
SMPL

Chang-Gun Lee (cglee@snu.ac.kr)

Assistant Professor

The School of Computer Science and Engineering

Seoul National University

RecallRecall
• What to doWhat to do

– Generic (system independent)
• scheduleEvent(event, time)
• event = getEvent();
• random number generators

– System-specificSystem specific
• Define events
• Define the operation steps for each event
• Determine the most appropriate data structure• Determine the most appropriate data structure

• The generic part can be pre-built as a library
– SMPL provides such a librarySMPL provides such a library

SMPLSMPL
• SMPL is a set of C functions for building event-SMPL is a set of C functions for building event-

based, discrete-event simulation models
• SMPL was written by M.H. MacDougall and is y g

described in Simulating Computer Systems,
Techniques and Tools, The MIT Press, 1987

SMPL EntitiesSMPL Entities
• FacilitiesFacilities
• Tokens
• EventsEvents

Facilities
• A facility typically represents some work-

f i f t b i d l dperforming resource of system being modeled,
such as CPU and memory in computer system,
BUS in computer networks and lock in operatingBUS in computer networks and lock in operating
system

• SMPL provides functions to define facilities, p f
reserve, release, and preempt them and
interrogate their status
Th I t ti f f iliti i t li it b t• The Interconnection of facilities is not explicit, but
can be determined by the model’s routing of
tokens between facilitiestokens between facilities

• A system comprises a collection of interconnected
facilities

Tokens
• Tokens represents the active entities of the system
• The dynamic behavior of the system is modeled

by the movement of tokens through set of facilities
A t k t t k i t• A token may represent a task in a computer
system model, a packet in communication model
or memory access in a memory bus subsystemor memory access in a memory bus subsystem
model

• In SMPL a token may reserve (preempt) a facility y (p p) y
or schedule activity of various duration

• A token can be a single integer (customer id), an
t t (t ti i)structure (enter time, size, …)

Events
• A change of state of any system entity, active or

i i tpassive is an event
• Some events are Task arrival, CPU completion

interval Process departureinterval, Process departure

SMPL functions (for start)()
• smpl(m,s)

– int m; char *s
– initialize the simulation subsystem for a simulation run

(clear SMPL data structure initialize time to zero)(clear SMPL data structure, initialize time to zero)
– When m=1, SMPL provides an interactive interface to

model execution.
• reset()

– Clear all accumulated measurements (Not time)

SMPL functions (for resources) - 1()
• F=facility (s,n)

char *s; int n– char *s; int n
– This function creates and names a facility with n

servers
• R=request(f,tkn,pri)

– int f, tkn, pri
I h f f ili f b d f– It requests that a server of facility f be reserved for
token tkn with pri priority

– If the facility is not busy, a server is reserved for the y y,
requesting tokens (The first idle server will be chosen).
Return 0.
Each facility has a queue When facility is busy a queue– Each facility has a queue. When facility is busy a queue
entry (i.e., tkn and current event) is constructed for the
request. Return 1.
A hi h i i i ll fi d h f ili b i ll d– A request which initially finds the facility busy is called
a blocked request

SMPL functions (for resources) - 2()
• R=preempt(f,tkn,pri)

int f tkn pri– int f, tkn, pri
– If the facility is not busy or all the tokens in the busy

facility have greater priority, it works like request
f ifunction

– If the facility is busy, the server with the lowest priority
reserving token is located. If this priority is equal or g p y q
greater than the requester, the request (current event
and token) is queued and 1 is returned
Otherwise the located token is suspended (preempted)– Otherwise, the located token is suspended (preempted)
and the server will be reserved for requester.

– The suspended token is put on top of the same priority
ith it i i tiqueue with its remaining time

SMPL functions (for resources) - 3()
• release(f,tkn)

int f tkn– int f, tkn
– This function releases the server facility f reserved by

token tkn
– Next, the facility queue is examined and if it isn’t

empty the entry at its head is dequeued and associated
event (i.e., requestFacility) is resecheduled at the (, q y)
current time

– If the entry is for a preempted request, the released
server is reserved for the dequeued token and theserver is reserved for the dequeued token and the
associated event (i.e., releaseFacility) is scheduled to
occur at a time equal to the current time plus remaining
timetime

SMPL functions (for statistics)()
• N=inq(f)

Number of tokens currently in queue– Number of tokens currently in queue
• R=status(f)

– The facility status (busy or idle)The facility status (busy or idle)
• U=u(f)

– Mean facility utilizationy
• B=B(f)

– Mean busy period
• L=lq(f)

– Mean queue length

SMPL functions (for event management)(g)
• schedule(ev, time, tkn)

int ev tkn; real time;– int ev, tkn; real time;
– This function schedules an event. ev is the event

number, time is the inter-event time and tkn is a token
i d i hassociated with event

– Then an event entry for this event is constructed
• cause(ev tkn)• cause(ev, tkn)

– int *ev, *tkn
– Removes the entry at the head of the event list, y ,

advances the simulation time to the event occurrence
time and return the event number ev and token tkn

• Tkn = cancel(ev)• Tkn = cancel(ev)
– int tkn
– Search in the event list for event ev and remove it fromSearch in the event list for event ev and remove it from

list and return its token

SMPL functions
• t = real time()

– return the current simulation time
• r = real ranf()

– returns a psuedo-random number uniformly distributed in the range
0 10, 1

• i=stream(n)
– int n

l (d) (1 1)– select a stream (seed) (1<= n <= 15)
– or identify the selected stream (if n=0)

• r=expntl(x)p ()
• r=erlang(x,s)
• r=hyperx(x,s)

if (l l b)• r=uniform(real a, real b)
• k=ranfom(int i, int j)
• r=normal(x s)• r=normal(x,s)

Simulating M/M/1 with SMPL
#include <stdio.h> // Needed for printf()
#include "smpl.h" // Needed for SMPL

while (time() < te)
{

cause(&event &customer);
void main(void)
{
real Ta = 200; // Mean interarrival time

cause(&event,&customer);
switch(event)
{
case 1: // *** Arrival

(seconds)
real Ts = 100; // Mean service time
real te = 1.0e6; // Total simulation time
int customer = 1; // Customer id

schedule(2, 0.0, customer);
schedule(1, expntl(Ta), customer);
break;

int customer = 1; // Customer id
int event; // Event (1 = arrival, 2 = request, 3 =

completion)
int server; // Handle for server facility

case 2: // *** Request Server
if (request(server, customer, 0) == 0)

schedule(3, expntl(Ts), customer);

// Initialize SMPL subsystem
smpl(0, "M/M/1 Queue");

break;

case 3: // *** Release server
release(server customer);

// Initialize server facility (single server)
server=facility("server", 1);

release(server, customer);
break;

}
}

// schedule a kick-off event
schedule(1, 0.0, customer);

report();
}

Home ork 2Homework 2
• Draw the following three graphs by SMPLDraw the following three graphs by SMPL

simulation
– traffic load (0-0.95) vs. average # of jobs in the system() g j y
– traffic load (0-0.95) vs. average queue length
– traffic load (0-0.95) vs. average queueing delay for

each jobeach job
• Compare the three graphs with the graphs of

Homework 1Homework 1
• When simulating the system with a traffic load 1.0

and 1.5,
– Observe what happens in your simulation
– Discuss how to handle such situation

