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Relations

The concept of relations is also commonly used in computer science

— two of the programs are related if they share some common data and are
not related otherwise.

— two wireless nodes are related if they interfere each other and are not
related otherwise

— In a database, two objects are related if their secondary key values are the
same

What is the mathematical definition of a relation?

Definition 13.1 (Relation): A relation is a set of ordered pairs

— The set of ordered pairs is a complete listing of all pairs of objects that
“satisfy” the relation

Examples:
— GreaterThanRelation = {(2,1), (3,1), (3,2), ......}
- R= {(1’2)’ (113)’ (3’0)}

(L2) e R, 1R2:"xisrelated by the relation R to y"



Relations

» Definition 13.2 (Relation on, between sets) Let R be a
relation and let A and B be sets.
— We say R is a relation on A provided

Rc AxA
— We say R is a relation from A to B provided

Rc AxB



Example Relations

e Let A={1,2,3,4} and B={4,5,6,7}. Let
- R={(1.1),(2,2),(3,3).(4,4)}
- 5={(1,2),(3,2)}
- T={(1,4),(1,5),(4,7)}
- U={(@4,4),(5,2),(6,2),(7,3)}, and
- V={(1,7),(7.1)}
o All of these are relations
— Ris arelation on A. Note that it is the equality relation on A.
— Sisarelation on A. Note that the element 4 is never mentioned.

— T is arelation from A to B. Note that the elements 2, 31n A and 6 In
B are never mentioned.

— U is arelation from B to A. Note that 1 in A is never mentioned.

— Vs arelation, but it 1s neither a relation from A to B nor a relation
from B to A.



Operations on Relations

A relation is a set => All the various set operations apply

RN (Ax A):therelation R restricted to the set A

RN (AxB):therelation R restricted to a relation from Ato B

Definition 13.4 (Inverse relation) Let R be a relation. The
inverse of R, denoted R, is the relation formed by
reversing the order of all the ordered pairs in R.

R™={(x,y):(y,X) R}
Proposition 13.6: Let R be a relation. Then (R1)1=R.

Proof: ???



Properties of Relations

Definition 13.7 (Properties of relations) Let R be a relation defined on a set

Reflexive: Vxe A XR X

Irreflexive:  Vx e A, X R X

Symmetric. VX,ye AXRYy=YyRX
Antisymmetric: VX,y e A,(XR YA YR X)):> X=Y
Transitive: VX, Y, Z€e AJIXRYAYRZ)= xRz

Example 13.8: “=(equality)” relation on the integers

Reflexive, Symmetric, Transitive (also Antisymmetric)

Example 13.9: “less than or equal to” relation on the integers

Reflexive, Transitive, Antisymmetric (not Symmetric)

Example 13.10: “less than” relation on integers

not Reflexive, irreflexive, not symmetric, antisymmetric, transitive

Example 13.11: “| (divides)” relation on natural numbers

Reflexive, not Symmetric, Antisymmetric

— If “divedes” relation is defined on integers, it is neither symmetric nor

antisymmetric.



Equivalence Relations

Certain relations bear a strong resemblance to the relation equality.

Example: “is-congruent-to” relation on the set of triangles
— Reflexive
— Symmetric
— Transitive
Definition 14.1 (Equivalence relation) Let R be a relation on a set A. We

say R is an “equivalence relation” provided it is “reflexive”, “symmetric”,

and “transitive”.

Example 14.2: “has-the-same-size-as” relation on finite sets
— not the “equal” relation

— equivalence relation (share a common property: size): reflexive, symmetric,
transitive

— “like” resemblance to “equal”



Equivalence Classes

An equivalence relation R on A categorizes the elements into disjoint
subsets --- each subset is called an equivalence class

Definition 14.6 (Equivalence class) Let R be an equivalence relation on a
set A and let a be an element of A. The equivalence class of a, denoted by
[a], Is the set of all elements of A related (by R) to a; that is,

la]={xeZ:xRaj

Example 14.8: Let R be the “has-the-same-size-as” relation defined on the
set of finite subsets of Z.

gl={AcZ:|A=0}={]
12,468]]={AcZ:|A=4




Propositions on Equivalence Classes

Proposition 14.9: Let R be an equivalence relationon aset Aand let a € A
Then a € [a]

Proposition 14.10: Let R be an equivalence relation on a set A and
let @,b € A Then aR b iff [a]=[b].

Proposition 14.11: Let R be an equivalence relation on a set A and
let a,x,yeA.If X,ye[a] ,thenx RYy.

Proposition 14.2: Let R be an equivalence relation on A and suppose
la]n[b]= ¢. Then [a]=][b]

Corollary 14.13: Let R be an equivalence relation on a set A. The

equivalence classes of R are nonempty, pairwise disjoint subsets of

whose union Is A.



Partitions

The equivalence classes of R “partitions” the set into pairwise disjoint
subsets.

Definition 15.1 (Partition) Let A be a set. A partition of (or on) A is a set of
nonempty, pairwise disjoint sets whose union is A.

o A partition is a set of sets; each member of a partition is a subset of A.
The members of the partition are called parts.

» The parts of a partition are nonempty. The empty set is never a part of
a partition.

* The parts of a partition are pairwise disjoint. No two parts of a partition
may have an element in common.

* The union of the parts is the original set.



An Example Partition

 Example 15.2: Let A =4{1,2,3,4,5,6} and let P={{1,2},{3},{4,5,6}}. This is
a partition of A into three parts. The Three parts are {1,2}, {3}, and {4,5,6}.

These three sets are (1) nonempty, (2) they are pairwise disjoint, and (3)
their union is A.

 {{1,2,3,4,5,6}} Is a partition of A into just one part containing all the
elements of A

o {{1}, {2}, {3}, {4}, {5}, {6}} Is a partition of A into six parts, each
containing just one element.

e LetR be an equivalence relation on a set A. The equivalence classes of R
form a partition of the set A.

« An equivalence relation forms a partition and a partition forms an
equivalence relation.

Let 2 be a partition of a set A. We use 2 to form a relation “is-in-the-same-
part-as” on A. Formally,

P
a=bh<3IPeP,abeP




Propositions on
Partitions and Equivalence Relations

Proposition 15.3: Let A be a set and let 2 be a partition on A. The “is-in-
the-same-part-as” relation is an equivalence relation on A.

Proof???

Proposition 15.4: Let 2 be a partition on a set A. The equivalence classes of
the “is-in-the-same-part-as” relation are exactly the parts of 2.

Proof???



Counting Equiv

GQ

Example 15.5: In how many ways can the letters in the word WORD be
rearranged?

How about HELLO?

— Differentiate two Ls as a Large L and small .
— Let A be the set of all rearrangements

— Define a relation R with a R b provided that a and b give the same rearrangement of
HELLO when we shrink the Large L to small I.

— The number of parts (equivalence classes) are the number of different rearrangements of
HELLO.
How about AARDVARK?
Theorem 15.6 (Counting equivalence classes) Let R be an equivalence
relation on a finite set A. If all the equivalence classes of R have the same
size, m, then the number of equivalence classes is |A|/m.



isit Binomial Coefficients

Rev

e Theorem 16.12: Let n and k be integers with 0 <k <n.

Then
N} nt/(n-k)!
k) Kk

* How the concept of partition helps?
— The number of k-element repetition-free lists: (n),
— Partition those lists with the relation “has-the-same-elements-as”
— Each part (equivalence class) has the same size, k!

— Thus, the number of k-element subsets of n-element set is (n), /k! by
Theorem 15.6




Partial Ordering Relations

« A relation is said to be a partial ordering relation if it is
reflexive, anti-symmetric, and transitive.

~ Example 1: R={(a,b):a,be N,a|b}

— Example 2: Let A be a set of foods. Let R be a relation on A such that
(a,b) isin R if ais inferior to b in terms of both nutrition value and
price.

e Objects in a set are ordered according to the property of R.
But, it is also possible that two given objects in the set are
not related. = Partial Ordering

1(a.a), (&), (a.c), (a,d), (ae), (b,b), (b,c), (be), (c.c), (c.e), (d.d), (d.e), (e.€)}
€ €

Hasse diagram



Partially Ordered Set (1)

\" 7/
o Set A, together with a partial ordering relation R on A, Is
called a partially ordered set and is denoted by (A, R).

o Let (A, R) be apartially ordered set. A subset of A is called a
chain if every two elements in the subset are related.

— Because of antisymmetry and transitivity, all the elements in a chain
form an ordered list.

— The number of elements in a chain is called the length of the chain
o Let (A, R) be apartially ordered set. A subset of A is called

an antichain if no two distinct elements in the subset are
related.
e
C Chains: {a,b,c,e}, {a,b,c}, {a,d,e}, {a}

b Antichains: {b,d}, {c,d}, {a}



Partially Ordered Set (2)

A partially ordered set (A, R) is called a totally ordered set if
A Is a chain.

— In this case, the relation R is called a total ordering relation.

An element a in (A,R) is called a maximal element if forno b
inA, azb,a<b,

An element a in (A,R) is called a minimal element if forno b
inA, azb,b<a.

An element a is said to cover another element b if b <a and
for no other elementc, b<c<a.

An element c Is said to be an upper bound of a and b if
a<candb<c.

An element c is said to be a least upper bound of aand b if ¢
IS an upper bound of a and b and if there is no other upper
bound d of a and b such that d <c.

Lower bound, greatest lower bound



Partially Ordered Set (3)

h

a

A partially ordered set is said to be a
lattice if every two elements in the set
have a unique least upper bound and a
unique greatest lower bound.



Chains and Antichains

e Example: Let A={a,, a,, ..., a,} be the set of all courses
required for graduation. Let R be a reflexive relation on A
such that (a;, &) Is In R if and only if course a; Is a
prerequisite of course a;. Then, R is a partial ordering relation.

— What is the minimum number of semesters for graduation?
« the length of the longest chain in the partially ordered set (A, R).
— What is the maximum number of courses that a student can take in a

semester?
* the size of the largest antichain in the partially ordered set (AR).



Chains and Antichains

e Theorem: Let (A, R) be a partially ordered set. Suppose the
length of the longest chains in A is n. Then the elements in A
can be partitioned into n disjoint antichains.

* Proof: by induction

— for n=1, true
— Suppose it holds for n-1. Let A be a partially ordered set with the length of its longest

chain being n. Let M denote the set of maximal elements in A. Clearly, M is a
nonempty antichain. Consider now the partially ordered set (A-M, R). The length of its
longest chain is at most n-1. On the other hand, if the length of the longest chains in
A-M is less than n-1, M must contain two or more elements that are members of the
same chain, which is not possible Consequently the length of the Iongest chain in

I-\'IVI Ib - J. I-\LL,UIUIIIQ to LIIU IIIUULLIUII IIypULIIUbIb l-\'IVI Ldll UU pal LILIUIIUU IIILU -1
disjoint antichains. Thus, A can be partitioned into n disjoint antichains.

o Corollary: Let (A,R) be a partially ordered set consisting of mn+1
elements. Either there is an antichain consisting of m+1 elements or there
Is a chain of length n+1 in A.

Proof: Suppose the length of the longest chains in A is n. According to the above
theorem, A can be partitioned into n disjoint anticahins. If each of these antichains
consists of m or fewer elements, the total number of elements in A is at most mn.
Contradiction!



Chains and Antichains




Job-Scheduling Problem

» Scheduling the execution of a set of tasks on n identical
Processors.

* The set of tasks may have a partial ordering relation R,
“T; R T;” if and only If the execution of task T; cannot begin
until the execution of task T; has been completed.
(Precedence relation)

T,/2 T2
| | | | | | |
T4/l P,
T4
P,
T,/2

T,/1 P,



Best Schedule?
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optimal schedule



Work Conserving Schedule

 Theorem: For a given set of tasks, let w denote the total
elapsed time of a work conserving schedule and let w, denote
the minimum possible total elapsed time. Then

W 1 :
— < 2——, where nis the number of processors .
W, n
e Proof: 777
Tor Tos (I)

Py 5 by 5 — I ; :

p2 || I
o (I)z T. T. T.
Ty T T i1 iz ik

— There is a chain ¢ such that Zy(Ta) 2 Zﬂ(¢i)

T, el ¢ €@
= 1{2 p(Ty)+ Z ﬂ(ﬂ)} < %{Zﬂ(ﬂﬂ 2 ﬂ(Ta)}
TieT Taeg

WO_—Z,u(T ) and w, > Z,u(T)



e 13.1,13.2,13.9, 13.13
e 14.1,14.5,14.7,14.13
e 15.2,15.10



