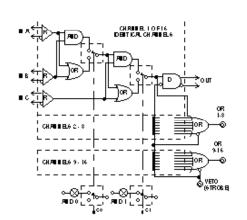
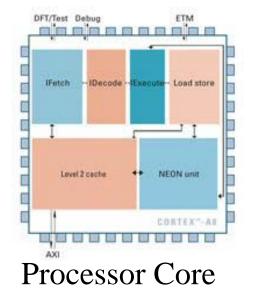
Simulation Overview

Chang-Gun Lee (cglee@snu.ac.kr)

Assistant Professor

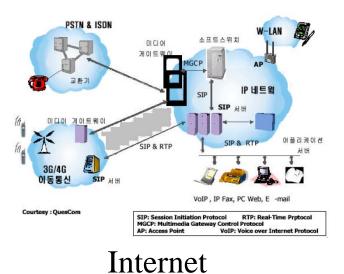

The School of Computer Science and Engineering

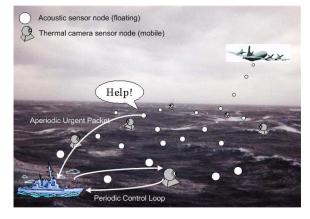
Seoul National University

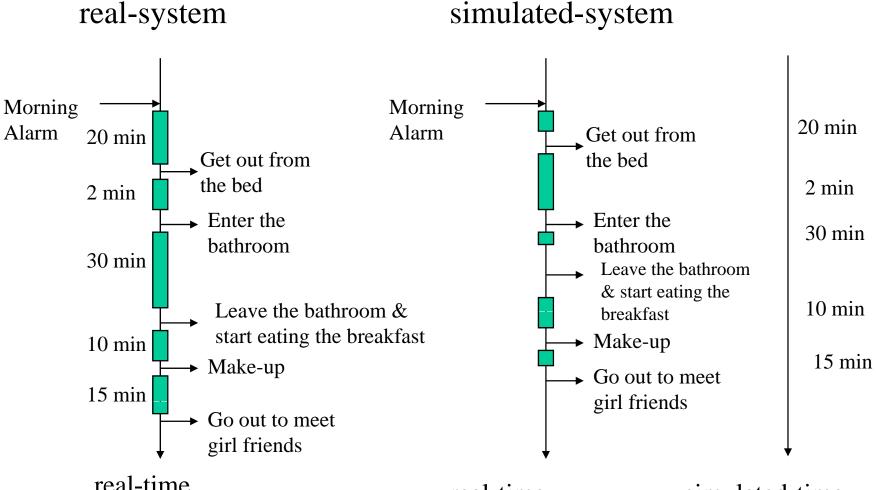

What is "Simulation"?

- Doing something without the real-system just like the real-system do
 - mentally?
 - using computer?
- What is "just like the real-system do"?
 - How much exact we want?
 - Level of abstraction
- Why?
 - We can evaluate the performance in advance before actual implementation
 - Easy to change
- Simulation is ...
 - analysis tool for predicting the effect of changes
 - design tool to predict the performance of new system

What to Simulate?




Digital Circuit


Embedded System

Wireless Sensor Network

Computer-based Simulation

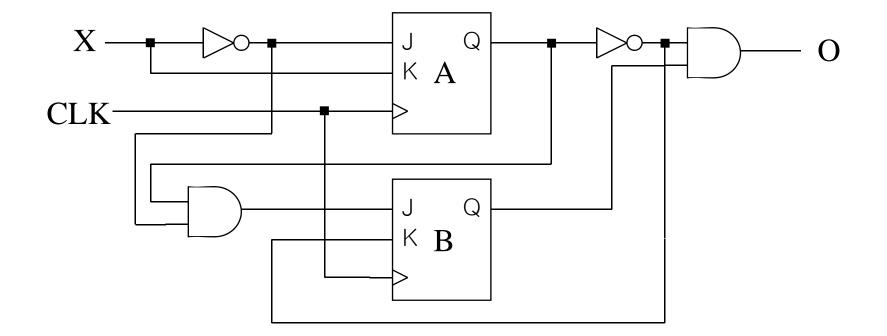
real-timereal-timesimulated-time(real world)(computer world)(computer world)

Two things from the previous slide

- Real-Time vs. Simulated-Time
- Level of Abstraction

Real Time (Wall-Clock Time) vs. Simulated Time

- How the time goes in the simulated world?
 - Can be faster or slower than the real-time
 - The simulated-time progresses following the event occurrence simulating the time-progress in the real world


Level of Abstraction

- What you are doing in the bathroom
 - Don't care
 - We want to model the detail of what happen in the bathroom.
- Depends on the needs of analysis
 - We only care the time spent at home before leaving
 - We want to know which action is most time consuming
- Typical levels of abstraction
 - Circuit-level simulation
 - Instruction-level simulation
 - Event-level simulation

Xilinx demo (circuit-level simulation)

- A sequential circuit
 - Logical functionality
 - Timing

Example: Analysis of Clocked Synchronous Circuit

• A systematic way is necessary

Three Step Approach

- Step 1: Equation (excitation and output)
- Step 2: Table (state and output)
- Step 3: State diagram

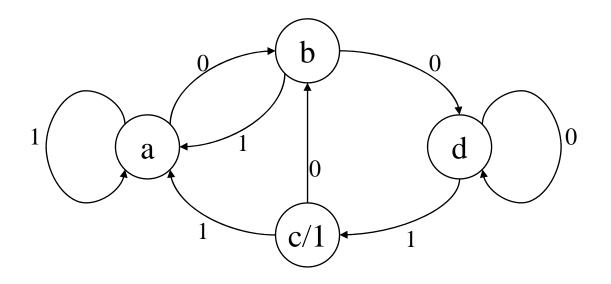
Step 1: Excitation and Output Equations

• Derive Excitation and Output Equations from the schematic

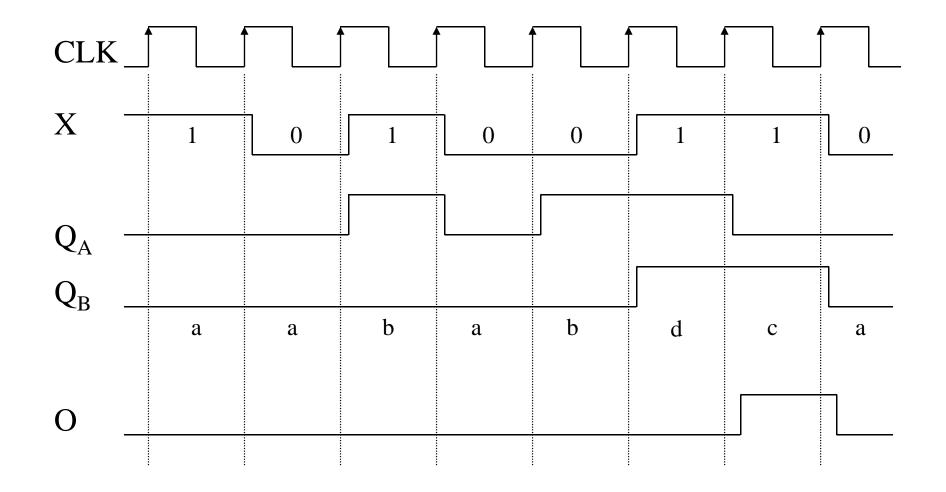
$$J_{A} = \overline{X}, K_{A} = X,$$

$$J_{B} = \overline{Q_{A}} \overline{X}, K_{B} = \overline{Q_{A}},$$

$$O = \overline{Q_{A}} \overline{Q_{B}}$$


Step 2: State/Output Table

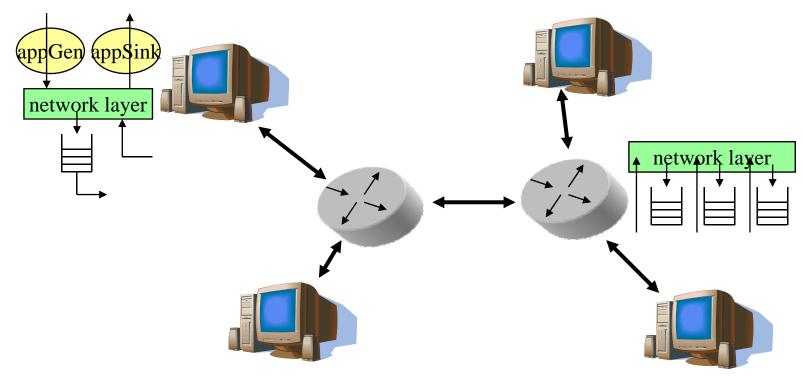
• Fill in the table from the previous equations


	P.S	•	Input	Output	E	Excit	tatio	n	N.	S.
	QB QA			0	JB KB JA KA			QB QA		
a {	0	0	0	0	0	1	1	0	0	1
	0	0	1	0	0	1	0	1	0	0
b {	0	1	0	0	1	0	1	0	1	1
	0	1	1	0	0	0	0	1	0	0
c {	1	0	0	1	0	1	1	0	0	1
	1	0	1	1	0	1	0	1	0	0
d {	1	1	0	0	1	0	1	0	1	1
	1	1	1	0	0	0	0	1	1	0

Step 3: State Diagram

• Can you tell what this machine is doing?

Example

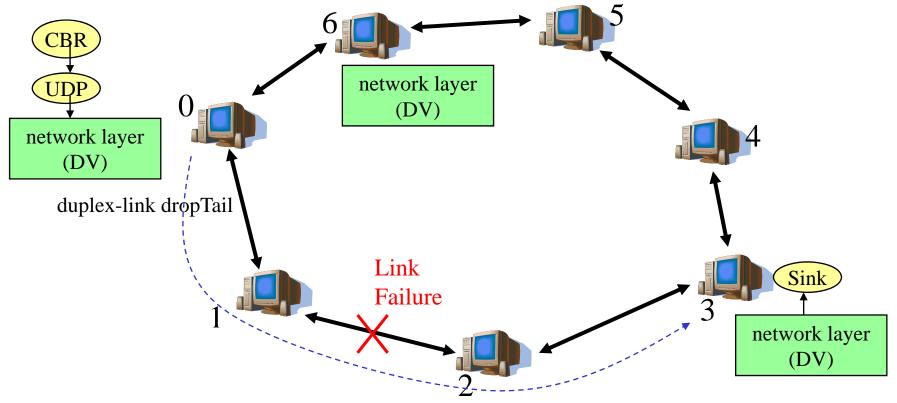


68HC11 Simulator demo (Instruction-level simulation)

- Read 4bit switches and display the read through 7-Segment element.
 - Instruction-level trace
 - Memory monitoring
 - Register monitoring

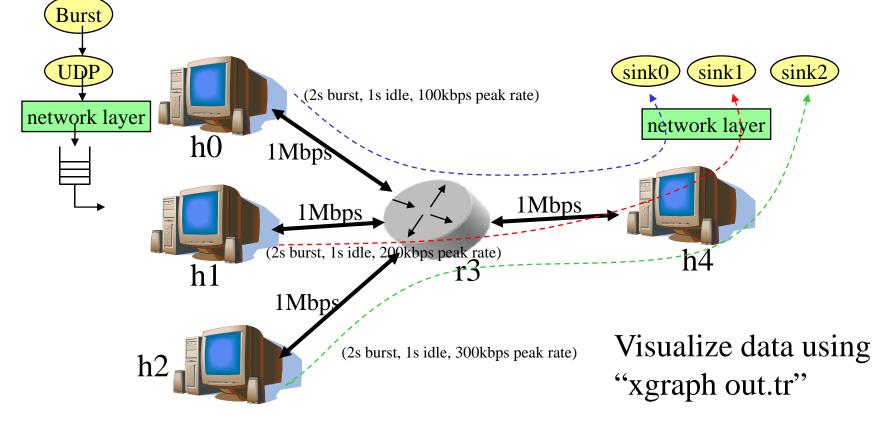
OMNet++ demo ("mySamples/psNetwork") (Event-level simulation)

- A packet switching network with 2 routers and 4 hosts
 - Host: AppGen + AppSink + NetworkLayer + OutputQueue
 - Router: NetworkLayer + OutputQueues for ouput ports



- Observe output queue length, message hop count, and end-to-end delay
- Post visualization of data using "scalars" and "plove" tools
 - "scalars omnetpp.sca", "plove omnetpp.vec"

ns-2 demo ("ns example3.tcl")


(Event-level simulation)

- A ring topology with 7 nodes
- Node 0 starts CBR traffic over UDP at time 0.5 sec, whose destination is Node 3
- Link between Node 1 and Node 2 downs during [1 sec, 2sec]
- Node 0's traffic stops at 4.5 sec

ns-2 demo ("ns example4.tcl")

- Three hosts (h0, h1, h2) send burst traffic to one sink (h4) via a router (r3)
 - Host: BurstTraffic + UDP + NetworkLayer + DropTailQueue
 - Router: NetworkLayer + DropTailQueues for ouput ports
 - Sink: Sink(LossMonitor) + NetworkLayer
- All flows start at 10 and stop at 50

Workload Model

- In event-driven simulation, we have to characterize the workload
 - arrival rate of jobs
 - jobs' execution time in each resource
 - interactions among jobs
- Deterministic model
 - periodic arrivals
 - constant execution times
- Stochastic model
 - random arrivals (e.g., exponential inter-arrival time distribution)
 - random execution times (e.g., exponential execution times)
 - We use a random number generator for that

Disadvantage of Simulation

- Simulation requires special training
- There is an inevitable deviation from the reality
 - How to make the deviation acceptable?
- It is hard to validate the correctness of your simulation
 - How can you judge that your simulation is correct?
- Solution
 - Work hard in this class