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Chapter 2
Combinational logic
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Overview: Combinational logic
Basic logic

Boolean algebra, proofs by re-writing, proofs by perfect induction
logic functions, truth tables, and switches
NOT, AND, OR, NAND, NOR, XOR, . . ., minimal set

Logic realization
two-level logic and canonical forms
incompletely specified functions

Simplification
uniting theorem
grouping of terms in Boolean functions

Alternate representations of Boolean functions
cubes
Karnaugh maps
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X Y
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0
X and Y

X Y

X or Y

not Y not X 1

X
Y F

X xor Y

X nor Y
not (X or Y)

X = Y X nand Y
not (X and Y)

Possible logic functions of two variables
There are 16 possible functions of 2 input variables:

in general, there are 2**(2**n) functions of n inputs

F0 F3 F6 F9 F12 F15F1
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Cost of different logic functions
Different functions are easier or harder to implement

each has a cost associated with the number of switches needed
0 (F0) and 1 (F15): require 0 switches, directly connect output to 
low/high
X (F3) and Y (F5): require 0 switches, output is one of inputs
X’ (F12) and Y’ (F10): require 2 switches for "inverter" or NOT-gate
X nor Y (F4) and X nand Y (F14): require 4 switches
X or Y (F7) and X and Y (F1): require 6 switches
X = Y (F9) and X ⊕ Y (F6): require 16 switches

thus, because NOT, NOR, and NAND are the cheapest they are the 
functions we implement the most in practice
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X Y X nand Y
0 0 1
1 1 0

X Y X nor Y
0 0 1
1 1 0

X nand Y ≡ not (  (not X) nor (not Y)  )
X nor Y ≡ not ( (not X) nand (not Y) )

Minimal set of functions
Can we implement all logic functions from NOT, NOR, and NAND?

For example, implementing          X and Y
is the same as implementing   not (X nand Y)

In fact, we can do it with only NOR or only NAND
NOT is just a NAND or a NOR with both inputs tied together

NAND and NOR are "duals",
that is, its easy to implement one using the other
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An algebraic structure
An algebraic structure consists of

a set of elements B
binary operations { + , • }
and a unary operation { ’ }
such that the following axioms hold:

1. the set B contains at least two elements: a, b
2. closure: a + b is in B a • b is in B
3. commutativity: a + b = b + a a • b = b • a
4. associativity: a + (b + c) = (a + b) + c a • (b • c) = (a • b) • c
5. identity: a + 0 = a a • 1 = a
6. distributivity: a + (b • c) = (a + b) • (a + c) a • (b + c) = (a • b) + (a • c)
7. complementarity: a + a’ = 1 a • a’ = 0

Identity (element) 항등원
Inverse (element) 역원
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Boolean algebra
Boolean algebra

B = {0, 1}
variables
+ is logical OR, • is logical AND
’ is logical NOT

All algebraic axioms hold



8

X, Y are Boolean algebra variables

X Y X • Y
0 0 0
0 1 0
1 0 0
1 1 1

X Y X’ Y’ X • Y X’ • Y’ ( X • Y ) + ( X’ • Y’ )
0 0 1 1 0 1 1
0 1 1 0 0 0 0
1 0 0 1 0 0 0
1 1 0 0 1 0 1

( X • Y ) + ( X’ • Y’ )     ≡ X = Y

X Y X’ X’ • Y
0 0 1 0
0 1 1 1
1 0 0 0
1 1 0 0

Boolean expression that is 
true when the variables X 
and Y have the same value
and false, otherwise

Logic functions and Boolean algebra
Any logic function that can be expressed as a truth table can 
be written as an expression in Boolean algebra using the 
operators: ’, +, and •
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Axioms and theorems of Boolean algebra
identity

1.   X + 0 = X 1D.   X • 1 = X
null

2.   X + 1 = 1 2D.   X • 0 = 0
idempotency:

3.   X + X = X 3D.   X • X = X
involution:

4.   (X’)’ = X
complementarity:

5.   X + X’ = 1 5D.   X • X’ = 0
commutativity:

6.   X + Y = Y + X 6D.   X • Y = Y • X
associativity:

7.   (X + Y) + Z = X + (Y + Z) 7D.   (X • Y) • Z = X • (Y • Z)

Note that suffix “D” means the dual of the original expression. Dual is the other 
symmetric part of a pair, which will be discussed later. 
(at this moment, use two rules: AND<-> OR, 0<->1)

Idempotency: one may derive the same consequences from 
many instances of a hypothesis as from just one 
Involution: a function that is its own inverse, so that f(f(x)) = x 
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Axioms and theorems of Boolean algebra (cont’d)
distributivity:

8.   X • (Y + Z) = (X • Y) + (X • Z) 8D.   X + (Y • Z) = (X + Y) • (X + Z)
uniting:

9.   X • Y + X • Y’ = X 9D.   (X + Y) • (X + Y’) = X
absorption:

10. X + X • Y = X 10D.  X • (X + Y) = X
11. (X + Y’) • Y = X • Y 11D. (X • Y’) + Y = X + Y

factoring:
12. (X + Y) • (X’ + Z) = 12D. X • Y + X’ • Z = 

X • Z + X’ • Y (X + Z) • (X’ + Y)
concensus:

13. (X • Y) + (Y • Z) + (X’ • Z) = 13D. (X + Y) • (Y + Z) • (X’ + Z) =
X • Y + X’ • Z (X + Y) • (X’ + Z)

Theorem12. (X+Y)(X’+Z) = XX’+XZ+X’Y+YZ =XZ+X’Y+YZ(X+X’) 
=XZ(1+Y)+X’Y(1+Z) =XZ+X’Y
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Axioms and theorems of Boolean algebra (cont’d)

de Morgan’s:
14. (X + Y + ...)’ = X’ • Y’ • ... 14D. (X • Y • ...)’ = X’ + Y’ + ...

generalized de Morgan’s:
15. f’(X1,X2,...,Xn,0,1,+,•) =  f(X1’,X2’,...,Xn’,1,0,•,+)

establishes relationship between • and +
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Axioms and theorems of Boolean algebra (cont’d)
Duality

a dual of a Boolean expression is derived by replacing 
• by +, + by •, 0 by 1, and 1 by 0, and leaving variables unchanged
any theorem that can be proven is thus also proven for its dual!
a meta-theorem (a theorem about theorems) 

duality:
16. X + Y + ... ⇔ X • Y • ...

generalized duality:
17. f (X1,X2,...,Xn,0,1,+,•) ⇔ f(X1,X2,...,Xn,1,0,•,+)

Different than deMorgan’s Law
this is a statement about theorems
this is not a way to manipulate (re-write) expressions
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Proving theorems (rewriting)
Using the axioms of Boolean algebra:

e.g., prove the theorem: X • Y + X • Y’ =   X   (uniting)

e.g., prove the theorem: X + X • Y =   X   (absorption)

distributivity (8) X • Y + X • Y’ =   X • (Y + Y’)
complementarity (5) X • (Y + Y’) =   X • (1)
identity (1D) X • (1) =   X 

identity (1D) X  +  X • Y =   X • 1  +  X • Y
distributivity (8) X • 1  +  X • Y =   X • (1 + Y)
null (2) X • (1 + Y) =   X • (1)
identity (1D) X • (1) =   X 
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(X + Y)’ = X’ • Y’
NOR is equivalent to AND 
with inputs complemented

(X • Y)’ = X’ + Y’
NAND is equivalent to OR 
with inputs complemented

X Y X’ Y’ (X + Y)’ X’ • Y’
0 0 1 1
0 1 1 0
1 0 0 1
1 1 0 0

X Y X’ Y’ (X • Y)’ X’ + Y’
0 0 1 1
0 1 1 0
1 0 0 1
1 1 0 0

Proving theorems (perfect induction)
Using perfect induction (complete truth table):

e.g., de Morgan’s:

1
0
0
0

1
1
1
0

1
0
0
0

1
1
1
0
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A simple example: 1-bit binary adder

Inputs: A, B, Carry-in
Outputs: Sum, Carry-out

A
B

Cin
Cout

S

A B Cin Cout S
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0
1
1
0
1
0
0
1

0
0
0
1
0
1
1
1 Cout = A’ B Cin + A B’ Cin + A B Cin’ + A B Cin

S = A’ B’ Cin + A’ B Cin’ + A B’ Cin’ + A B Cin

A A A A A
B B B B B

S S S S S

CinCout
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adding extra terms 
creates new factoring 

opportunities

Apply the theorems to simplify expressions
The theorems of Boolean algebra can simplify Boolean 
expressions

e.g., full adder’s carry-out function (same rules apply to any function)

Cout =  A’ B Cin + A B’ Cin + A B Cin’ + A B Cin
=  A’ B Cin +  A B’ Cin +  A B Cin’ +  A B Cin +  A B Cin
=  A’ B Cin +  A B Cin +  A B’ Cin +  A B Cin’ +  A B Cin
=  (A’ + A) B Cin +  A B’ Cin +  A B Cin’ +  A B Cin
=  (1) B Cin +  A B’ Cin +  A B Cin’ +  A B Cin
=  B Cin +  A B’ Cin + A B Cin’ +  A B Cin +  A B Cin
=  B Cin +  A B’ Cin +  A B Cin +  A B Cin’ +  A B Cin
=  B Cin +  A (B’ + B) Cin +  A B Cin’ +  A B Cin
=  B Cin +  A (1) Cin +  A B Cin’ +  A B Cin
=  B Cin +  A Cin +  A B (Cin’ +  Cin)
=  B Cin +  A Cin +  A B (1)
=  B Cin +  A Cin +  A B 
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X Y Z
0 0 0
0 1 0
1 0 0
1 1 1

X Y
0 1
1 0

X Y Z
0 0 0
0 1 1
1 0 1
1 1 1

X Y

X

X

Y

Y

Z

Z

From Boolean expressions to logic gates
NOT X’ X ~X

AND X • Y XY X ∧ Y

OR X + Y X ∨ Y
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X
Y Z

X Y Z
0 0 1
0 1 1
1 0 1
1 1 0

X Y Z
0 0 1
0 1 0
1 0 0
1 1 0

Z
X

Y

X
Y

Z

X Y Z
0 0 1
0 1 0
1 0 0
1 1 1

X Y Z
0 0 0
0 1 1
1 0 1
1 1 0

Z
X
Y

X xor Y = X Y’ + X’ Y
X or Y but not both 

("inequality", "difference")

X xnor Y = X Y + X’ Y’
X and Y are the same 

("equality", "coincidence")

From Boolean expressions to logic gates (cont’d)
NAND

NOR

XOR
X ⊕ Y

XNOR
X = Y

The bubble at the tip indicates an inverter.
XNOR is the negation of XOR
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T1
T2

use of 3-input gate

A

B

C
D T2

T1

Z A

B

C
D

Z

From Boolean expressions to logic gates (cont’d)
More than one way to map expressions to gates

e.g.,  Z = A’ • B’ • (C + D) = (A’ • (B’ • (C + D)))
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time

change in Y takes time to "propagate" through gates

Waveform view of logic functions
Just a sideways truth table

but note how edges don’t line up exactly
it takes time for a gate to switch its output!

There IS difference; it takes time for a signal to pass through each gate.

Suppose X and Y change at precise timing.
Depending on the gate type, the gate passing delay can be slightly different. e.g. an 
XOR gate is complicated, which incurs a longer delay than other simple gates

Waveform describes how a signal at each point changes over time
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A B C Z
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

Choosing different realizations of a function

two-level realization
(we don’t count NOT gates)

XOR gate (easier to draw 
but costlier to build)

multi-level realization
(gates with fewer inputs)

p.53

Z = A’B’C + A’BC + AB’C + ABC’
Z1 = ABC’ + A’C + B’C
Z2 = ABC’ + (AB)’C
Z3 = AB⊕C

Z1=Z2=Z3=Z
Let’s consider Z1 first. 3 AND gates and 1 OR gate. Also we need to check the # of 
wires or inputs. In Z3, XOR is called a complex gate, which requires several NAND or 
NOR gates. So Z3 is likely to have the worst delay.
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XOR implementations
Three levels of logic inside a XOR gate
X⊕Y = X’Y + XY’

X

Y

X Y

X

Y

X Y



23

Which realization is best?
Reduce number of inputs

literal: input variable (complemented or not)
can approximate cost of logic gate as 2 transistors per literal

fewer literals means less transistors
smaller circuits

fewer inputs implies faster gates
gates are smaller and thus also faster

fan-ins (# of gate inputs) are limited in some technologies
Reduce number of gates

fewer gates (and the packages they come in) means smaller circuits
directly influences manufacturing costs
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Which is the best realization?  (cont’d)
Reduce number of levels of gates

fewer level of gates implies reduced signal propagation delays
minimum delay configuration typically requires more gates

wider, less deep circuits

How do we explore tradeoffs between increased circuit delay 
and size?

automated tools to generate different solutions
logic minimization: reduce number of gates and complexity
logic optimization: reduction while trading off against delay

Depending on the criteria (e.g. minimize delay, minimize the # of gates), 
the CAD tools may yield different solutions.
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Are all realizations equivalent?
Under the same input stimuli, the three alternative 
implementations have almost the same waveform behavior

delays are different
glitches (hazards) may arise – these could be bad, it depends
variations due to differences in number of gate levels and structure

The three implementations are functionally equivalent

Different implementations for the same function are equivalent with a steady state 
viewpoint, but the transient behavior may be a little bit different

Typically, a transient behavior takes place right after some input transition. 
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A B C Z
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

Choosing different realizations of a function

two-level realization
(we don’t count NOT gates)

XOR gate (easier to draw 
but costlier to build)

multi-level realization
(gates with fewer inputs)

A = 1

Let’s see Z2. First, input variables are changing. B goes from 0 to 1 while C goes from 
1 to 0, and these changes are propagated through gates. The delays are accumulated as 
the signal goes through more gates. 

B = 0 → 1
C = 1 → 0

0→1

1→1→0

0→0→1

1→ 0→ 0→ 0 

1→ 1 → 0→ 1 

Assume the same 
delay for all gates

A
B

C’

C Glitch!
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Implementing Boolean functions
Technology independent

canonical forms
two-level forms
multi-level forms

Technology choices
packages of a few gates
regular logic
two-level programmable logic
multi-level programmable logic

A Boolean function can take one of various expressions.
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Canonical forms
Truth table is the unique signature of a Boolean function
The same truth table can have many gate realizations
Canonical forms

standard forms for a Boolean expression
provides a unique algebraic signature
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A B C F F’
0 0 0 0 1
0 0 1 1 0
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 0

F =

F’ = A’B’C’ + A’BC’ + AB’C’

Sum-of-products (S-o-P) canonical forms
Also known as (aka) disjunctive normal form
Also known as minterm expansion

F =  001      011      101       110       111

+ A’BC + AB’C + ABC’ + ABCA’B’C

Just check all the cases when F becomes true and each case forms the product of input 
variables. And finally, ORing these products will yield the final expression.

This is also called minterm expansion; here, a minterm is a product of all the input 
literals. Each literal should appear once in each minterm: asserted or complemented 
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short-hand notation for
minterms of 3 variables

A B C minterms
0 0 0 A’B’C’ m0
0 0 1 A’B’C m1
0 1 0 A’BC’ m2
0 1 1 A’BC m3
1 0 0 AB’C’ m4
1 0 1 AB’C m5
1 1 0 ABC’ m6
1 1 1 ABC m7

F in canonical form:
F(A, B, C) = Σm(1,3,5,6,7)

=  m1 + m3 + m5 + m6 + m7
=  A’B’C + A’BC + AB’C + ABC’ + ABC

canonical form ≠ minimal form
F(A, B, C) = A’B’C + A’BC + AB’C + ABC + ABC’

= (A’B’ + A’B + AB’ + AB)C + ABC’
= ((A’ + A)(B’ + B))C + ABC’
= C + ABC’
= ABC’ + C
= AB + C

Sum-of-products canonical form (cont’d)
Product term (or minterm)

ANDed product of literals – input combination for which output is true
each variable appears exactly once, true or inverted (but not both)

0
1
2
3
4
5
6
7

Each product is called a minterm, and denoted by small m and a decimal number for the 
binary input values
Note that there is no reduction or minimization in canonical forms; each variable must 
appear once for each product
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A B C F F’
0 0 0 0 1
0 0 1 1 0
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 0

F =       000              010              100
F =

F’ = (A + B + C’) (A + B’ + C’) (A’ + B + C’) (A’ + B’ + C) (A’ + B’ + C’)

Product-of-sums (P-o-S) canonical form
Also known as conjunctive normal form
Also known as maxterm expansion

(A + B + C) (A + B’ + C) (A’ + B + C)

The other canonical form is P-o-S. This one focuses on when F will be 0.
P-o-S is like the dual of S-o-P. First of all, we check all the cases that make F false or 0
The variables for each case or term are first complemented and then connected by the 
OR operation. This ORed term is called a maxterm. Eventually, these terms are 
connected by AND. What does the final expression mean?
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A B C maxterms
0 0 0 A+B+C M0
0 0 1 A+B+C’ M1
0 1 0 A+B’+C M2
0 1 1 A+B’+C’ M3
1 0 0 A’+B+C M4
1 0 1 A’+B+C’ M5
1 1 0 A’+B’+C M6
1 1 1 A’+B’+C’ M7

short-hand notation for
maxterms of 3 variables

F in canonical form:
F(A, B, C) = ΠM(0,2,4)

=  M0 • M2 • M4
=  (A + B + C) (A + B’ + C) (A’ + B + C)

canonical form ≠ minimal form
F(A, B, C) = (A + B + C) (A + B’ + C) (A’ + B + C)

= (A + B + C) (A + B’ + C)
(A + B + C) (A’ + B + C)

= (A + C) (B + C)

Product-of-sums canonical form (cont’d)
Sum term (or maxterm)

ORed sum of literals – input combination for which output is false
each variable appears exactly once, true or inverted (but not both)

Each maxterm is denoted by the capital M and the decimal value of input variables.
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S-o-P, P-o-S, and de Morgan’s theorem
Sum-of-products

F’ = A’B’C’ + A’BC’ + AB’C’
Apply de Morgan’s

(F’)’ = (A’B’C’ + A’BC’ + AB’C’)’
F = (A + B + C) (A + B’ + C) (A’ + B + C)

Product-of-sums
F’ = (A + B + C’) (A + B’ + C’) (A’ + B + C’) (A’ + B’ + C) (A’ + B’ + C’)

Apply de Morgan’s
(F’)’ = ( (A + B + C’)(A + B’ + C’)(A’ + B + C’)(A’ + B’ + C)(A’ + B’ + C’) )’
F = A’B’C + A’BC + AB’C + ABC’ + ABC
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canonical sum-of-products

minimized sum-of-products

canonical product-of-sums

minimized product-of-sums

F1

F2

F3

B

A

C

F4

Four alternative two-level implementations
of F = AB + C
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Waveforms for the four alternatives
Waveforms are essentially identical

except for timing hazards (glitches)
delays almost identical (modeled as a delay per level, not type of 
gate or number of inputs to gate)

Even though F1, F2, F3 and F4 are equivalent in steady-state behaviors, their transient 
behaviors may be different
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Mapping between canonical forms
Minterm to maxterm conversion

use maxterms whose indices do not appear in minterm expansion
e.g., F(A,B,C) = Σm(1,3,5,6,7) = ΠM(0,2,4)

Maxterm to minterm conversion
use minterms whose indices do not appear in maxterm expansion
e.g., F(A,B,C) = ΠM(0,2,4) = Σm(1,3,5,6,7) 

Minterm expansion of F to minterm expansion of F’
use minterms whose indices do not appear
e.g., F(A,B,C) = Σm(1,3,5,6,7) F’(A,B,C) = Σm(0,2,4)

Maxterm expansion of F to maxterm expansion of F’
use maxterms whose indices do not appear
e.g., F(A,B,C) = ΠM(0,2,4) F’(A,B,C) = ΠM(1,3,5,6,7)
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A B C D W X Y Z
0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0
0 0 1 0 0 0 1 1
0 0 1 1 0 1 0 0
0 1 0 0 0 1 0 1
0 1 0 1 0 1 1 0
0 1 1 0 0 1 1 1
0 1 1 1 1 0 0 0
1 0 0 0 1 0 0 1
1 0 0 1 0 0 0 0
1 0 1 0 X X X X
1 0 1 1 X X X X
1 1 0 0 X X X X
1 1 0 1 X X X X
1 1 1 0 X X X X
1 1 1 1 X X X X

off-set of W

these inputs patterns should 
never be encountered in practice 
– "don’t care" about associated 
output values, can be exploited
in minimization

Incompletely specified functions
Example: binary coded decimal (BCD) increment by 1

BCD digits encode the decimal digits 0 – 9 
in the bit patterns 0000 – 1001

don’t care (DC) set of W

on-set of W

BCD coding uses only ten values from 0 to 9. With 4 input lines, we have 6 don’t care 
cases of input values. 
For these don’t care values, the function can have any arbitrary output values

On-set: the set of cases 
whose output is 1
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Notation for incompletely specified functions
Don’t cares and canonical forms

so far, we focus on either on-set or off-set
There can be don’t-care-set
need two of the three sets (on-set, off-set, dc-set)

Canonical representations of the BCD increment by 1 function:
Z = m0 + m2 + m4 + m6 + m8 + d10 + d11 + d12 + d13 + d14 + d15
Z = Σ [ m(0,2,4,6,8) + d(10,11,12,13,14,15) ]
Z = M1 • M3 • M5 • M7 • M9 • D10 • D11 • D12 • D13 • D14 • D15
Z = Π [ M(1,3,5,7,9) • D(10,11,12,13,14,15) ]
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Simplification of two-level combinational logic
Finding a minimal sum of products or product of sums realization

exploit don’t care information in the process
Algebraic simplification

not an algorithmic/systematic procedure
how do you know when the minimum realization has been found?

Computer-aided design (CAD) tools
precise solutions require very long computation times, especially for 
functions with many inputs (> 10)
heuristic methods employed – "educated guesses" to reduce amount of 
computation and yield good if not best solutions

Hand methods still relevant
to understand automatic tools and their strengths and weaknesses
ability to check results (on small examples)
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Two minimization techniques
Boolean cubes
Karnaugh-maps (K-maps)

Both of them are based on the uniting theorem
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A B F

0 0 1

0 1 0

1 0 1

1 1 0

B has the same value in both on-set rows
– B remains (in complemented form)

A has a different value in the two rows
– A is eliminated

F = A’B’+AB’ = (A’+A)B’ = B’

The uniting theorem
Key tool to simplification: A (B’ + B) = A
Essence of simplification of two-level logic

find two element subsets of the ON-set where only one variable 
changes its value – this single varying variable can be eliminated 
and a single product term used to represent both elements
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1-cube
X

0 1

Boolean cubes
Visual technique for identifying when the uniting theorem
can be applied
n input variables = n-dimensional "cube"

2-cube

X

Y

11

00

01

10

3-cube

X

Y Z

000

111

101
4-cube

W
X

Y
Z

0000

1111

1000

0111
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A B F

0 0 1

0 1 0

1 0 1

1 1 0

ON-set = solid nodes
OFF-set = empty nodes
DC-set = ×'d nodes

two faces of size 0 (nodes) 
combine into a face of size 1(line)

A varies within face, B does not
this face represents the literal B'

Mapping truth tables onto Boolean cubes
Uniting theorem combines two "faces" of a cube
into a larger "face"
Example:

A

B

11

00

01

10

F

fill in the nodes that correspond to the elements of the ON-set.

If there are two adjacent solid nodes, we can use the uniting theorem. 
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A B Cin Cout
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Cout = BCin+AB+ACin

Three variable example
Binary full-adder carry-out logic

(A'+A)BCin

AB(Cin'+Cin)

A(B+B')Cin

the on-set is completely covered by 
the combination (OR) of the subcubes
of lower dimensionality - note that “111”
is covered three times

A

B C

000

111

101

100

010

011
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F(A,B,C) = Σm(4,5,6,7)

on-set forms a square
i.e., a cube of dimension 2

represents an expression in one variable       
i.e., 3 dimensions  – 2 dimensions

A is asserted (true) and unchanged
B and C vary

This subcube represents the
literal A

Higher dimensional cubes
Sub-cubes of higher dimension than 2

A

B C

000

111

101

100

001

010

011
110

Output function is Σm(4,5,6,7) in S-O-P form.

In this case, the on-set nodes form a square. Here, we use the uniting theorem at a greater 
scale. A(BC+BC’+B’C+B’C’) = A
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m-dimensional cubes in a n-dimensional 
Boolean space

In a 3-cube (three variables):
a 0-cube, i.e., a single node, yields a term in 3 literals
a 1-cube, i.e., a line of two nodes, yields a term in 2 literals
a 2-cube, i.e., a plane of four nodes, yields a term in 1 literal
a 3-cube, i.e., a cube of eight nodes, yields a constant term "1"

In general,
In an n-cube, an m-subcube (m < n) yields a term
with n – m literals
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A B F

0 0 1

0 1 0

1 0 1

1 1 0

Karnaugh maps
Flat map of Boolean cube

wrap–around at edges
hard to draw and visualize for more than 4 dimensions
virtually impossible for more than 6 dimensions

Alternative to truth-tables to help visualize adjacencies
guide to applying the uniting theorem
on-set elements with only one variable changing value are 
adjacent unlike the situation in a linear truth-table

0 2

1 3

0 1
A

B
0

1

1

0 0

1

Another technique is using a Karnaugh map, which is kind of a flat version of the 
Boolean cube technique. 
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Karnaugh maps (cont’d)
Numbering scheme based on Gray–code

e.g., 00, 01, 11, 10
only a single bit changes in code for adjacent map cells

0 2

1 3

00 01
AB

C
0

1
6 4

7 5

11 10

C

B

A

0 2

1 3

6 4

7 5
C

B

A

0 4

1 5

12 8

13 9 D

A

3 7

2 6

15 11

14 10
C

B 13 = 1101= ABC’D

This slide shows Karnaugh maps of 3 and 4 inputs . The thick line segment represents 
the domain (in the perpendicular direction) where each variable is always TRUE. The 
complement of the above domain indicate the inverted variable. 

10

11

01

00

* Gray code: two successive numbers differ in only one bit and they are cyclic
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Adjacencies in Karnaugh maps
Wrap from first to last column
Wrap top row to bottom row

000 010

001 011

110 100

111 101C

B

A

A

B C

000

111

101

100

001

010

011
110

Let’s focus on cell 000; there are three adjacent cells. Note that the number of adjacent 
cells is the same as the number of input variables since it is equal to the number of bits.
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The on-set included in 
the red oval is already 
covered by two other 
adjacencies

Karnaugh map examples
F =

Cout =

f(A,B,C) = Σm(0,4,5,7) 

0 0

0 1

1 0

1 1Cin

B

A

1 1

0 0B

A

1 0

0 0

0 1

1 1C

B

A

B’

AB

AC

+ ACin + BCin

+ B’C’ + AB’
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F(A,B,C) = Σm(0,4,5,7)

F'(A,B,C) = Σ m(1,2,3,6)
F' simply replace 1's with 0's and vice versa

G(A,B,C) = 

More Karnaugh map examples
0 0

0 0

1 1

1 1C

B

A

1 0

0 0

0 1

1 1C

B

A

0 1

1 1

1 0

0 0C

B

A

A

= AC + B’C’

= BC’ + A’C
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C + B’D’

find the smallest number of the largest possible 
subcubes to cover the ON-set

(fewer terms with fewer inputs per term)

Karnaugh map: 4-variable example
F(A,B,C,D) = Σm(0,2,3,5,6,7,8,10,11,14,15)

F =

D

A

B

A
B

C
D

0000

1111

1000

0111
1 0

0 1

0 1

0 0

1 1

1 1

1 1

1 1
C

+ A’BD
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+ B’C’D

Karnaugh maps: don’t cares (DCs)
f(A,B,C,D) = Σ m(1,3,5,7,9) + d(6,12,13)

without don't cares
f = A’D

0 0

1 1

X 0

X 1
D

A

1 1

0 X

0 0

0 0

B

C

Now let’s see how we can utilize don’t care (DC) terms in the Karnaugh map technique. 
If we don’t use DC terms, the logic function f is A’D +B’C’D
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Karnaugh maps: don’t cares (cont’d)
f(A,B,C,D) = 　m(1,3,5,7,9) + d(6,12,13)

f = A'D + B'C'D without don't cares
f = with don't cares

don't cares can be treated as 1s or 0s
depending on which is more advantageous

0 0

1 1

X 0

X 1
D

A

1 1

0 X

0 0

0 0

B

C

A'D

by using don't care as a "1"
a 2-cube can be formed 
rather than a 1-cube to cover
this node

+ C'D

By interpreting DCs as 1s opportunistically, we can utilize the uniting theorem at greater 
scale.
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Combinational logic summary
Logic functions, truth tables, and switches

NOT, AND, OR, NAND, NOR, XOR, . . ., minimal set
Axioms and theorems of Boolean algebra

proofs by re-writing and perfect induction
Gate logic

networks of Boolean functions and their time behavior
Canonical forms

two-level and incompletely specified functions
Simplification

a start at understanding two-level simplification
Later

automation of simplification
multi-level logic
time behavior
hardware description languages
design case studies

* Glitch at Z1


