SMPL

Chang-Gun Lee (cglee@snu.ac.kr)
Assistant Professor
The School of Computer Science and Engineering

Seoul National University

M A 11
nelall

e Whatto do

— Generic (system independent)
 scheduleEvent(event, time)
o event = getEvent();
» random number generators
— System-specific
» Define events
» Define the operation steps for each event
» Determine the most appropriate data structure

* The generic part can be pre-built as a library
— SMPL provides such a library

CRA AN

SMPL

« SMPL is a set of C functions for building event-
based, discrete-event simulation models

 SMPL was written by M.H. MacDougall and Is
described in Simulating Computer Systems,
Techniques and Tools, The MIT Press, 1987

e Facilities
e Tokens
e Events

)

<

LY,

[T]

—
—

~—

—F

(q»)

0p

Facilities

A facility typically represents some work-
performing resource of system being modeled,
such as CPU and memory Iin computer system,
BUS in computer networks and lock in operating
system

SMPL provides functions to define facilities,
reserve, release, and preempt them and
Interrogate their status

The Interconnection of facilities Is not explicit, but
can be determined by the model’s routing of
tokens between facilities

A system comprises a collection of interconnected
facilities

Tokens

Tokens represents the active entities of the system

The dynamic behavior of the system is modeled
by the movement of tokens through set of facilities

A token may represent a task in a computer
system model, a packet in communication model
Or memory access in a memory bus subsystem
model

In SMPL a token may reserve (preempt) a facility
or schedule activity of various duration

A token can be a single integer (customer id), an
structure (enter time, size, ...)

Events

* A change of state of any system entity, active or
passive Is an event

« Some events are Task arrival, CPU completion
Interval, Process departure

SMPL functions (for start)

e smpl(m,s)
— Int m; char *s
— Initialize the simulation subsystem for a simulation run
(clear SMPL data structure, initialize time to zero)

— When m=1, SMPL provides an interactive interface to
model execution.

 reset()
— Clear all accumulated measurements (Not time)

SMPL functions (for resources) - 1

o F=facility (s,n)
— char *s; intn

— This function creates and names a facility with n
servers

e R=request(f,tkn,pri)
— Int f, tkn, pri

— It requests that a server of facility f be reserved for
token tkn with pri priority

— If the facility Is not busy, a server is reserved for the
requesting tokens (The first idle server will be chosen).
Return 0.

— Each facility has a queue. When facility Is busy a queue
entry (i.e., tkn and current event) Is constructed for the
request. Return 1.

— A request which initially finds the facility busy is called
a blocked request

SMPL functions (for resources) - 2

o R=preempt(f,tkn,pri)
— Int f, tkn, pri
— If the facility is not busy or all the tokens in the busy

facility have greater priority, it works like request
function

— If the facility Is busy, the server with the lowest priority
reserving token is located. If this priority Is equal or
greater than the requester, the request (current event
and token) is queued and 1 is returned

— Otherwise, the located token iIs suspended (preempted)
and the server will be reserved for requester.

— The suspended token Is put on top of the same priority
queue with its remaining time

SMPL functions (for resources) - 3

 release(f,tkn)
— Int f, tkn

— This function releases the server facility f reserved by
token tkn

— Next, the facility queue is examined and if it isn’t
empty the entry at its head is dequeued and associated
event (i.e., requestFacility) is resecheduled at the
current time

— If the entry Is for a preempted request, the released
server Is reserved for the dequeued token and the
associated event (i.e., releaseFacility) is scheduled to
occur at a time equal to the current time plus remaining
time

SMPL functions (for statistics)
N=ing(f)

— Number of tokens currently in queue
R=status(f)

— The facility status (busy or idle)
U=u(f)

— Mean facility utilization

B=B(f)

— Mean busy period

L=lq()

— Mean queue length

SMPL functions (for event management)

 schedule(ev, time, tkn)
— Int ev, tkn; real time;

— This function schedules an event. ev Is the event
number, time Is the inter-event time and tkn 1s a token
assoclated with event

— Then an event entry for this event is constructed

 cause(ev, tkn)
— Int *ev, *tkn
— Removes the entry at the head of the event list,

advances the simulation time to the event occurrence
time and return the event number ev and token tkn

e Tkn = cancel(ev)
— Int tkn

— Search in the event list for event ev and remove it from
list and return its token

SMPL functions

t = real time()
— return the current simulation time

r = real ranf()

— returns a psuedo-random number uniformly distributed in the range
0,1

I=stream(n)

— intn

— select a stream (seed) (1<=n <= 15)
— or identify the selected stream (if n=0)

r=expntl(x)
r=erlang(Xx,s)
r=hyperx(x,s)
r=uniform(real a, real b)
k=ranfom(int i, int j)
r=normal(Xx,s)

Simulating M/M/1 with SMPL

#include <stdio.h>
#include "smpl.h"

// Needed for printf()
// Needed for SMPL

void main(void)

{
real Ta = 200; /[Mean interarrival time
(seconds)
real Ts = 100; /[l Mean service time
real te = 1.0e6; // Total simulation time

int customer =1; // Customer id

int event; // Event (1 = arrival, 2 = request, 3 =
completion)

int server; /[Handle for server facility
/I Initialize SMPL subsystem
smpl(0, "M/M/1 Queue");

/I Initialize server facility (single server)
server=facility("server", 1);

Il schedule a kick-off event
schedule(1, 0.0, customer);

while (time() < te)
{

cause(&event,&customer);

switch(event)

{

case 1: // *** Arrival

schedule(2, 0.0, customer);
schedule(1, expntl(Ta), customer);
break;

case 2: /I *** Request Server
i (request(server, customer, 0) == 0)
schedule(3, expntl(Ts), customer);
break;

case 3: // *** Release server
release(server, customer);
break;

}

}
report();

}

« Draw the following three graphs by SMPL
simulation

— traffic load (0-0.95) vs. average # of jobs in the system
— traffic load (0-0.95) vs. average queue length

— traffic load (0-0.95) vs. average queueing delay for
each job

e Compare the three graphs with the graphs of
Homework 1

* When simulating the system with a traffic load 1.0

and 1.5,

— Observe what happens in your simulation
— Discuss how to handle such situation

