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Relations
• The concept of relations is also commonly used in computer science

– two of the programs are related if they share some common data and are– two of the programs are related if they share some common data and are 
not related otherwise.

– two wireless nodes are related if they interfere each other and are not 
related otherwiserelated otherwise

– In a database, two objects are related if their secondary key values are the 
same

• What is the mathematical definition of a relation?
• Definition 13.1 (Relation): A relation is a set of ordered pairs

– The set of ordered pairs is a complete listing of all pairs of objects thatThe set of ordered pairs is a complete listing of all pairs of objects that 
“satisfy” the relation 

• Examples: 
G Th R l i {(2 1) (3 1) (3 2) }– GreaterThanRelation = {(2,1), (3,1), (3,2), ......}

– R = {(1,2), (1,3), (3,0)}

"torelation by the relatedis":21  ,)2,1( yRxRR∈



Relations
• Definition 13.2  (Relation on, between sets) Let R be a 

relation and let A and B be setsrelation and let A and B be sets. 
– We say R is a relation on A provided 

AAR ×⊆
– We say R is a relation from A to B provided

AAR ×⊆

BAR ×⊆



Example Relationsp
• Let A={1,2,3,4} and B={4,5,6,7}. Let 

R {(1 1) (2 2) (3 3) (4 4)}– R={(1,1),(2,2),(3,3),(4,4)}
– S={(1,2),(3,2)}
– T={(1,4),(1,5),(4,7)}T {(1,4),(1,5),(4,7)}
– U={(4,4),(5,2),(6,2),(7,3)}, and
– V={(1,7),(7,1)}

• All of these are relations
– R is a relation on A. Note that it is the equality relation on A.
– S is a relation on A. Note that the element 4 is never mentioned.
– T is a relation from A to B. Note that the elements 2, 3 in A and 6 in 

B are never mentioned.B are never mentioned.
– U is a relation from B to A. Note that 1 in A is never mentioned.
– V is a relation, but it is neither a relation from A to B nor a relation 

from B to A. 



Operations on Relationsp
• A relation is a set All the various set operations apply

BArestrictedRBAR
ArestrictedRAAR

  to fromrelation  a  to relation  the:)(
set   the to relation   the:)(

×∩
×∩

• Definition 13.4 (Inverse relation) Let R be a relation. The 
inverse of R, denoted R-1, is the relation formed by 
reversing the order of all the ordered pairs in Rreversing the order of all the ordered pairs in R.

• Proposition 13 6: Let R be a relation Then (R-1)-1=R
{ }RxyyxR ∈=− ),(:),(1

• Proposition 13.6: Let R be a relation. Then (R 1) 1=R.
• Proof: ???



Properties of Relations
• Definition 13.7 (Properties of relations) Let R be a relation defined on a set 

A. 
– Reflexive:
– Irreflexive:
– Symmetric:

xRxAx    ,∈∀
xRxAx    ,∈∀

xRyyRxAyx ⇒∈∀Symmetric:
– Antisymmetric:
– Transitive:

xRyyRxAyx  ,, ⇒∈∀
( ) yxxRyyRxAyx =⇒∧∈∀      ,,
( ) zRxzRyyRxAzyx        ,,, ⇒∧∈∀

• Example 13.8: “=(equality)” relation on the integers
– Reflexive, Symmetric, Transitive (also Antisymmetric)

• Example 13.9: “less than or equal to” relation on the integersExample 13.9: less than or equal  to  relation on the integers
– Reflexive, Transitive, Antisymmetric (not Symmetric)

• Example 13.10: “less than” relation on integers
– not Reflexive, irreflexive, not symmetric, antisymmetric, transitive

• Example 13.11: “| (divides)” relation on natural numbers
– Reflexive not Symmetric AntisymmetricReflexive, not Symmetric, Antisymmetric
– If “divedes” relation is defined on integers, it is neither symmetric nor 

antisymmetric.



Equivalence Relations
• Certain relations bear a strong resemblance to the relation equality. 
• Example: “is-congruent-to” relation on the set of triangles

– Reflexive
– Symmetric

Transitive– Transitive
• Definition 14.1 (Equivalence relation) Let R be a relation on a set A. We 

say R is an “equivalence relation” provided it is “reflexive”, “symmetric”, 
and “transitive”.

• Example 14.2: “has-the-same-size-as” relation on finite sets
– not the “equal” relationnot the equal  relation
– equivalence relation (share a common property: size): reflexive, symmetric, 

transitive
“lik ” bl t “ l”– “like” resemblance to “equal”



Equivalence Classes
• An equivalence relation R on A categorizes the elements into disjoint 

subsets --- each subset is called an equivalence class
• Definition 14.6 (Equivalence class) Let R be an equivalence relation on a 

set A and let a be an element of A. The equivalence class of a, denoted by 
[a], is the set of all elements of A related (by R) to a; that is,[a], is the set of all elements of A related (by R) to a; that is,

[ ] { }aRxZxa    :∈=
• Example 14.8: Let R be the “has-the-same-size-as” relation defined on the 

set of finite subsets of Z.

[ ] { } { }
{ }[ ] { }4:8642

0: ==⊆=

AZA

AZA φφ

{ }[ ] { }4:8,6,4,2 =⊆= AZA



Propositions on Equivalence Classes
• Proposition 14.9: Let R be an equivalence relation on a set A and let           . 

Then
Aa∈

[ ]aa∈
• Proposition 14.10: Let R be an equivalence relation on a set A and            

let                . Then a R b iff [a]=[b].
• Proposition 14 11: Let R be an equivalence relation on a set A and

Aba ∈,
• Proposition 14.11: Let R be an equivalence relation on a set A and             

let                     . If                    , then x R y.
• Proposition 14.2: Let R be an equivalence relation on A and suppose

Ayxa ∈,, [ ]ayx ∈,

• Corollary 14.13: Let R be an equivalence relation on a set A. The 
equivalence classes of R are nonempty pairwise disjoint subsets of A

[ ] [ ] [ ] [ ].Then    . baba =≠∩ φ

equivalence classes of R are nonempty, pairwise disjoint subsets of A
whose union is A. 



Partitions
• The equivalence classes of R “partitions” the set into pairwise disjoint 

subsets. 

• Definition 15.1 (Partition) Let A be a set. A partition of (or on) A is a set of 
nonempty, pairwise disjoint sets whose union is A.
• A partition is a set of sets; each member of a partition is a subset of A. 

The members of the partition are called parts.
• The parts of a partition are nonempty The empty set is never a part of• The parts of a partition are nonempty. The empty set is never a part of 

a partition.
• The parts of a partition are pairwise disjoint. No two parts of a partition 

may have an element in common.
• The union of the parts is the original set.



An Example Partition
• Example 15.2: Let A = {1,2,3,4,5,6} and let P={{1,2},{3},{4,5,6}}. This is 

a partition of A into three parts. The Three parts are {1,2}, {3}, and {4,5,6}. 
These three sets are (1) nonempty, (2) they are pairwise disjoint, and (3) 
their union is A.

• {{1,2,3,4,5,6}} is a partition of A into just one part containing all the {{1,2,3,4,5,6}} is a partition of A into just one part containing all the 
elements of A

• {{1}, {2}, {3}, {4}, {5}, {6}} is a partition of A into six parts, each 
t i i j t l tcontaining just one element.

• Let R be an equivalence relation on a set A. The equivalence classes of R
form a partition of the set A.

• An equivalence relation forms a partition and a partition forms an 
equivalence relation.

Let P be a partition of a set A. We use P to form a relation “is-in-the-same-
part-as”  on A. Formally,

bb P
P

PbaPba ∈∈∃⇔≡ ,,P



Propositions on 
P i i d E i l R l iPartitions and Equivalence Relations

• Proposition 15.3: Let A be a set and let P be a partition on A. The “is-in-
the-same-part-as” relation is an equivalence relation on A.

f• Proof???

• Proposition 15 4: Let P be a partition on a set A The equivalence classes ofProposition 15.4: Let P be a partition on a set A. The equivalence classes of 
the “is-in-the-same-part-as” relation are exactly the parts of P.

• Proof??? 



Counting Equivalence Classes/PartsCounting Equivalence Classes/Parts

• Example 15.5: In how many ways can the letters in the word WORD be 
rearranged?

b• How about HELLO?
– Differentiate two Ls as a Large L and small l.
– Let A be the set of all rearrangements
– Define a relation R with a R b provided that a and b give the same rearrangement of 

HELLO when we shrink the Large L to small l.
– The number of parts (equivalence classes) are the number of  different rearrangements of 

HELLOHELLO.

• How about AARDVARK?
• Theorem 15.6 (Counting equivalence classes) Let R be an equivalence ( g q ) q

relation on a finite set A. If all the equivalence classes of R have the same 
size, m, then the number of equivalence classes is |A|/m.



Revisit Binomial CoefficientsRevisit Binomial Coefficients
• Theorem 16.12: Let n and k be integers with                  . nk ≤≤0

Then  
)!/(! knnn −

=⎟⎟
⎞

⎜⎜
⎛

!kk
=⎟⎟

⎠
⎜⎜
⎝

• How the concept of partition helps?
– The number of k-element repetition-free lists: (n)k

– Partition those lists with the relation “has-the-same-elements-as”
– Each part (equivalence class) has the same size, k!

Thus the number of k element subsets of n element set is (n) /k! by– Thus, the number of k-element subsets of n-element set is (n)k /k! by 
Theorem 15.6



Partial Ordering RelationsPartial Ordering Relations
• A relation is said to be a partial ordering relation if it is 

reflexive anti-symmetric and transitivereflexive, anti-symmetric, and transitive.
– Example 1: 
– Example 2: Let A be a set of foods. Let R be a relation on A such that 

{ }baNbabaR |,,:),( ∈=
p

(a,b) is in R if a is inferior to b in terms of both nutrition value and 
price.

• Objects in a set are ordered according to the property of R• Objects in a set are ordered according to the property of R. 
But, it is also possible that two given objects in the set are 
not related. Partial Orderingnot related. Partial Ordering

{(a,a), (a,b), (a,c), (a,d), (a,e), (b,b), (b,c), (b,e), (c,c), (c,e), (d,d), (d,e), (e,e)}
e e

c
d

c
d

a
b

a
b Hasse diagram



Partially Ordered Set (1)Partially Ordered Set (1)
• Set A, together with a partial ordering relation R on A, is 

called a partially ordered set and is denoted by (A R)called a partially ordered set and is denoted by (A, R).
• Let (A, R) be a partially ordered set. A subset of A is called a 

chain if every two elements in the subset are related.chain if every two elements in the subset are related.
– Because of antisymmetry and transitivity, all the elements in a chain 

form an ordered list.
– The number of elements in a chain is called the length of the chain

• Let (A, R) be a partially ordered set. A subset of A is called 
an ti h i if no t o distinct elements in the s bset arean antichain if no two distinct elements in the subset are 
related. e

b

c
d Chains: {a,b,c,e}, {a,b,c}, {a,d,e}, {a} 

Antichains: {b,d}, {c,d}, {a}

a
b Antichains: {b,d}, {c,d}, {a} 



Partially Ordered Set (2)
A i ll d d (A R) i ll d ll d d if• A partially ordered set (A, R) is called a totally ordered set if 
A is a chain.

In this case the relation R is called a total ordering relation– In this case, the relation R is called a total ordering relation.

• An element a in (A,R) is called a maximal element if for no b
in A, .baba ≤≠ ,in A,                    . 

• An element a in (A,R) is called a minimal element if for no b
in A,                     .

baba ≤≠ ,

abba ≤≠ ,,
• An element a is said to cover another element b if           and 

for no other element c,                 . 

,
ab ≤

acb ≤≤
• An element c is said to be an upper bound of a and b if 

.and cbca ≤≤
• An element c is said to be a least upper bound of a and b if c

is an upper bound of a and b and if there is no other upper 
bound d of a and b such that 

• Lower bound, greatest lower bound
.cd ≤



Partially Ordered Set (3)
j k h

ih e f g

f g

b c d e
b c d

b c d e

a
a

A partially ordered set is said to be a 
lattice if every two elements in the set 
have a unique least upper bound and a 
unique greatest lower bound.



Chains and Antichains

• Example: Let A={a1, a2, ..., ar} be the set of all courses 
required for graduation Let R be a reflexive relation on Arequired for graduation. Let R be a reflexive relation on A
such that (ai , aj) is in R if and only if course ai is a 
prerequisite of course aj. Then, R is a partial ordering relation.prerequisite of course aj. Then, R is a partial ordering relation. 
– What is the minimum number of semesters for graduation? 

• the length of the longest chain in the partially ordered set (A, R). 

– What is the maximum number of courses that a student can take in a 
semester?

• the size of the largest antichain in the partially ordered set (A,R). 



Chains and Antichains
• Theorem: Let (A, R) be a partially ordered set. Suppose the 

length of the longest chains in A is n. Then the elements in A
b titi d i t di j i t ti h ican be partitioned into n disjoint antichains. 

• Proof: by induction
– for n=1 truefor n 1, true
– Suppose it holds for n-1. Let A be a partially ordered set with the length of its longest 

chain being n. Let M denote the set of maximal elements in A. Clearly, M is a 
nonempty antichain. Consider now the partially ordered set (A-M, R). The length of its p y p y ( ) g
longest chain is at most n-1. On the other hand, if the length of the longest chains in  
A-M is less than n-1, M must contain two or more elements that are members of the 
same chain, which is not possible. Consequently, the length of the longest chain in    
A M is n 1 According to the induction hypothesis A M can be partitioned into n 1A-M is  n-1. According to the induction hypothesis, A-M can be partitioned into n-1 
disjoint antichains. Thus, A can be partitioned into n disjoint antichains.

• Corollary: Let (A,R) be a partially ordered set consisting of mn+1 
l t Eith th i ti h i i ti f +1 l t thelements. Either there is an antichain consisting of m+1 elements or there 

is a chain of length n+1 in A.
– Proof: Suppose the length of the longest chains in A is n. According to the above 

h A b i i d i di j i i hi If h f h i h itheorem, A can be partitioned into n disjoint anticahins. If each of these antichains 
consists of m or fewer elements, the total number of elements in A is at most mn. 
Contradiction!



Chains and Antichains



Job-Scheduling Problem
• Scheduling the execution of a set of tasks on n identical 

processorsprocessors.
• The set of tasks may have a partial ordering relation R,        

“T R T ” if and only if the execution of task T cannot beginTi R Tj  if and only if the execution of task Tj cannot begin 
until the execution of task Ti has been completed. 
(Precedence relation)( )

T1/2 T4/2

T3/1
T5/2

T6/4
P1

T2/2

T6/4

T7/1

P2

P3



Best Schedule?

T1/10
T4/5

T6/9
0 5 10 15 20

T1/10

P1
T2/9

T /9

6

T5/5 T1

T2 T3

T4 T5

T6P2
T3/9 T2 T3 T6

work conserving schedule

0 5 10 15 20

P1

P

T1

T2

T3T4

T5 T6P2
T2 T5 T6

optimal schedule



Work Conserving Schedule
• Theorem: For a given set of tasks let w denote the total• Theorem: For a given set of tasks, let w denote the total 

elapsed time of a work conserving schedule and let w0 denote 
the minimum possible total elapsed time. Thenthe minimum possible total elapsed time. Then

.processors ofnumber   theis     where,12
0

n
nw

w
−≤

• Proof: ???
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HomeworkHomework
• 13.1, 13.2, 13.9, 13.13
• 14.1, 14.5, 14.7, 14.13
• 15.2, 15.10


