Week 13, 24 & 26 March

Mechanics in Energy Resources Engineering - Chapter 9. Deflections of Beams

Ki-Bok Min, PhD

Assistant Professor Energy Resources Engineering Seoul National University

SEOUL NATIONAL UNIVERSITY

- Chapter 8: Practical Examples of plane stress or strain
 - Introduction

summary

- Spherical Pressure Vessels
- Cylindrical Pressure Vessels
- Maximum Stresses in Beams
- Combined Loadings

- http://ocw.mit.edu/OcwWeb/web/home/home/index.htm
- http://nptel.iitm.ac.in/
 - <u>http://nptel.iitm.ac.in/video.php?courseId=1053</u>: strength of materials

Deflections of Beams

- Introduction
- Differential Equations of the Deflection Curve (처짐곡선의 미분방정식)
- Deflections by Integration of the Bending-Moment Equation (굽힘모멘트 방정식의 적분에 의한 처짐)
- Deflections by Integration of the Shear-Force and Load Equations (전단력과 하중방정식의 적분에 의한 처짐)
- Method of Superposition (중첩법)
- Moment-Area Method (모멘트-면적법)
- Nonprismatic Beams (불균일단면 보)

- A beam loaded by lateral forces → <u>axis is deformed into a</u> <u>curve</u> → deflection
- <u>Chapter 5 Stresses in beams</u>: curvature → normal stresses and strains. Not the deflection curve itself.
- Finding deflections
 - Serviceability requirement
 - Useful for analysis of statically indeterminate structure
 - Important for dynamic analyses

FIG. 9-1 Deflection curve of a cantilever beam

Differential Equations of the deflection curve

- Deflection (처짐) v
 - displacement in y-direction. (+) \uparrow
- Angle of rotation (회전각), θ
 - angle between x-axis and the tangent to the deflection curve.

- From chapter 5 Stresses in beams

Differential Equations of the deflection curve

SEOUL NATIONAL UNIVERSITY

- If a material is linearly elastic and follows Hooke's law

Moment -curvature relationship

- Differential equation of the deflection curve of a beam

$$\frac{d^2v}{dx^2} = \frac{M}{EI} \quad \text{or} \quad EI \frac{d^2v}{dx^2} = M \quad \text{or} \quad EIv'' = M$$

Differential Equations of the deflection curve

SEOUL NATIONAL UNIVERSITY

- Differential equation of the deflection curve of a beam
 - Deflection v can be found with known bending moment M and flexural rigidity EI as functions of x.

– Sign conventions:

ষ্∨ ↑(+)

තු θ counterclockwise (+)

ষ্কк concave upward (+)

ন্ন M compression upper part (+)

Additional equations for M, V and q

SEOUL NATIONAL UNIVERSITY

 Relations between bending moment M, shear force V, and intensity q of distributed load

$$\frac{dV}{dx} = -q \qquad \qquad \frac{dM}{dx} = V$$

Through rearrangement

$$\frac{d}{dx}\left(EI_x\frac{d^2v}{dx^2}\right) = \frac{dM}{dx} = V$$
Prismatic beam
$$\frac{d^2}{dx^2}\left(EI_x\frac{d^2v}{dx^2}\right) = \frac{dV}{dx} = -q$$
Constant EI
$$EI\frac{d^3v}{dx^3} = V$$

$$EI\frac{d^3v}{dx^3} = V$$

$$EI\frac{d^4v}{dx^4} = -q$$

Differential equations of the deflection curve Exact Expression for Curvature

SEOUL NATIONAL UNIVERSITY

x

Deflections by integration of the differential equation

SEOUL NATIONAL UNIVERSITY

Bending-moment equation

Load equation

Shear-force equation

- Start from any equation that you want
- Deflections can be obtained by integrating above equations ର Boundary condition ର Continuity condition ର Symmetry condition

Deflections by integration of the Bending-Moment Equation

SEOUL NATIONAL UNIVERSITY

Boundary, Continuity & Symmetry conditions

Boundary condition at a simple support

Boundary condition at a fixed support

Continuity conditions at point C

Symmetry Conditions: additional equation by inspection

ন্নe.g.) simple beam under uniform load throughout its length

Example 9-1 Deflection curve for a simple beam under a uniform load

SEOUL NATIONAL UNIVERSITY

- Equation of deflection curve?
- Maximum deflection at the midpoint?

q

x

– Angles of rotation at the supports?

Example 9-2 Deflection curve for a cantilever beam under a uniform load

FIG. 9-11 Free-body diagram used in determining the bending moment M (Example 9-2)

Example 9-3 Deflection curve for a simple beam under a concentrated load

Example 9-3

Schedule

SEOUL NATIONAL UNIVERSITY

- Week 12 17 May
- Week 13 24 May
- Week 14 31 May
- Week 15 7 June

9 June

19 May

26 May (0)

- : ch.9 (deflection)
- : ch.10 (indeterminate)

: (ch.7) + ch. 8

: ch.10 (indeterminate)

• 9 June : Final Exam + beer party

• Finalized schedule

On Monday Deflections by integration of the differential equation

$EI\frac{d^2v}{dx^2} = EIv'' = M$	Bending-moment equation
$EI\frac{d^3v}{dx^3} = EIv''' = V$	Shear-force equation
$EI\frac{d^4v}{dx^4} = EIv''' = -q$	Load equation

- Start from any equation that you want
- Deflections can be obtained by integrating above equations ର Boundary condition ର Continuity condition ର Symmetry condition

Deflections by integration of the shearforce & Load equations

SEOUL NATIONAL UNIVERSITY

- We may start from shear force V or load q
 - This may be more convenient to some of you.

$$EI\frac{d^3v}{dx^3} = EIv''' = V$$

Shear-force equation

$$EI\frac{d^4v}{dx^4} = EIv''' = -q$$

Load equation

Deflections by integration of the shearforce & Load equations Example 9-4

- Equations of the Deflection curve?
- Deflection and angle of rotation at the free end?

Deflections by integration of the shearforce & Load equations Example 9-5

- Equations of the Deflection curve?
- Deflection and angle of rotation at the free end?

Method of Superposition

SEOUL NATIONAL UNIVERSITY

- Method of Superposition:
 - Deflections by different load can be found by superposition.
 - E.g.) v1 due to q1, v2 due to q2 q1 + q2 \rightarrow v1 +v2
 - Condition: *linear* differential equation

Contribution from distributed loading

Method of Superposition

- SEOUL NATIONAL UNIVERSITY
- Table is useful for calculation of deflection & rotation angles
- Superposition may be used for a type that is not available in the table
 - qdx may be seen as a concentrated load
 - Deflection of concentrated load

Appendix G. Table G-2

Method of Superposition

SEOUL NATIONAL UNIVERSITY

 Total deflection can be obtained by superposing all the contribution of concentrated load

$$\delta_C = \int d\delta_C = \int_0^{L/2} \frac{q_0 x^2}{24LEI} (3L^2 - 4x^2) dx = \frac{q_0}{24LEI} \int_0^{L/2} (3L^2 - 4x^2) x^2 dx = \frac{q_0 L^4}{240LEI}$$

- Similarly rotation of angle can be obtained.

$$\theta_A = \frac{Pab(L+b)}{6LEI} \qquad \qquad qdx \leftarrow P \qquad a \leftarrow x \\ q = \frac{2q_0 x}{L} \qquad b \leftarrow (L-x)$$

$$\theta_A = \int_{0}^{L/2} \frac{q_0}{3L^2 EI} (L-x)(2L-x)x^2 dx = \frac{41q_0 L^3}{2880 EI}$$

Method of Superposition Example 9-6

- $\theta_B \& \delta_B$?
- Refer to Appendix G. Table G-2

Method of Superposition Example 9-7

SEOUL NATIONAL UNIVERSITY

• $\theta_B \& \delta_B?$

Moment-Area method First Moment-Area Theorem

SEOUL NATIONAL UNIVERSITY

• From geometry (assuming a small angle of rotation)

$$\kappa = \frac{1}{\rho} = \frac{d\theta}{dx} \qquad \kappa = \frac{1}{\rho} = \frac{M}{EI}$$

- Two points m₁ & m₂ small distance apart
$$d\theta = \frac{M}{EI} dx \qquad \text{Area of the M/EI diagram}$$

between points A and B
$$\int_{A}^{B} d\theta = \theta_{B} - \theta_{A} = \theta_{B/A} = \int_{A}^{B} \frac{M}{EI} dx$$

<u>First Moment-Area Theorem</u>: The angle $\theta_{B/A}$ = the area of the M/EI Diagram

Moment-Area method Second Moment-Area Theorem

SEOUL NATIONAL UNIVERSITY

- Tangential deviation
 - Vertical deviation of B on the deflection curve from the tangent at A
 - (+) when B is above
 - Two points $m_1 \& m_2$ small distance apart

$$dt = x_1 d\theta = x_1 \frac{M}{EI} dx$$

Deviation due to bending of element m_1m_2

= first moment of the area of the shaded strip

Moment-Area method Second Moment-Area Theorem

SEOUL NATIONAL UNIVERSITY

- By integrating

$$\int_{A}^{B} dt = t_{B/A} = \int_{A}^{B} x_1 \frac{M}{EI} dx$$

<u>Second Moment-Area Theorem</u>: Tangential deviation $t_{B/A}$ = first moment of the area of M/EI diagram between A and B

- (+) M → B is above A (-) M → B is below A
- First moment of the area of the M/EI diagram: <u>area x centroid C</u>

Moment-Area method Example 9-10

• $\theta_B \& \delta_B?$

SEOUL NATIONAL UNIVERSITY

R

В

 δ_B

 θ_B

y 0

FIG. 9-24 Example 9-10. Cantilever beam with a concentrated load

 \overline{X}

C ·

 $-\frac{PL}{\overline{EI}}$

Moment-Area method Example 9-11

SEOUL NATIONAL UNIVERSITY

• θ_B & δ_B?

FIG. 9-25 Example 9-11. Cantilever beam supporting a uniform load on the right-hand half of the beam

Moment-Area method Example 9-12

SEOUL NATIONAL UNIVERSITY

• $\theta_A \& \delta_D?$

Nonprismatic beams

- Beams having varying moments of inertia
 - No new concept is needed
 - Not always work by analytical method
 - Analysis could be more complex

Nonprismatic beams

- Example 9-13
 - Cover plate doubles the moment of inertia

$$- \theta_A \& \delta_C?$$

Deflections of Beams

- Introduction
- Differential Equations of the Deflection Curve (처짐곡선의 미분방정식)
- Deflections by Integration of the Bending-Moment Equation (굽힘모멘트 방정식의 적분에 의한 처짐)
- Deflections by Integration of the Shear-Force and Load Equations (전단력과 하중방정식의 적분에 의한 처짐)
- Method of Superposition (중첩법)
- Moment-Area Method (모멘트-면적법)
- Nonprismatic Beams (불균일단면 보)