-409 (Lunch will be served by appointment)
 - come to me pretty often
- Contact:
 - Chang-Gun Lee (cglee@snu.ac.kr, 880-1862, 010-6549-5605)
 - TA: JungEun Kim (deep0314@snu.ac.kr)
- Grading (Tentative)
 - Attendance: 10%
 - Homework & Projects: 30%
 - Active participation: 10%
 - Midterm: 20%
 - Final: 30% (???)

Course Philosophy

- Modeling and Analysis of Computer Systems are important
 - For graduate study
 - For professional jobs in industry
- Students will be trained with both
 - Analytic model
 - Simulation

Topics

- Basic Queueing Theory
- Hands on experiences with popular simulation tools
 - SMPL
 - OMNet++
 - -NS2
- Play with actual examples
 - Resource management in embedded systems
 - Real-time tracking in <u>ubiquitous environments</u>
 - Wireless sensor network protocols
 - Flash memory software

Textbook

- Lecture notes and research papers
- "Simulation Modeling and Analysis" by A. M. Law and W.D. Kelton, McGraw-Hill
- "Probability, Statistics, and Queueing Theory with Computer Science Applications" by A. O. Allen, Academic Press
- "Quantitative System Performance" by E. Lazowska, J. Zahorjan, S. Graham, K. Sevcik, Prentice-Hall
- OMNet++ Manual
- NS2 Manual

Why Computer Modeling is Important?

• Why?

- We often make a computer-related mechanism.
- We want to check the correctness of it
- We want to see the performance of it
- We want to improve it if it does not satisfy the requirements
- My boss (in the industry and graduate school) will ask the above questions

• Why not?

- Actually implement it and run it to see (and measure) its behavior
- Take time to implement it
- We need HW platform to implement it
- We may waste the HW platform if it does not work
- It is really painful to redo the implementation
- So, we need to check it before we actually implement it.
- For this, it is essential to MODEL it!

What to Model?

Digital Circuit

Processor Core

Embedded System

Internet

Wireless Sensor Network

How to Model?

- Analytic method
- Simulation

Analytic method

$$P[Y = k] = e^{-\lambda t} \frac{(\lambda t)^k}{k!}$$

of customers:
$$L = \frac{\rho}{1-\rho}$$
 (where $\rho = \frac{\lambda}{\mu}$)

waiting time: $W = \frac{\alpha}{(1-\rho)}$

• Pros.

- Closed form interpretation of the results
- Easy to see the impacts of various parameters

• Cons.

- Hard to apply for complicated systems
- Often use simplifying assumptions (deviation from the reality)

Exponential Service Time

$$f(x) = \alpha e^{-\alpha x} (\text{where } \alpha = \frac{1}{\mu})$$

	customers	Wait time
C_1	0	3
C_2	1	6
C_3	2	8
C_4	0	3

• Pros.

- Can model any kind of complex systems
- Can model almost the reality

• Cons.

- No simple look of inter-parameter relations
- Quite long simulation time

Why Hair Salon for Computer Engineers?

Will it be an easy course?

- Easy for hard working guys
- Difficult for ...

• At the end, you will learn a lot and realize that this course is useful for your future!