Ad-Hoc Wireless Networks and Protocols

Chang-Gun Lee (cglee@snu.ac.kr)

Assistant Professor

The School of Computer Science and Engineering

Seoul National University

Wireless Ad Hoc Networks

Coordinating set of wireless nodes without any central Access Points

TWO Important Issues

- Wireless Medium Access
- Routing

Wireless MAC

- Random arbitration based (802.11CSMA-CA)
- Priority based (I-EDF): Good for real-time app.

Ad Hoc Routing

- Many protocols: DSDV, DSR, AODV
- Let's take a close look at DSDV (Destination-Sequenced Distance Vector) as an example

DSDV

- Basically Distance-Vector routing protocol
 - tries to forward packets through the shortest path with smallest hop counts
- Challenge
 - How to manage the routing table?
 - When nodes moves dynamically, will the traditional way to just reporting link-off and link-on work?
 - This may cause inconsistency of the routing information resulting in routing loops
 - The route loops are short-lived in traditional wired networks with low dynamics
 - But, looping may live VERY long in highly dynamic mobile ad hoc wireless networks
- DSDV objective
 - Manage the routing table (e.g., distance vector table) avoiding the looping problem even in highly dynamic networks

Distance Vector Routing

DSDV routing

- Each node broadcast its routing table
 - periodically
 - on-demand as topological changes are detected
- At each broadcast, the following information is carried
 - new sequence number (for the case that this node is the destination)
 - for each destination
 - the destination's address
 - the number of hops required to reach the destination
 - the sequence number of the information received regarding this destination, as originally stamped by that destination
- At routing decision,
 - Routes with more recent sequence numbers are always preferred
 - With this destination-oriented sequence number the global consistency of route can be maintained for each particular destination

Two cases of RouteInfo forwarding

- When a new route is found which was previous unreachable
 - immediately forward this info to all neighbors
- When a new route is found to have a better metric
 - delay the forwarding to a certain extent of time expecting better routing info will arrive soon
 - this can reduce the route info fluctuation

Example DSDV operation

Destination	NextHop	Metric	Sequence number
MH_1	MH_2	2	S406_MH1
MH_2	MH_2	1	$S128_MH_2$
MH ₃	MH_2	2	$S564_MH_3$
MH_4	MH_4	0	S710_MH4
MH_5	MH_6	2	$S392_MH_5$
MH_6	MH_6	1	$S076_MH_6$
MH_7	MH_6	2	$S128_MH_7$
MH_8	MH_6	3	$S050_MH_8$

MH₄ forwarding table before MH₁'s move

	Destination	Metric	Sequence number
	MH_1	2	$S406_MH_1$
	MH_2	1	$S128_MH_2$
	$M H_3$	2	$S564_MH_3$
	MH_4	0	$S710_MH_4$
	MH_5	2	S392_MH ₅
	MH_6	1	$S076_MH_6$
	MH_7	2	$S128_MH_7$
l	MH_8	3	$S050_MH_8$

Advertised route table by MH₄ before MH₁'s move

Example DSDV operation

MH 3 MH 1	MH	MH6	MH5 MH7 MH1	No route inconsistency will occur since only the last sequenced info for MH_1 is used at every node			
Destination	NextHop	Metric	Sequence number	Destina	Metric	Sequence number	
MH_1	MH_6	3	$S516_MH_1$	MH	0	S820_MH ₄	
MH_2	MH_2	1	$S238_MH_2$	MH_1	3	$S516_MH_1$	
MH_3	MH_2	2	$S674_MH_3$	MH_2	1	$S238_MH_2$	
MH_4	MH_4	0	$S820_MH_4$	MH_3	2	$S674_MH_3$	
MH_5	MH_6	2	$S502_{-}MH_{5}$	MH_5	2	$S502_MH_5$	
MH_6	MH_6	1	$S186_MH_6$	MH_6	1	$S186_MH_6$	
MH_7	MH_6	2	$S238_MH_7$	MH_7	2	$S238_MH_7$	
MH_8	MH_6	3	$S160_MH_8$	MH_8	3	$S160_MH_8$	

MH₄ forwarding table after MH₁'s move

Advertised route table by MH₄ after MH₁'s move

Reference

 Charles E. Perkins and Pravin Bhagwat, "Highly Dynamic Destination-Sequenced Distance-Vector Routing (DSDV) for Mobile Computers, ACM SIGCOM 1994

NS2 implementation of DSDV

- Take a look at
 - C++: dsdv.cc, dsdv.h, rtable.cc, rtable.h in ns 2.30/dsdv
 - OTcl: dsdv.tcl in ns-2.30/tcl/mobility