
1

Chapter 6.
sequential logic design

This is the beginning of the second part of this course, sequential logic.

2

Sequential logic
Sequential circuits

simple circuits with feedback
latches
edge-triggered flip-flops

Basic registers
shift registers
simple counters

Again, sequential logic circuits are quite different from combinational logic. In general,
sequential systems are more difficult to design. We will discuss some basic issues in the
sequential logic systems in this chapter.

3

C1 C2 C3

comparator

value

equal

multiplexer

reset

open/closed

new equal

mux
control

clock

comb. logic

state

Sequential logic circuits (SLCs)
Circuits with feedback

outputs = f(inputs, past inputs, past outputs)
basis for building "memory" into logic circuits
door combination lock is an example of a sequential circuit

state is memory
state is an "output" and an "input" to combinational logic
combination storage elements are also memory

In most sequential logic circuits (SLCs), there are storage parts or memory elements.
Recall that in the door lock system, three numbers should be stored and compared. What
is the key element here?

"remember"

"load"
"data" "stored value"

Let’s consider a simple memory element first. What if we place two inverters before a
stored value and suppose the stored value is 1. Note that there is a feedback from the
stored value to the first inverter. Another more sophisticated option is to have a selection
function between a stored value and a new value. If “load” is enabled, the new “data”
will be put into the stored value.

4

Two inverters form a static memory cell
will hold value as long as it has power applied

How to get a new value into the memory cell?
selectively break feedback path
load new value into cell

"0"

"1"

"stored value"

Simplest circuits with feedback

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 5

R

S

Q

Q'

R
S

Q

R'
S'

Q
Q

Q'

S'

R'

Memory with cross-coupled gates

Let’s consider this feedback in the cases of cross-connectivity between other gate types.
With Nor or Nand gates, we can have more control inputs. R and S denote reset and set
inputs, respectively. Q is the output value of interest and its inverse is denoted by Q’. For
a NOR gate, think of a case when a single input can determine the output of the gate.
Suppose R is 1, which makes Q 0. Basically, we assume R and S are opposite for update.

Q'

Cross-coupled NOR gates (R-S Latch)
similar to inverter pair, with capability to force output to 0
(reset=1) or 1 (set=1)

Cross-coupled NAND gates
similar to inverter pair, with capability to force output to 0 (R’=0)
or 1 (S’=0)

Q'

6

Q(t+Δ)

R
S

Q(t)

S R Q(t) Q(t+Δ)
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 X
1 1 1 X

hold

reset

set

not allowed characteristic equation
Q(t+Δ) = S + R’ Q(t)

R-S latch analysis
Break feedback path

R

S

Q

Q'

0 0

1 0

X 1

X 1Q(t)

R

S

To analyze the timing, let’s assume the feedback loop is cut off. That is, consider Q(t)
and Q(t+ ∆) separately. Here ∆ is the delay incurred by the latch. When you look at the
truth table, you can notice something different. What is it?

The problem happens when R=S=1. Are Q and Q’ just 0s? The more significant problem
arises when R=S=1 and then R=S=0, which will yield an oscillation as follows. Q and Q’
will be 1 together. But then Q and Q’ should be changed to 0 again. Then this cycle
continues.

7

Reset Hold Set SetReset Race

R

S

Q

\Q

100

Timing behavior
R

S

Q

Q'

If R=1 and S=0, Q is 0 and Q’ is 1 (recall the meaning of reset R). If R=0 and S=1, Q is 1.
What if R=S=0, then Q and Q’ will remain with the previous values.

8

R’

S’ Q

Q'

Activity: R-S latch using NAND gates

characteristic equation
Q(t+Δ) = S + R’ Q(t)

R’
S’

Q(t)

0 0

1 0

X 1

X 1Q(t)

R

S

S R S’ R’ Q(t) Q(t+Δ)
0 0 1 1 0 0
0 0 1 1 1 1
0 1 1 0 0 0
0 1 1 0 1 0
1 0 0 1 0 1
1 0 0 1 1 1
1 1 0 0 0 X
1 1 0 0 1 X

hold

reset

set

not allowed

The next version is a gated R-S latch. In the gated (level-sensitive) R-S latch, the R-S
values are handled cautiously. When enable’ is high, then R and S are always zeroes
(there is no glitch or fluctuation in R and S). So R’ and S’ are meaningful only when
enable’ is low. This waveform shows when enable is high and S is set (or S’ is low), Q
will become true. 9

enable’

S'
Q'

Q
R' R

S

Gated R-S latch
Enable controls when R
and S inputs matter

otherwise, the slightest
glitch on R or S could
cause change in value
stored

Set Reset

S'

R'

enable’

Q

Q'

100

10

period

duty cycle (in this case, 50%)

Clocks
Used to keep time

wait long enough for inputs (R' and S') to settle
then allow to have effect on value stored

Clocks are regular periodic signals
period (time between ticks)
duty-cycle (time clock is high between ticks - expressed as % of
period)

A clock is an important element in sequential circuits. The enable signal in the previous
slide serves as kind of a clock. Once enable is asserted, it should remain high until the
input stimulates the output fully. Normally, a clock is periodically alternating between
high and low. The beginning of each period is called a clock tick. And the duty cycle is
defined as the ratio of High voltage interval to the period.

11

Clocks (cont’d)
Controlling an R-S latch with a clock

Change R and S while clock’ is 1 (inject new input)
only have half of clock period for signal changes to propagate

Keep R and S stable while clock’ is 0 (allowing R and S to pass)
signals must be stable for the other half of clock period

clock’

S’
Q’

Q
R’ R

S

clock’

R’ and S’

changing stable changing stablestable

Let’s control the gated (or level-sensitive) R-S latch with a clock. While clock’ is 0, R’
and S’ should sustain their values which will update Q and Q’ during that interval. While
clock’ is high, R’ and S’ can be changed to a new value (for next operation); in the
meantime, Q and Q’ will not change since R and S are 00.

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 12

Master-slave structure
Break flow by alternating clocks

use positive clock to latch inputs into one R-S latch
use negative clock to change outputs with another R-S latch

View pair as one basic unit
master-slave flip-flop
twice as much logic
output changes a few gate delays after the falling edge of clock

master stage slave stage

P

P’

CLK

R

S Q

Q’ R

S Q

Q’R

S

13

Set
1s

catch

S
R

CLK
P
P’
Q
Q’

Reset

Master
Outputs

Slave
Outputs

The 1s catching problem
In first R-S stage of master-slave FF

0-1-0 glitch on R or S while clock is high is "caught" by master stage
leads to constraints on logic to be hazard-free

master stage slave stage

P

P’

CLK

R

S Q

Q’ R

S Q

Q’R

S

What would be the problem of the inverted clock signals for the pair of R-S latches?
While the clock is high, suppose there is a glitch is in the very first S (0-1-0), P and P’
will change, which in turn will affect the slave latch when the clock becomes low. This is
called the 1s catching problem.

To eliminate the 1s catching problem, we have to make S and R have opposite values; so
we use the complementary values from the same input, which is called D flip-flop. D is
an abbreviation for data. So R and S can be either 01 and 10 only. Now we cannot use 00
to maintain the same value in the latch. How many gates here? Each R-S latch has two
NOR gates. 14

10 gates

D flip-flop
Make S and R complements of each other

eliminates 1s catching problem
can't just hold previous value
(must have new value ready every clock period)
value of D just before clock goes low is what is stored in flip-flop

negative edge-triggered

D Q

Q’

master stage slave stage

P

P’

CLK

R

S Q

Q’ R

S Q

Q’

The other realization to solve the 1s catching problem is to use a clock edge to trigger the
change of the flip-flop’s value. While the clock is high, the second top NOR and the
second bottom NOR gates will be 0, which keeps the old values of Q and Q’

15

Q

D

Clk=1

R

S

0

D’

0

D’ D

Q’

negative edge-triggered D
flip-flop (D-FF)

4-5 gate delays

must respect setup and hold time
constraints to successfully

capture input

characteristic equation
Q(t+1) = D

holds D’ when
clock goes low

holds D when
clock goes low

(Negative) Edge-triggered D flip-flops (FFs)
More efficient solution: only 6 gates

sensitive to inputs only near edge of clock signal (not while high)

If clock goes from 1 to 0, initially S and R are 0. Then, depending on D’s value, S or R
will be changed, which in turn will set or reset Q. The numbers in blue shows the case
when D is 1. After that, D’s change makes no effect. E.g. new D is 0 now, D (second
bottom NOR) was 1 D’(bottom) is 0 So D (top) is still 1; R and S are not changed 16

Q

D

Clk=0

R

S

D

D’

D’

D’ D

when clock goes high-to-low
data is latched

when clock is low
data is held

Negative Edge-triggered D flip-flops (cont’d)
Step-by-step analysis

Q

new D

Clk=0

R

S

D

D’

D’

D’ D

new D ≠ old D1
0

0 -> 1

1

0
0

1

0 -> 0

1

0

How edge-triggered?

17

Q

new D

Clk=0

R

S

D

D’

D’

D’ D

Q

D

Clk=↓

R

S

D

D’

D’

D’ D

0

0 1

1

Right after the clock goes from 1 to 0, the second top and second bottom NOR gates are
open to the D input. As soon as the input is latched to the Q, either of these NOR gates
will be 1, which blocks the new input from entering.

One of two
gates is 1

18

positive edge-triggered FF

negative edge-triggered FF

D
CLK

Qpos
Qpos’
Qneg
Qneg’

100

Edge-triggered D flip-flops (cont’d)
Positive edge-triggered

inputs sampled on rising edge; outputs change after rising edge
Negative edge-triggered flip-flops

inputs sampled on falling edge; outputs change after falling edge

There are two kinds of flip-flops which are triggered by the two edges of the signals:
rising edge and falling edge. The previous slide shows a negative edge-triggered FF. If
we add an inverter to the clock, that FF is turned into a positive edge-triggered FF.
Typically, latches are level triggered and simpler. FFs are mostly edge triggered and
more complicated.

Definition of terms
clock: periodic event, causes state of memory element to change

can be rising edge or falling edge or high level or low level
setup time: minimum time before the clocking event by which the

input must be stable (Tsu)
hold time: minimum time after the clocking event until which the

input must remain stable (Th)

Let’s go over terminologies first. We already know what is a clock. For each edge of a
clock signal, there are some timing constraints. Suppose the positive edge of a clock
signal triggers a circuit. Then the data input should be stable for an interval which is
Tsu+Th, which are dependent on transistor circuit delay. 19

there is a timing "window" around
the clocking event during which the
input must remain stable and
unchanged in order to be recognized clock

data
changingstable

input

clock

Tsu Th

clock

data
D Q

Timing constraints

20

behavior is the same unless input changes
while the clock is high

D Q

CLK

positive
edge-triggered

flip-flop

D Q
C

CLK

transparent
(level-sensitive)

latch

D

CLK

Qedge

Qlatch

Comparison of latches and flip-flops (FFs)

Again, in FFs, the data value only at the rising edge (or falling edge) is critical (see blue
dots). Meanwhile, most latches are sensitive to D value changes as long as the clock is
high. Typically, the clock input of a FF is depicted by a triangle.

This slide illustrates the timing where the rising edge of the clock signal is the reference.
Tpd is the propagation delay between the rising edge of the clock (event trigger) and the
change in the output. Tw should be long enough to ensure that D will change Q 21

all measurements are made from the clocking event (the rising edge of the clock)

Typical timing specifications
Positive edge-triggered D flip-flop

setup and hold times
minimum clock width (Tw)
propagation delays (low to high, high to low, max and typical)

D

Clk

Q

T su
1.8
ns

T h
0.5
ns

T w
3.3
ns

T pd
3.6 ns
1.1 ns

T su
1.8
ns

T h
0.5
ns

T pd
3.6 ns
1.1 ns

T w
3.3
ns

VHDL behavioral model of an edge-triggered D
flip-flop

Use “event” attribute (built into VHDL)
SIG’event is true if change of SIG value false if no
change of SIG value
How to describe rising edge?D Q

74x74-like D flip-flop with preset and clear

D Q
CLR

PR

CLR_L

PR_L

Q QN

Asynchronous CLR
and PR

Why not Q_L?

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity vdff74 is
Port (D, CLK, PR_L, CLR_L : in std_logic;

Q, QN : out std_logic);
end vdff74;

architecture vdff74_b of vdff74 is
signal PR, CLR: std_logic;
begin

PR <= not PR_L;
CLR <= not CLR_L;
process (CLR, PR, CLK)
begin

if (CLR and PR) = '1' then Q <= '0'; QN <= '0';
elsif CLR = '1' then Q <= '0'; QN <= '1';
elsif PR = '1' then Q <= '1'; QN <= '0';
elsif (CLK'event and CLK='1') then Q <= D; QN <= not D;
end if;

end process;
end v74x74_arch;

26

Summary of latches and flip-flops
Development of D-FF

level-sensitive used in custom integrated circuits
can be made with 4 switches

edge-triggered used in programmable logic devices
good choice for data storage register

Preset and clear inputs are highly desirable on flip-flops
used at start-up or to reset system to a known state

D-FFs can be either level-sensitive or edge-triggered. For maintenance purposes, preset
and clear inputs are desirable for FFs, which will be discussed later. Preset inputs
initialize the values in FFs. Clear inputs will reset the values of FFs to 0s.

27

R S R S R S
D Q D Q D Q D Q

OUT1 OUT2 OUT3 OUT4

CLK

IN1 IN2 IN3 IN4

R S

"0"

Registers
Collections of flip-flops with similar controls and logic

stored values somehow related (for example, form binary value)
share clock, reset, and set lines
similar logic at each stage

Examples
shift registers
counters

From now on, we will look at a collection of FFs. The first memory element to look at is
a register. A register is normally defined as a group of FFs with coordinated controls or
shared controls. Examples of controls are clock, reset, set and so on. In this case, we can
read/write 4 bits in parallel.

28

D Q D Q D Q D QIN

OUT1 OUT2 OUT3 OUT4

CLK

Shift register
Holds samples of input

store last 4 input values in sequence
4-bit shift register:

One of the relatively simple registers is a shift register. Here one bit is shifted (or moved
to right) to the next FF at each clock tick (its positive edge). At each positive edge, the
stored value will come out and move to the next element.

29

clear sets the register contents
and output to 0

s1 and s0 determine the shift function

s0 s1 function
0 0 hold state
0 1 shift right
1 0 shift left
1 1 load new input

left_in
left_out

right_out

clear
right_in

output

input

s0
s1

clock

Universal shift register
Holds 4 values

serial or parallel inputs
serial or parallel outputs
permits shift left or right
shift in new values from left or right

The shift register in the previous slide goes only from left to right. Here we want to
design a generic or multi-purpose shift register with the above functionalities. In addition,
we also want to hold the current value without I/O. Overall, we need some control
variables.

VI - Sequential Logic © Copyright 2004, Gaetano Borriello and Randy H. Katz 30

Nth cell

D
Q

CLK

Q[N-1]
(left)

Q[N+1]
(right)

Input[N]

to N-1th
cell

to N+1th
cell

clear s0 s1 new value
1 – – 0
0 0 0 output (hold)
0 0 1 output value of left FF (shift right)
0 1 0 output value of right FF(shift left)
0 1 1 input (load)

Design of universal shift register
Consider one of the four flip-flops

new value at next clock cycle:

s0 and s1
control mux0 1 2 3

CLEAR

Each memory module (that stores 1 bit) should be able to perform 5 functions. Note that
there are multiple incoming lines and one of them should be selected. This should ring
the bell. It will be convenient to use a MUX. Blue wires are about control while black
wires are data paths. Here, clear, S1 and S0 are depicted by a single wire for simplicity.

CLK

clear, s0, s1

31

parallel inputs

parallel outputs

serial transmission

Shift register application
Parallel-to-serial conversion for serial transmission

One of the popular application of the shift register is serial transmission, where
information is transmitted over the medium bit-by-bit.

32

D Q D Q D Q D QIN

OUT1 OUT2 OUT3 OUT4

CLK

OUT

Pattern recognizer
Combinational function of input samples

in this case, recognizing the pattern 1001 on the single input
signal

Another useful application of shift registers is bit string identification. In this case, bits
are shifted from left to right. At any moment, if 4 bits are 1001, then OUT will be true.

33

D Q D Q D Q D QIN

OUT1 OUT2 OUT3 OUT4

CLK

Counters
Sequences through a fixed set of patterns

in this case, 1000, 0100, 0010, 0001
if one of the patterns is its initial state (by loading or set/reset)

If there are multiple patterns that are used for state representation, this register is
typically referred to as a counter. Look at the shift register in the slide. Suppose there is a
initialization (or preset) logic that stores 1000 in the register, which is not shown here.
Then, as the clock ticks, the bits are rotating this ring. That’s why it is called a ring
counter.

34

Activity
How does this counter work? (initial value: 1000)

D Q D Q D Q D QIN

OUT1 OUT2 OUT3 OUT4

CLK

Counts through the sequence: 1000, 1100, 1110, 1111, 0111, 0011, 0001, 0000

Known as Mobius (or Johnson) counter

35

D Q D Q D Q D Q

OUT1 OUT2 OUT3 OUT4

CLK

"1"

Binary counter
Logic between registers (not just multiplexer)

XOR decides when bit should be toggled
always for low-order bit,
only when first bit is true for second bit,
and so on

Here is a binary counter; the rule of thumb is that if all lower bits are true, than the upper
bit should be toggled. OUT4 is the MSB while OUT1 is the LSB.

36

EN

D
C
B
A
LOAD
CLK
CLR

RCO
QD
QC
QB
QA

(1) Low order 4-bits = 1111

(2) RCO goes high

(3) High order 4-bits
are incremented

Four-bit binary synchronous up-counter
Standard component with many applications

positive edge-triggered FFs w/ synchronous load and clear inputs
parallel load data from D, C, B, A
enable inputs: must be asserted to enable counting
ripple-carry out (RCO) is used for cascading counters

high when counter is in its highest state 1111
implemented using an AND gate

If we use the binary counter in the previous slide as a basic component, we can build
many complicated circuits, e.g. a wider binary counter. Here D is the MSB.

Preset
logic

37

Starting offset counters – use of synchronous load
e.g., 0110, 0111, 1000, 1001,
1010, 1011, 1100, 1101, 1111, 0110, . . .

Ending offset counter – comparator for ending value
e.g., 0000, 0001, 0010, ..., 1100, 1101, 0000

Combinations of the above (start and stop value)

EN

D
C
B
A
LOAD
CLK

CLR

RCO
QD
QC
QB
QA

"1"

"0"
"0"
"0"
"0"

"0"

EN

D
C
B
A
LOAD
CLK

CLR

RCO
QD
QC
QB
QA

"1"

"0"
"1"
"1"
"0"

Offset counters

Other examples are here; using the load input, we can control the initial value. Or by
using some product term from the stored values, we can configure the ending value of
the counter.

38

Sequential logic summary
Fundamental building block of circuits with state

latch and flip-flop
R-S latch, R-S master/slave, D master/slave, edge-triggered D
flip-flop

Timing methodologies
use of clocks
Setup and hold times around the clock edge

Basic registers
shift registers
counters

