
1

Chapter 5
case studies in combinational logic design

Now we have gone through every part of combinational logic system design.

In this chapter, the final chapter of combination logic, we will look at some examples
and elaborate on the whole design process.

2

Combinational logic design case studies
General design procedure
Case studies

BCD to 7-segment display controller
logical function unit
process line controller
calendar subsystem

Arithmetic circuits
integer representations
addition/subtraction
arithmetic/logic units

I will talk about the steps of a general procedure to design a combinational logic system
first and then take some examples.

3

General design procedure for combi. logic
1. Understand the problem

what is the circuit supposed to do?
write down inputs (data, control) and outputs
draw block diagram or other picture

2. Formulate the problem using a suitable design representation
truth table or waveform diagram are typical
may require encoding of symbolic inputs and outputs

3. Choose implementation target
ROM, PAL, PLA
mux, decoder and OR-gate
discrete gates (fixed logic)

4. Follow implementation procedure
K-maps for two-level, multi-level
design CAD tools and hardware description language (e.g., Verilog)

Typically, we have to separate the I/O variables and system internals to understand the
problem. Step 2 is abstract representation while steps 3 and 4 are H/W implementation
dependent

4

Tip: CAD tool’s typical functionalities
Design entry

Truth table, schematic capture, HDL
Synthesis and optimization
Simulation
Physical design

First of all, a user of a CAD tool should be able to specify the requirements of a logic
circuit to be designed. The requirements can be expressed by a truth table or a graphical
drawing, or a language.
Synthesis usually refers to the process of translating designer’s requirements into a
circuit graph.
Physical design transforms the circuit graph into a layout (or blueprint) for fabrication

5

BCD to 7–segment
control signal

decoder

c0 c1 c2 c3 c4 c5 c6

A B C D

BCD to 7-segment
display controller

Understanding the problem
input is a 4 bit bcd digit (A, B, C, D)
output is the control signals
for the display (7 outputs C0 – C6)

Block diagram

c1c5

c2c4 c6

c0

c3

The first case is to control or display one digit system whose input follows BCD coding.

A digit can be represented by a combination of 7 segments. Depending on input variables,
we have to turn on relevant pieces or segments.

6

A B C D C0 C1 C2 C3 C4 C5 C6
0 0 0 0 1 1 1 1 1 1 0
0 0 0 1 0 1 1 0 0 0 0
0 0 1 0 1 1 0 1 1 0 1
0 0 1 1 1 1 1 1 0 0 1
0 1 0 0 0 1 1 0 0 1 1
0 1 0 1 1 0 1 1 0 1 1
0 1 1 0 1 0 1 1 1 1 1
0 1 1 1 1 1 1 0 0 0 0
1 0 0 0 1 1 1 1 1 1 1
1 0 0 1 1 1 1 0 0 1 1
1 0 1 – – – – – – – –
1 1 – – – – – – – – –

Formalize the problem
Truth table

show don't cares
Choose implementation target

if ROM, we are done
don't cares imply PAL/PLA
may be attractive

Follow implementation procedure
minimization using K-maps

How many input variables? And output variables?

If we use ROM for the implementation technology, then the game is over. What we need
to do is just to store 7 bit values for each minterm, total 2**4 cases. Even though we
need to use only 10 minterms, we have to use 2**4 AND gates, whose size is much
bigger than other technologies. So we choose PAL or PLA, where minimum # of product
terms are desirable. As there are DC terms, we may be able to reduce the size of the
system by minimization in two-level logic design.

7

C0 = A + B D + C + B' D'
C1 = C' D' + C D + B'
C2 = B + C' + D
C3 = B' D' + C D' + B C' D + B' C
C4 = B' D' + C D'
C5 = A + C' D' + B D' + B C'
C6 = A + C D' + B C' + B' C

Implementation as minimized sum-of-products
15 unique product terms when minimized individually

1 0 X 1

0 1 X 1

1 1 X X

1 1 X X

D

A

B

C

1 1 X 1

1 0 X 1

1 1 X X

1 0 X X

D

A

B

C

0 1 X 1

0 1 X 1

1 0 X X

1 1 X X

D

A

B

C

1 1 X 1

1 1 X 1

1 1 X X

0 1 X X

D

A

B

C

1 0 X 1

0 1 X 0

1 0 X X

1 1 X X

D

A

B

C

1 0 X 1

0 0 X 0

0 0 X X

1 1 X X

D

A

B

C

1 1 X 1

0 1 X 1

0 0 X X

0 1 X X

D

A

B

C

Here are the final two-level s-o-p forms for 7 output functions. After removing duplicate
product terms, we have 15 different product terms to represent 7 outputs. We should note
that the minimized form of each output may not lead to the globally minimum number of
product terms. In this case, we have 15 product terms for 7 outputs

C0 C1 C2 C3 C4

C5 C6

V - Combinational Logic Case
Studies © Copyright 2004, Gaetano Borriello and Randy H. Katz 8

C0 = B C' D + C D + B' D' + B C D' + A
C1 = B' D + C' D' + C D + B' D'
C2 = B' D + B C' D + C' D' + C D + B C D'
C3 = B C' D + B' D + B' D' + B C D'
C4 = B' D' + B C D'
C5 = B C' D + C' D' + A + B C D'
C6 = B' C + B C' + B C D' + A

C0 = A + B D + C + B' D'
C1 = C' D' + C D + B'
C2 = B + C' + D
C3 = B' D' + C D' + B C' D + B' C
C4 = B' D' + C D'
C5 = A + C' D' + B D' + B C'
C6 = A + C D' + B C' + B' C

C2

Implementation as minimized S-o-P (cont'd)
Can do better

9 unique product terms (instead of 15)
share terms among outputs
each output not necessarily in minimized form

1 1 X 1

1 1 X 1

1 1 X X

0 1 X X

D

A

B

C

1 1 X 1

1 1 X 1

1 1 X X

0 1 X X

D

A

B

C

C2

Let’s look at C2 output variable. If we relax the minimization process of C2, we have
more terms for C2 output. However, this less efficient minimization achieves sharing
more product terms in the overall system (7 outputs). Note that the number of product
terms of each output increases. Can we figure out this globally optimal minimization?

9

BC'

B'C

B'D

BC'D

C'D'

CD

B'D'

A

BCD'

A B C D

C0 C1 C2 C3 C4 C5 C6 C7

PLA implementation

Since there are up to 5 product terms for outputs, PAL may not be attractive. There are
many common terms; so PLA is a good choice.

Let’s consider PAL implementation where up to 4 product terms can be ORed.
Unfortunately, there are outputs that have 5 product terms. In that case, we have to resort
to multi-level logic. You don’t need to do that; the CAD tool will do the job.

10

C0 = C3 + A' B X' + A D Y
C1 = Y + A' C5' + C' D' C6
C2 = C5 + A' B' D + A' C D
C3 = C4 + B D C5 + A' B' X'
C4 = D' Y + A' C D'
C5 = C' C4 + A Y + A' B X
C6 = A C4 + C C5 + C4' C5 + A' B' C

X = C' + D'
Y = B' C'

PAL implem. vs. Discrete gate implementation
Limit of 4 product terms per output

decomposition of functions with larger number of terms
do not share terms in PAL anyway
(although there are some shared terms)

decompose into multi-level logic (hopefully with CAD support)
find common sub-expressions among functions

C2 = B + C' + D

C2 = B' D + B C' D + C' D' + C D + B C D'

C2 = B' D + B C' D + C' D' + W
W = C D + B C D'

need another input and another output

11

C0 C1 C2 Function Comments
0 0 0 1 always 1
0 0 1 A + B logical OR
0 1 0 (A • B)' logical NAND
0 1 1 A xor B logical xor
1 0 0 A xnor B logical xnor
1 0 1 A • B logical AND
1 1 0 (A + B)' logical NOR
1 1 1 0 always 0

3 control inputs: C0, C1, C2
2 data inputs: A, B
1 output: F

Logical function unit
Multi-purpose function block

3 control inputs to specify operation to perform on operands
2 data inputs for operands
1 output of the same bit-width as operands

The next example is the very versatile functional block, which performs various
functions. There are three control variables whose values determine the output of the
function of two data input variables.

12

choose implementation technology
5-variable K-map to discrete gates

multiplexer implementation

1

0

A
B

A
B

A
B

Formalize the problem
C0 C1 C2 A B F
0 0 0 0 0 1
0 0 0 0 1 1
0 0 0 1 0 1
0 0 0 1 1 1
0 0 1 0 0 0
0 0 1 0 1 1
0 0 1 1 0 1
0 0 1 1 1 1
0 1 0 0 0 1
0 1 0 0 1 1
0 1 0 1 0 1
0 1 0 1 1 0
0 1 1 0 0 0
0 1 1 0 1 1
0 1 1 1 0 1
0 1 1 1 1 0
1 0 0 0 0 1
1 0 0 0 1 0
1 0 0 1 0 0
1 0 0 1 1 1
1 0 1 0 0 0
1 0 1 0 1 0
1 0 1 1 0 0
1 0 1 1 1 1
1 1 0 0 0 1
1 1 0 0 1 0
1 1 0 1 0 0
1 1 0 1 1 0
1 1 1 0 0 0
1 1 1 0 1 0
1 1 1 1 0 0
1 1 1 1 1 0

C2C0 C1

0
1
2
3
4
5
6
7
S2

8:1 MUX

S1 S0

F

In order to realize the multi-purpose function, we
combine discrete gates and an 8:1 MUX.

13

Production line control
Rods of varying length (+/-10%) travel on conveyor belt

mechanical arm pushes rods within spec (+/-5%) to one side
second arm pushes rods too long to other side
rods that are too short stay on belt
3 light barriers (light source + photocell) as sensors
design combinational logic to activate the arms

Understanding the problem
inputs are three sensors
outputs are two arm control signals
assume sensor reads "1" when tripped

"0" otherwise (if nothing to detect)
call sensors A, B, CThe next case study to look at is a product line control (PLC) system that manufactures a

rod. What we need to do is to check whether each rod’s length is within a certain bound
(± 5% of the spec). In order to examine the length of each rod, we use three sensors to
measure the rod. If the rod is within spec, the rod will be pushed to one side. If the rod is
too long, it will be pushed to the other side. Otherwise, it will stay on the belt.

14

Sketch of problem
Position of sensors

A to B distance = specification – 5%
A to C distance = specification + 5%

Within
Spec

Too
Short

Too
Long

A

B

C

spec
- 5%

spec
+ 5%

What if we don’t have sensor A? We cannot know the reference point or time at which
we can measure the length of each rod. So when sensor A becomes 1, we should check
sensors B and C as well to measure the length of the moving rod.

15

logic implementation now straightforward
just use three 3-input AND gates

"too short" = AB'C'
(only first sensor tripped)

"in spec" = A B C'
(first two sensors tripped)

"too long" = A B C
(all three sensors tripped)

A B C Function
0 0 0 do nothing
0 0 1 do nothing
0 1 0 do nothing
0 1 1 do nothing
1 0 0 too short
1 0 1 don't care
1 1 0 in spec
1 1 1 too long

Formalize the problem
Truth table

show don't cares

If A is zero, that means there is no rod to inspect. So all the outputs are 0.

Otherwise, there is a rod. Then we have to check sensors B and C. Note that 101 is a DC
term. 110 means that the rod is of standard length. The textbook says the top 4 minterms
(000 – 011) are also DC terms, but that may cause energy waste.

16

Steps 3 and 4
Choose implementation technology

The actual logic is so simple; use fixed logic gates
Follow implementation procedure

One minterm for each output

So the truth table is done. As the overall logic is so simple. Maybe the random logic
approach is the best. There are three outputs, each of which has only one minterm

17

integer number_of_days (month, leap_year_flag) {
switch (month) {

case 1: return (31);
case 2: if (leap_year_flag == 1)

then return (29)
else return (28);

case 3: return (31);
case 4: return (30);
case 5: return (31);
case 6: return (30);
case 7: return (31);
case 8: return (31);
case 9: return (30);
case 10: return (31);
case 11: return (30);
case 12: return (31);
default: return (0);

}
}

Calendar subsystem
Determine number of days in a month (to control watch display)

used in controlling the display of a wrist-watch LCD screen

inputs: month, leap year flag
outputs: number of days

Use software implementation
to help understand the problem

For the next example, we revisit the number of days per month problem. But this time,
we will follow the general procedure to design the system. Then we will look at the
details of the leap year flag.

18

leapmonth

28 29 30 31

month leap 28 29 30 31
0000 – – – – –
0001 – 0 0 0 1
0010 0 1 0 0 0
0010 1 0 1 0 0
0011 – 0 0 0 1
0100 – 0 0 1 0
0101 – 0 0 0 1
0110 – 0 0 1 0
0111 – 0 0 0 1
1000 – 0 0 0 1
1001 – 0 0 1 0
1010 – 0 0 0 1
1011 – 0 0 1 0
1100 – 0 0 0 1
1101 – – – – –
111– – – – – –

Formalize the problem
Encoding:

binary number for month: 4 bits
4 wires for 28, 29, 30, and 31
one-hot – only one true at any time

Block diagram:

Again 4 wires for the input of month and one wire for leap year and 4 wires for the
output (note that only two wires are needed for output at minimum)

19

month leap 28 29 30 31
0000 – – – – –
0001 – 0 0 0 1
0010 0 1 0 0 0
0010 1 0 1 0 0
0011 – 0 0 0 1
0100 – 0 0 1 0
0101 – 0 0 0 1
0110 – 0 0 1 0
0111 – 0 0 0 1
1000 – 0 0 0 1
1001 – 0 0 1 0
1010 – 0 0 0 1
1011 – 0 0 1 0
1100 – 0 0 0 1
1101 – – – – –
111– – – – – –

Choose implem. target and perform mapping
Discrete gates

28 =

29 =

30 =

31 =

Can translate to S-o-P or P-o-S

m8’ m4’ m2 m1’ leap’

m8’ m4’ m2 m1’ leap

m8’ m4 m1’ + m8 m1

m8’ m1 + m8 m1’

If we are to use discrete logic gates such as AND or OR, SoP or PoS will be enough.
Just investigate all the elements of the On-set, and make product terms and then combine
them by OR gates in SoP case. From now on we will look at the leap year flag. How can
we know that a year is a leap year or not?

20

Leap year flag
Determine value of leap year flag given the year

For years after 1582 (Gregorian calendar reformation),
leap years are all the years divisible by 4,
except that years divisible by 100 are not leap years,
but years divisible by 400 are leap years.

Encoding the year:
binary – easy for divisible by 4, 2006:1111101010
but difficult for 100 and 400 (not powers of 2)
BCD – easy for 100, 2006: 0010 0000 0000 0110
but more difficult for 4, what about 400?

Parts:
construct a circuit that determines if the year is divisible by 4
construct a circuit that determines if the year is divisible by 100
construct a circuit that determines if the year is divisible by 400
combine the results of the previous three steps to yield the leap year flag

Pope Gregory I set up the current leap year system in 1582. There are only three simple
rules that decides the number of days in Feb. Note that an encoding scheme can affect
the system design fundamentally.

21

Activity: divisible-by-4 circuit
BCD coded year

YM8 YM4 YM2 YM1 – YH8 YH4 YH2 YH1 – YT8 YT4 YT2 YT1 – YO8 YO4 YO2 YO1
Only need to look at low-order two digits of the year
all years ending in 00, 04, 08, 12, 16, 20, etc. are divisible by 4

if tens digit is even, then divisible by 4 if ones digit is 0, 4, or 8
if tens digit is odd, then divisible by 4 if the ones digit is 2 or 6.

Translates into the following Boolean expression
(where YT1 is the year's tens digit low-order bit,
YO8 is the high-order bit of year's ones digit, etc.):

YT1’ (YO8’ YO4’ YO2’ YO1’ + YO8’ YO4 YO2’ YO1’ + YO8 YO4’ YO2’ YO1’)

+ YT1 (YO8’ YO4’ YO2 YO1’ + YO8’ YO4 YO2 YO1’)

Digits with values of 10 to 15 will never occur, simplify further to yield:

D4 = YT1’ YO2’ YO1’ + YT1 YO2 YO1’
YM stands for year millennium and the each digit of the year will be represented as the
binary value by BCD encoding. So we need 4 wires for each digit of the year, total 16
wires. D4 is the flag that indicates whether the year of input is divisible by 4

22

Divisible-by-100 and divisible-by-400 circuits

Divisible-by-100 just requires checking that all bits of two low-order digits are all 0:

D100 = YT8’ YT4’ YT2’ YT1’ • YO8’ YO4’ YO2’ YO1’

Divisible-by-400 combines the divisible-by-4 (applied to the thousands and hundreds
digits) and divisible-by-100 circuits

D400 = (YM1’ YH2’ YH1’ + YM1 YH2 YH1’)

• (YT8’ YT4’ YT2’ YT1’ • YO8’ YO4’ YO2’ YO1’)

With BCD encoding, it is easy to check whether the year of input is divisible by 100 and
400. A year is divided by 100 without remainder if the lowest two digits are 00

A year is divided by 400 without residue if the lowest two digits are 00 and the highest
two digits are divided by 4.

23

Combining to determine leap year flag

Label results of previous three circuits: D4, D100, and D400

leap_year_flag = D4 • D100’ + D4 • D400

= D4 • D100’ + D400

Now we have three (internal) variables, each of which indicates whether the year is
divisible by 4, 100, 400, respectively. The final leap year flag should be true when D4 is
true. But if D100 is true than the flag is false. Note that the flag is also true when D4 and
D400 is true

24

Implementation of leap year flag

25

Arithmetic circuits
Excellent examples of combinational logic design
Time vs. space trade-offs

doing things fast may require more logic and thus more space
example: carry lookahead logic

Arithmetic and logic units
general-purpose building blocks
critical components of processor datapaths
used within most computer instructions

Now we are going to see a little bit different logic system, whose purpose is to perform a
mathematical function. We will look at adders mostly.
In most of engineering systems, there is always a trade-off. We cannot have all the best
features in a single system. As mentioned earlier, if we use a number of gates in parallel
(say, two-level SoP canonical forms), we can minimize the delay of the system. If we
want to reduce the number of gates, there will be multiple levels, which increases delay.
We will revisit this issue by going over multiple variations of adder systems

26

Number systems
Representation of positive numbers is the same in most systems
Major differences are in how negative numbers are represented
Representation of negative numbers come in three major schemes

sign and magnitude
1s complement
2s complement

Assumptions
we'll assume a 4 bit machine word
16 different values can be represented
roughly half are positive, half are negative

To design arithmetic functions, we have to understand how a number is represented in
computers. We talked about binary coding, BCD coding and so on. Here we choose the
binary coding as the basic representation system but will focus on how negative numbers
are expressed.
For the purpose of illustration, we consider the case of using 4 wires to represent a digit
(positive and negative and zero).

27

0000

0111

0011

1011

1111
1110

1101

1100

1010

1001
1000

0110

0101

0100

0010

0001

+0
+1

+2

+3

+4

+5

+6

+7–0
–1

–2

–3

–4

–5

–6

–7

0 100 = + 4

1 100 = – 4

Sign and magnitude
One bit dedicate to sign (positive or negative)

sign: 0 = positive (or zero), 1 = negative
Rest represent the absolute value or magnitude

three low order bits: 0 (000) thru 7 (111)
Range for n bits
±(2n–1 –1) (two representations for 0)

Cumbersome addition/subtraction
must compare magnitudes
to determine sign of result

The first encoding scheme is sign and magnitude; one bit is dedicated to the sign of the
number and the rest of the bits represents the absolute value of the number |x|. If we use
4 bits total, the MSB is the sign + or -, and the other three bits represent the magnitude
from 0 to 7. The problem is that when adding or subtracting numbers, we have to check
the sign of the results.

28

2 = 10000

1 = 00001

2 –1 = 1111

7 = 0111

1000 = –7 in 1s complement form

4

4

1s complement
If N is a positive number, then the negative of N (or its 1s
complement) is N' = (2n –1) – N

example: 1s complement of 7

shortcut: simply compute bit-wise complement (0111 -> 1000)
To remedy the sign-magnitude encoding problem, 1s complement is introduced. Here, a
negative of N (which is –N) is denoted by N’ and is expressed by (2n-1)-N.
The 1st bit implicitly says the sign of the number. The merit of this encoding scheme is
that subtraction becomes easier.

29

0000

0111

0011

1011

1111
1110

1101

1100

1010

1001
1000

0110

0101

0100

0010

0001

+0

+1

+2

+3

+4

+5

+6

+7–7

–6

–5

–4

–3

–2

–1

–0

0 100 = + 4

1 011 = – 4

1s complement (cont'd)
Subtraction implemented by 1s complement and then addition
Two representations of 0

causes some complexities in addition
High-order bit can act as sign bit
Carry should be added to the sum

Then, subtraction can be easily performed. To compute A-B, just calculate 1s
complement of B and then add it to A. Actually this works only when B >= A. Look at
the range from -7 to +7 and note that there are two kinds of 0s.

30

0 100 = + 4

1 100 = – 4

+0

+1

+2

+3

+4

+5

+6

+7–8

–7

–6

–5

–4

–3

–2

–1

0000

0111

0011

1011

1111
1110

1101

1100

1010

1001
1000

0110

0101

0100

0010

0001

2s complement
1s complement with negative numbers shifted one position
clockwise

only one representation for 0
one more negative number
than positive numbers
high-order bit can act as sign bit

2s compliment enhances the 1s complement encoding, it can represent up to -8 as shown
in the above.

31

2 = 10000

7 = 0111

1001 = repr. of –7

4

2 = 10000

–7 = 1001

0111 = repr. of 7

4

subtract

subtract

2s complement (cont’d)
If N is a positive number, then the negative of N (or its 2s
complement) is N* = 2n – N

example: 2s complement of 7

example: 2s complement of –7

shortcut: 2s complement = bit-wise complement + 1
0111 -> 1000 + 1 -> 1001 (representation of -7)
1001 -> 0110 + 1 -> 0111 (representation of 7)

Likewise, the 2s compliment of a positive number N is denoted by N*. If you want to
make a 2s complement in case of 4 wires, just subtract the number from 2**4. Another
simple way to calculate 2s complements is to invert all the bits and add 1.

32

4

+ 3

7

0100

0011

0111

– 4

+ (– 3)

– 7

1100

1101

11001

4

– 3

1

0100

1101

10001

– 4

+ 3

– 1

1100

0011

1111

2s complement addition and subtraction
Simple addition and subtraction

simple scheme makes 2s complement the virtually unanimous choice for
integer number systems in computers

Let’s see how we can add or subtract the numbers encoded by 2s complement. Now
subtraction is not so different from addition. Just make 2s complement and add it.

33

Why can the carry-out be ignored?
Can't ignore it completely

needed to check for overflow (see next two slides)
When there is no overflow, carry-out may be true but can be ignored

– M + N when N > M:
M* + N = (2n – M) + N = 2n + (N – M)

ignoring carry-out is just like subtracting 2n

– M + – N where N + M ≤ 2n–1
(– M) + (– N) = M* + N* = (2n– M) + (2n– N) = 2n – (M + N) + 2n

ignoring the carry, it is just the 2s complement representation for – (M + N)

So far, we didn’t pay attention to the carry. We will first look at the cases where carry-
outs can be ignored. Let M be the positive number to be converted by 2s complement.
M* denotes 2s complement of M, which is 2n-M.

There are two kinds of overflows in 2s complement arithmetic. In this case, the carry-out
should not be ignored. The upper bound in 4 bits is +7; so when the sum exceeds this
bound, there will be an overflow. Likewise, the lower bound is -8; so when the sum goes
below -8, there is an overflow, which is also called underflow. Anyway, in these
overflow cases, the adding system should report the error. 34

5 + 3 = –8 –7 – 2 = +7

+0

+1

+2

+3

+4

+5

+6

+7–8

–7

–6

–5

–4

–3

–2

–1

0000

0111

0011

1011

1111
1110

1101

1100

1010

1001
1000

0110

0101

0100

0010

0001

+0

+1

+2

+3

+4

+5

+6

+7–8

–7

–6

–5

–4

–3

–2

–1

0000

0111

0011

1011

1111
1110

1101

1100

1010

1001
1000

0110

0101

0100

0010

0001

Overflow in 2s complement addition/subtraction
Overflow conditions

add two positive numbers to get a negative number
add two negative numbers to get a positive number

35

5
3

– 8

0 1 1 1

0 1 0 1
0 0 1 1
1 0 0 0

– 7
– 2

7

1 0 0 0

1 0 0 1
1 1 1 0

1 0 1 1 1

5
2
7

0 0 0 0

0 1 0 1
0 0 1 0
0 1 1 1

– 3
– 5
– 8

1 1 1 1

1 1 0 1
1 0 1 1

1 1 0 0 0

overflow overflow

no overflow no overflow

Overflow conditions
Overflow when carry into sign bit position is not equal to carry-out

The numbers in blue indicate carries into the next higher-order bits in calculation.
The condition to check overflow is to compare two highest carries in addition. If they are
different, then it is an overflow.

36

Ai Bi Sum Cout
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

Ai Bi Cin Sum Cout
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Circuits for binary addition
Half adder (add 2 1-bit numbers)

Sum = Ai' Bi + Ai Bi' = Ai xor Bi
Cout = Ai Bi

Full adder (carry-in to cascade for multi-bit adders)
Sum = Ci xor A xor B
Cout = B Ci + A Ci + A B = Ci (A + B) + A B

Now we get familiar with 2s complement. Let’s design a circuit that adds two binary
numbers. First of all, let’s start with a 1 bit adder. Ai and Bi are i-th bits of two binary
numbers, A and B, respectively. On the left, there is a truth table for a half adder; on the
right, a truth table for a full adder which also considers the carry-in from the lower-order
bits.

37

A B C A+B (A+B)C
0 0 0 0 0
0 0 1 0 0
0 1 0 1 0
0 1 1 1 1
1 0 0 1 0
1 0 1 1 1
1 1 0 1 0
1 1 1 1 1

(A or B)C vs. (A xor B)C
They are not equivalent but AB+(A+B)C = AB+(A⊕B)C

Before going to the next step, let’s see the relation between two boolean expressions.

A B C A⊕B (A⊕B)C
0 0 0 0 0
0 0 1 0 0
0 1 0 1 0
0 1 1 1 1
1 0 0 1 0
1 0 1 1 1
1 1 0 0 0
1 1 1 0 0

(A or B)C is not equal to (A xor B)C. but when we add AB product term, they are
equivalent.

38

Cout = A B + Cin (A xor B) = A B + Cin (A or B)

A
B

Cin
S

A

A

B

B

Cin
Cout

A

B

A xor B

Cin

A xor B xor Cin
Half

Adder

Sum

Cout Cin (A xor B)A B

Sum

Cout

Half
Adder

Sum

Cout

Full adder implementations
Standard approach

6 gates
2 XORs, 2 ANDs, 2 ORs

Alternative implementation
5 gates
half adder is an XOR gate and AND gate
2 XORs, 2 ANDs, 1 OR

At the top, there is a fixed logic implementation of a full adder. If we use two half-adder
modules to construct the full-adder system instead of using random logic, we can reduce
the number of gates.

Now we have a full adder for one bit addition. Then what we want to do is
addition/subtraction of two 4bit-numbers. Addition is easy. Recall that 2s complement of
a number is its inverted form+1. So we can use the same adding function to perform
subtraction too. For subtraction, we just enable the control input. 39

A B

Cout

Sum

Cin

0 1

Add'
Subtract

A0 B0B0'

Sel

Overflow

A B

Cout

Sum

Cin

A1 B1B1'

Sel

A B

Cout

Sum

Cin

A2 B2B2'

Sel 0 1 0 10 1

A B

Cout

Sum

Cin

A3 B3B3'

Sel

S3 S2 S1 S0

Adder/subtractor
Use an adder to do subtraction thanks to 2s complement representation

A – B = A + (– B) = A + B' + 1
control signal selects B or 2s complement of B

40

A

A

B

B
Cin Cout

@0
@0

@0
@0

@N

@1

@1

@N+1

@N+2

late
arriving
signal

two gate delays
to compute Cout

4 stage
adder

A0
B0

0

S0 @2

A1
B1

C1 @2

S1 @3

A2
B2

C2 @4

S2 @5

A3
B3

C3 @6

S3 @7
Cout @8

Ripple-carry adders
Critical delay

the propagation of carry from
low to high order stages

The next advanced adder is a ripple-carry adder. What is the problem of the full adder in
the previous slide? When we consider data bits, they are coming in parallel at the same
time. However, carries should be cascaded with delays proportional to the bit positions.
On the left, Cin comes at time N, then Cout will be valid at time N+2 (each one-bit adder
incurs 2 gate delays)

1111+0001

41

T0 T2 T4 T6 T8

S0, C1 Valid S1, C2 Valid S2, C3 Valid S3, C4 Valid

Ripple-carry adders (cont’d)
Critical delay

the propagation of carry from low to high order stages
1111 + 0001 is the worst case addition
carry must propagate through all bits

This slide shows a waveform of a 4 bit adder. Suppose we add 1111 and 0001, the carry
will propagate from the LSB all the way through to the final carry-out.

42

Carry-lookahead logic
Carry generate: Gi = Ai Bi

must generate carry when A = B = 1
Carry propagate: Pi = Ai xor Bi

carry-in will equal carry-out here
Sum and Cout can be re-expressed in terms of generate/propagate:

Si = Ai xor Bi xor Ci
= Pi xor Ci

Ci+1 = Ai Bi + Ai Ci + Bi Ci
= Ai Bi + Ci (Ai + Bi)
= Ai Bi + Ci (Ai xor Bi)
= Gi + Ci Pi

Instead of awaiting the carry from the lower-order bits, we can process the carry in
advance. How?
In order to do so, the carry should be derived from the lower-order data bits directly.
First of all, let’s look at two new functions: Gi and Pi. Then Si and Ci+1 can be rewritten
as shown in the above. Actually, those imply two cases. When Gi is true, there is always
a carry-out. If Pi is true, a carry-out depends on a carry-in.

43

Carry-lookahead logic (cont’d)
Re-express the carry logic as follows:

C1 = G0 + P0 C0
C2 = G1 + P1 C1 = G1 + P1 G0 + P1 P0 C0
C3 = G2 + P2 C2 = G2 + P2 G1 + P2 P1 G0 + P2 P1 P0 C0
C4 = G3 + P3 C3 = G3 + P3 G2 + P3 P2 G1 + P3 P2 P1 G0

+ P3 P2 P1 P0 C0

Each of the carry equations can be implemented with two-level logic
all inputs are now directly derived from data inputs and not from
intermediate carries
this allows computation of all sum outputs to proceed in parallel

Then all the carries are calculated by the expanding Pi and Gi as shown in the above,
which is called the carry-lookahead logic. Note that all carries are now just two-level
logic functions. So here is the bottom line: there is a tradeoff between the number of
gates and the delay.

44

G3

C0

C0

C0

C0

P0

P0

P0

P0
G0

G0

G0

G0
C1 @ 3

P1

P1

P1

P1

P1

P1

G1

G1

G1

C2 @ 3

P2

P2

P2

P2

P2

P2

G2

G2

C3 @ 3

P3

P3

P3

P3

C4 @ 3

Pi @ 1 gate delay

Ci Si @ 2 gate delays

Bi
Ai

Gi @ 1 gate delay

increasingly complex
logic for carries

Carry-lookahead (CLA) implementation
Adder with propagate and generate outputs

This slide shows how 4 carries are implemented in two level fixed logic based on Pi and
Gi. As Pi and Gi take only one gate delay, the final carries take maximum 3 gate delays.

on the left, there is the original full adder, which takes a long time to finish addition. On
the right, there is the carry lookahead adder. The two level logic functions for carries are
not shown. Each box is the one-bit adder module. Overall, by using a lot of gates for
CLA in the previous slide, we can reduce the delay of the addition process. 45

A0
B0

0

S0 @2

A1
B1

C1 @2

S1 @3

A2
B2

C2 @4

S2 @5

A3
B3

C3 @6

S3 @7
Cout @8

A0
B0

0

S0 @2

A1
B1

C1 @3

S1 @4

A2
B2

C2 @3

S2 @4

A3
B3

C3 @3

S3 @4

C4 @3 C4 @3

CLA implementation (cont’d)
Carry-lookahead logic generates individual carries

sums computed much more quickly in parallel
however, cost of carry logic increases with more stages

If we add 16bit long numbers, we have to use 4 4bit CLA adder modules. Each module adds 4 bits.
Here Ci at the bottom box is the carry from the i-th 4bit CLA adder module. Pi and Gi in blue
color are the same functions in the previous example. While Pi and Gi at the bottom unit give info
about the carries between the 4bit CLA modules, which is more complicated. 46

Lookahead Carry Unit
C0

P0 G0P1 G1P2 G2P3 G3 C3 C2 C1

C0

P3-0 G3-0

C4

@3@2
@4

@3@2
@5

@3@2
@5

@3@2

@4

@5@3

@0
C16

A[15-12] B[15-12]
C12

S[15-12]

A[11-8] B[11-8]
C8

S[11-8]

A[7-4] B[7-4]
C4

S[7-4]
@7@8@8

A[3-0] B[3-0]
C0

S[3-0]

@0

@4

4 4

4
P G

4-bit Adder

4 4

4
P G

4-bit Adder

4 4

4
P G

4-bit Adder

4 4

4
P G

4-bit Adder

16bit CLA adder with cascaded carry-lookahead logic
Carry-lookahead (CLA) adder

4 four-bit adders with internal carry lookahead
second level carry lookahead unit extends lookahead to 16 bits

G = G3 + P3 G2 + P3 P2 G1 + P3 P2 P1 G0

P = P3 P2 P1 P0

C1 = G0 + P0 C0C2 = G1 + P1 G0 + P1 P0 C0

The next version, a carry-select adder, achieves even lower delay by redundant h/w. Note
that the carry between 4bit CLA adders is either 0 or 1. We use two adder modules for
high 4 bit of the 8-bit adder system. So we perform addition for both cases and then the
carry from the lower 4bit CLA module will perform selection (MUX). 47

4-Bit Adder
[3:0]

C0C4

4-bit adder
[7:4]

1C8

0C8

five
2:1 mux

01010101

adder
low

adder
high

01

4-bit adder
[7:4]

C8 S7 S6 S5 S4 S3 S2 S1 S0

Carry-select adder
Redundant hardware to make carry calculation go faster

compute two high-order sums in parallel while waiting for carry-in
one assuming carry-in is 0 and another assuming carry-in is 1
select correct result once carry-in is finally computed

An ALU is a key subsystem of computers that performs logic and arithmetic functions.
There are one high level control input M, and two lower level selection inputs S1 and S0.
Here Ci is the carry value which is useful only for some arithmetic functions.

48

logical and arithmetic operations
not all operations appear useful, but "fall out" of internal logic

S1
0
0
1
1

S0
0
1
0
1

Function
Fi = Ai

Fi = not Ai
Fi = Ai xor Bi

Fi = Ai xnor Bi

Comment
input Ai transferred to output
complement of Ai transferred to output
compute XOR of Ai, Bi
compute XNOR of Ai, Bi

M = 0, logical bitwise operations

M = 1, C0 = 0, arithmetic operations
0
0
1
1

0
1
0
1

F = A
F = not A

F = A plus B
F = (not A) plus B

input A passed to output
complement of A passed to output
sum of A and B
sum of B and complement of A

M = 1, C0 = 1, arithmetic operations
0
0
1
1

0
1
0
1

F = A plus 1
F = (not A) plus 1
F = A plus B plus 1

F = (not A) plus B plus 1

increment A
twos complement of A
increment sum of A and B
B minus A

Arithmetic logic unit (ALU) design specification

49

M
0

1

1

S1
0

0

1

1

0

0

1

1

0

0

1

1

S0
0

1

0

1

0

1

0

1

0

1

0

1

Ci
X
X
X
X
X
X
X
X
X
X
X
X
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1

Ai
0
1
0
1
0
0
1
1
0
0
1
1
0
1
0
1
0
0
1
1
0
0
1
1
0
1
0
1
0
0
1
1
0
0
1
1

Bi
X
X
X
X
0
1
0
1
0
1
0
1
X
X
X
X
0
1
0
1
0
1
0
1
X
X
X
X
0
1
0
1
0
1
0
1

Fi
0
1
1
0
0
1
1
0
1
0
0
1
0
1
1
0
0
1
1
0
1
0
0
1
1
0
0
1
1
0
0
1
0
1
1
0

Ci+1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
0
0
1
0
1
0
0
0
1
1
0
0
1
1
1
1
1
0
1

Arithmetic logic unit (ALU) design (cont’d)

Sample ALU – truth table

First of all, there are three control inputs,
three data inputs, and two data outputs.

If M is 0, Ci is a DC term. Sometimes, Bi is
also a DC term when only the 1st input, Ai,
matters

Sample ALU – multi-level discrete gate logic implementation

50

Total 12 gates + 5 inverters

\S1
\Bi

[35]

[35] M

M

M
S1
Bi

[33][33]

[33]

[33]

S0
Ai

[30]

[30]

[30]

[30]

[30]

Ci

Ci

Ci

Ci

Co

\Co

\Co

\Co

\[30]
\[35]

Fi

ALU design (cont’d)

If we implement the truth table in the previous slide by a random logic with some
minimization techniques, we can get the above multi-level logic system. Don’t worry;
there are six variables. Humans are not supposed to do that. This result comes from a
CAD tool. Numbers in [] are internal wires.

51

Summary for examples of combinational logic
Combinational logic design process

formalize problem: encodings, truth-table, equations
choose implementation technology (ROM, PAL, PLA, discrete gates)
implement by following the design procedure for that technology

Binary number representation
positive numbers the same
difference is in how negative numbers are represented
2s complement easiest to handle: one representation for zero, slightly
complicated complementation, simple addition

Circuits for binary addition
basic half-adder and full-adder
carry lookahead logic
carry-select

ALU Design
specification, implementation

We looked at the design process of several combinational logic circuits and then
reviewed how binary numbers are represented. Arithmetic functions are also discussed.

