Introduction to fluid flow in rock (Week5, 28, 30 Sept)

Ki-Bok Min, PhD

Assistant Professor Department of Energy Resources Engineering Seoul National University

- Fluid flow in porous media
 - Darcy's law
 - Permeability
 - Diffusion equation of fluid flow in porous media
- Fluid flow in fractured media
 - Cubic law
 - Permeability defined in fractured rock
 - Discrete Fracture Network
- Convective heat transfer

Content of today's lecture

- Fluid flow in porous media
- Darcy's law
- Permeability vs. Hydraulic Conductivity
- Diffusion Equation for fluid flow in porous media

Fluid flow in porous media

SEOUL NATIONAL UNIVERSITY

- Problem of great importance to geological/energy resources engineering;
 - Groundwater hydrology

agroundwater migration, tunnel inflow, Contaminant transport,

Oil/gas extraction

 \mathfrak{A} Reservoir engineering

- Rock/soil mechanics

ର୍କ୍ଷ Stability (pore pressure) of underground structure ର୍କ୍ଷ Fault mechanics

Geothermal Energy

Fluid flow in porous media

- Application of fluid mechanics to porous media
 - Fluid (water, oil, gas) flows through the pores of the rock
 - Porosity of rock: volumetric fraction of (interconnected) pore
 - Permeability: the ease with which fluid can move through a porous rock

Representative Elementary Volume (REV)

SEOUL NATIONAL UNIVERSITY

 minimum volume (or a range) beyond which the characteristics of the domain remain basically constant

Figure 3.14 Diagram illustrating the representative elementary volume (from Hubbert, 1956). Reprinted with permission of the Amer. Inst. Mining, Met. and Petrol. Engrs.

• n: porosity,Vv: void volume, V: total volume

$$n = \frac{V_v}{V}$$

Table 2.1 Range in Values of Porosity

Material	Porosity (%)
SEDIMENTARY	
Gravel, coarse	24-36
Gravel, fine	25-38
Sand, coarse	31-46
Sand, fine	26-53
Silt	34-61
Clay	34-60
SEDIMENTARY ROCKS	
Sandstone	5-30
Siltstone	21-41
Limestone, dolomite	0-40
Karst limestone	0-40
Shale	0-10
CRYSTALLINE ROCKS	
Fractured crystalline rocks	0-10
Dense crystalline rocks	0-5
Basalt	5-35
Weathered granite	34-57
Weathered gabbro	42-45

In part from Davis (1969) and Johnson and Morris (1962).

Figure 2.18 Porosity versus depth curves. Curve A from Athy (1930) for shales; curve B from Blatt (1979) for sandstones. Data for Blatt's curve represent 1000-ft averages of 17,367 porosity measurements (from an unpublished manuscript by Atwater and Miller).

Domenico & Schwartz (1998)

Darcy's law

SEOUL NATIONAL UNIVERSITY

Fig. 6.1. Darcy's experiment (Hubbert's version).

- Q: volumetric flow rate (m³/sec)
- q: volumetric flow rate per unit area (fluid flux or specific discharge) (m/sec)
- K: hydraulic conductivity (m/sec), the ease with which fluid can move through a porous rock
- h: hydraulic head

$$Q = -KA \frac{\delta h}{\delta l} = -KiA$$
 $q = -K \frac{\delta h}{\delta l} = -Ki$

$$q_x = -K_x \frac{\partial h}{\partial x}$$
 $q_y = -K_y \frac{\partial h}{\partial y}$ $q_z = -K_z \frac{\partial h}{\partial z}$ $\mathbf{q} = -K\nabla h$

Middleton and Wilcock, 1994

Hydraulic Head

SEOUL NATIONAL UNIVERSITY

Figure 3.2 Diagram showing elevation, pressure, and totapressure head head for a point in the flow field.

- Piezometer: a tube(pipe) used to measure water-level elevations in field situation
- Elevation head: elevation at the base of piezometer
- Pressure head: length of water column.
- Total head: potential energy of
 the fluid = elevation head +

$$h = z + \frac{P}{\rho_w g}$$

Hydraulic head

SEOUL NATIONAL UNIVERSITY

- Determination of flow direction from piezometric measurement

Hydraulic head

SEOUL NATIONAL UNIVERSITY

- Determination of flow direction from piezometric measurement

Permeability

- K (hydraulic conductivity, 수리전도도) is related to medium & fluid $K = \frac{\rho g k}{\mu}$
 - μ : viscosity (점성도) of fluid, unit: Pa·s, water: ~10⁻³ Pa·s = 1 cp
 - ρ : density of fluid, unit: kg/m³, water: 10³ kg/m³
 - g: acceleration due to gravity
 - k: permeability, unit: m²

Permeability

SEOUL NATIONAL UNIVERSITY

Rock Type	k (m2)	k (Darcies)	K (m/s)
Coarse gravels	10 ⁻⁹ -10 ⁻⁸	10 ³ -10 ⁴	10 ⁻² -10 ⁻¹
Sands, gravels	10 ⁻¹² -10 ⁻⁹	10 ⁰ -10 ³	10 ⁻⁵ -10 ⁻²
Fine sands, silts	10 ⁻¹⁶ -10 ⁻¹²	10 ⁻⁴ -10 ⁰	10 ⁻⁹ -10 ⁻⁵
Clays, shales	10 ⁻²³ -10 ⁻¹⁶	10 ⁻¹¹ -10 ⁻⁴	10 ⁻¹⁶ -10 ⁻⁹
Dolomites	10 ⁻¹² -10 ⁻¹⁰	10 ⁰ -10 ²	10 ⁻⁵ -10 ⁻³
Limestones	10 ⁻²² -10 ⁻¹²	10 ⁻¹⁰ -10 ⁰	10 ⁻¹⁵ -10 ⁻⁵
Sandstones	10 ⁻¹⁷ -10 ⁻¹¹	10 ⁻⁵ -10 ¹	10 ⁻¹⁰ -10 ⁻⁴
Granites, Gneiss	10 ⁻²⁰ -10 ⁻¹⁶	10 ⁻⁸ -10 ⁻⁴	10 ⁻¹³ -10 ⁻⁹
Basalts	10 ⁻¹⁹ -10 ⁻¹³	10 ⁻⁷ -10 ⁻¹	10 ⁻¹² -10 ⁻⁶

k (permeability, 투수율) is a measure of only 'medium'

 Also called, coefficient of permeability, intrinsic permeability

1 darcy = $0.987 \times 10^{-12} \text{ m}^2 \sim 10^{-12} \text{ m}^2 = 10^{-5} \text{ m/sec}$

1 m/sec = 10⁻⁷ m²
Answer to
Kyungjin's question

$$K = \frac{\rho g k}{\mu} = \frac{10^3 \times 10 \times k}{10^{-3}} = 10^7 \times k$$

 Permeability has very large variation → very important to characterize/determine its value _{Jaeger et al., 2007}

Darcy's law

SEOUL NATIONAL UNIVERSITY

• Expressed in terms of pressure and elevation head,

$$q = -K\nabla\left(z + \frac{P}{\rho_w g}\right)$$

• When all piezometers are bottomed at the same elevation

$$q = -\frac{k}{\mu} \nabla p \qquad \qquad \checkmark \qquad \qquad K = \frac{\rho g k}{\mu}$$

• In 1D,

$$q = -\frac{k}{\mu} \frac{dP}{dl}$$

SEOUL NATIONAL UNIVERSITY

- Nature of Darcy's velocity
- Fluid flux, q: superficial velocity
- linear or pore velocity (v) of groundwater with porosity, n

$$v = \frac{q}{n}$$

• Pore velocity (v) will be always larger than the superficial velocity.

Reminder Heat Diffusion Equation

- *E_g*: some energy conversion process, e.g., chemical or nuclear reaction
- E_{st} : rate of change of thermal energy stored by the matter

Analogy with Heat diffusion equation

SEOUL NATIONAL UNIVERSITY

Heat transfer Energy Conservation

 $\Delta E_{st} = E_{in} - E_{out} + E_g$

 E_{st} : Energy stored in control volume E_{in} : Energy entering the control volume E_{out} : Energy leaving the control volume E_g : Thermal Energy Generation Fluid flow in porous rock Mass Conservation

 $\Delta m_{st} = m_{in} - m_{out} + m_g$

 m_{st} : mass stored in control volume m_{in} : mass entering the control volume m_{out} : mass leaving the control volume m_{g} : mass Generation

Diffusion equation Derivation (1)

- We follow the exactly same procedure with the heat diffusion equation
- Energy conservation \rightarrow mass conservation
- Heat \rightarrow fluid flow
- Temperature \rightarrow hydraulic head
- Hydraulic conductivity \rightarrow hydraulic conductivity
- Fourier's law \rightarrow Darcy's law

Diffusion equation Derivation (2)

- The basis for developing such an equation is a conservation of "mass".
- When there is no mass generated (= there is no sink or source)→ a conservation of fluid mass statement may be given as; mass inflow rate – mass outflow rate = change in mass storage with time.

Diffusion equation Derivation (3)

SEOUL NATIONAL UNIVERSITY

- Mass inflow rate through the face ABCD = $Q_w q_x \Delta y \Delta z$ where ρ_w : density of fluid, q_x : specific discharge or flow flux (L/T)
- Mass outflow rate through the face EFGH = $\left[\rho_w q_x + \frac{\partial(\rho_w q_x)\Delta x}{\partial x}\right]\Delta y\Delta z$

 ∂v

- Net outflow rate is the difference between the inflow and outflow, Net outflow rate through EFGH = $\frac{\partial(\rho_w q_x)\Delta x \Delta y \Delta z}{\partial x}$
- Making similar calculations for the remainder of the cube, Net outflow rate through CDHG = $-\frac{\partial(\rho_w q_y)\Delta x \Delta y \Delta z}{\partial (\rho_w q_y)\Delta x \Delta y \Delta z}$

Net outflow rate through BCGF = $\frac{\partial(\rho_w q_z) \Delta x \Delta y \Delta z}{\partial x \Delta y \Delta z}$

Diffusion equation Derivation (4)

SEOUL NATIONAL UNIVERSITY

- Adding these results, Net outflow rate through <u>ALL</u> the faces = $-\left[\frac{\partial(\rho_w q_x)}{\partial x} + \frac{\partial(\rho_w q_y)}{\partial y} + \frac{\partial(\rho_w q_z)}{\partial z}\right]\Delta x \Delta y \Delta z$ - Right hand side of the conservation statement is merely a change
 - in mass storage with time (please confirm if units are mass/time),

$$\frac{\partial(\rho_w n)}{\partial t} \Delta x \Delta y \Delta z$$

Collecting above two equations and dividing by unit volume,

$$-\left[\frac{\partial(\rho_w q_x)}{\partial x} + \frac{\partial(\rho_w q_y)}{\partial y} + \frac{\partial(\rho_w q_z)}{\partial z}\right] = \frac{\partial(\rho_w n)}{\partial t}$$

 Above equations states that net outflow rate per unit volume equals the time rate of change of fluid mass per unit volume.

Diffusion equation Derivation (5)

SEOUL NATIONAL UNIVERSITY

- By further assuming that density of fluid does not vary spatially,

Time rate of change of fluid volume within the unit volume = gain or loss in fluid volume per time within the unit volume

- By substituting Darcy's law into specific discharge term, q;

 $\left[\frac{\partial q_x}{\partial x} + \frac{\partial q_y}{\partial y} + \frac{\partial q_z}{\partial z}\right] = \frac{1}{\rho_w} \frac{\partial(\rho_w n)}{\partial t}$

$$\frac{\partial}{\partial x} \left(K_x \frac{\partial h}{\partial x} \right) + \frac{\partial}{\partial y} \left(K_y \frac{\partial h}{\partial y} \right) + \frac{\partial}{\partial z} \left(K_z \frac{\partial h}{\partial z} \right) = \frac{1}{\rho_w} \frac{\partial(\rho_w n)}{\partial t}$$

 We need to do something with the term in the right (because it is not expressed in terms of 'h'.

Diffusion equation Derivation (5)

SEOUL NATIONAL UNIVERSITY

$$\frac{1}{\rho_{w}}\frac{\partial(\rho_{w}n)}{\partial t} = S_{s}\frac{\partial h}{\partial t}$$

 S_s : specific storage (L⁻¹) – a measure of the volume of water(fluid) withdrawn from or added to the unit volume when h changes a unit amount. A difficult concept to grasp but remember that this has to do with three things: porosity, compressibility of water & compressibility of rock pore.

Finally we obtain the diffusion equation for fluid flow for porous media

Baloon ~ pore Air ~ water

$$\frac{\partial}{\partial x}\left(K_{x}\frac{\partial h}{\partial x}\right) + \frac{\partial}{\partial y}\left(K_{y}\frac{\partial h}{\partial y}\right) + \frac{\partial}{\partial z}\left(K_{z}\frac{\partial h}{\partial z}\right) = S_{s}\frac{\partial h}{\partial t}$$

Higher head (pressure) → more water due to compressed water & expansion of pore

Diffusion equation Derivation (6)

- When K is isotropic, the equation becomes; $\frac{\partial}{\partial x} \left(K \frac{\partial h}{\partial x} \right) + \frac{\partial}{\partial y} \left(K \frac{\partial h}{\partial y} \right) + \frac{\partial}{\partial z} \left(K \frac{\partial h}{\partial z} \right) = S_s \frac{\partial h}{\partial t}$
- When K is homogeneous (does not change spatially);
- $K \left[\frac{\partial^2 h}{\partial x^2} + \frac{\partial^2 h}{\partial y^2} + \frac{\partial^2 h}{\partial z^2} \right] = S_s \frac{\partial h}{\partial t} \qquad \qquad \frac{\partial^2 h}{\partial x^2} + \frac{\partial^2 h}{\partial y^2} + \frac{\partial^2 h}{\partial z^2} = \frac{S_s}{K} \frac{\partial h}{\partial t}$ $- \text{ By putting} \quad \frac{K}{S_s} = c \qquad \qquad \frac{\partial^2 h}{\partial x^2} + \frac{\partial^2 h}{\partial y^2} + \frac{\partial^2 h}{\partial z^2} = \frac{1}{c} \frac{\partial h}{\partial t}$ - c: hydraulic diffusivity (L²/T) $\nabla^2 h = \frac{S_s}{Q} \frac{\partial h}{\partial t}$

Diffusion equation Derivation (7)

- For steady state;

$$K \left[\frac{\partial^2 h}{\partial x^2} + \frac{\partial^2 h}{\partial y^2} + \frac{\partial^2 h}{\partial z^2} \right] = S_s \frac{\partial h}{\partial t}$$

$$\frac{\partial^2 h}{\partial t} = \frac{\partial^2 h}{\partial t} + \frac{\partial^2 h}{\partial t} = \nabla^2 h = 0$$

$$\frac{\partial^2 h}{\partial x^2} + \frac{\partial^2 h}{\partial y^2} + \frac{\partial^2 h}{\partial z^2} = \nabla^2 h = 0 \quad \longleftarrow \quad \text{Laplace Equation}$$

Diffusion equation Expression in terms of hydraulic pressure

SEOUL NATIONAL UNIVERSITY

- From, $h = z + \frac{P}{\rho_w g}$
- When z = 0, which is when the elevation is the same (i.e., plate with the same elevation) $h = 0 + \frac{P}{\rho_w g}$

$$\frac{\partial^2 p}{\partial x^2} + \frac{\partial^2 p}{\partial y^2} + \frac{\partial^2 p}{\partial z^2} = \frac{\mu S}{k} \frac{\partial p}{\partial t} = \frac{1}{c} \frac{\partial p}{\partial t}$$

Diffusion equation expressed in terms of pore hydraulic pressure

Diffusion equations Heat diffusion and porous media flow

SEOUL NATIONAL UNIVERSITY

- Heat diffusion equation

$$\frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(k \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \dot{q} = \rho c_p \frac{\partial T}{\partial t}$$

- Diffusion equation for fluid flow in porous media

$$\frac{\partial}{\partial x} \left(K \frac{\partial h}{\partial x} \right) + \frac{\partial}{\partial y} \left(K \frac{\partial h}{\partial y} \right) + \frac{\partial}{\partial z} \left(K \frac{\partial h}{\partial z} \right) + \dot{q} = S_s \frac{\partial h}{\partial t}$$

Group	Members	Title
1	Han Na Kim, Hun Joo Lee, Hun Hoe Cho	Case studies of Geothermal Power Plant and remaining issues for Korea
2	Eun Ji Oh, Jong oong Joo, Chang jo Choi	Case studies of Soultz site (France) and Cooper Basin (Australia)
3	Min-Su Kim, Jin son, Sung-Min Kim, Sung-Chan Oh	Is EGS applicable in Korea?
4	Ki Yeol Kim, Young Soo Lee, Seong Moon Kim	Environmental Impacts
5	Bona Park, YeongSook Park, Kyungjin Yoo	Geothermal Heat Pump – Comparison between installations of GHP in Korea
6	Taehyun Kim, Jaewon Lee	Thermally induced permeability changes for a Geothermal Reservoir Simulation
7	Sunghoon Ryu, Seungbum Choi	Study on Drilling & Borehole stability for Geothermal Energy Development
8	Jiyoung Shin, DongKeun Lee	Numerical Simulation of conductive heat transfer under the biaxial stress and fracture presence

Fluid flow in fractured rock

- In many rock types (especially hard rocks), fractures are the main pathways of fluid flow – note that hard rocks are attractive for underground space.
- Understandings on fluid flow in fractures are essential.
 - Enhanced Geothermal System
 - Fractured Oil Reservoir
 - Geological repository of high level nuclear waste
 - Underground structure (mines, tunnels and oil storages)

Fractured rock fluid flow How do we tackle it?

SEOUL NATIONAL UNIVERSITY

Aperture: size of opening measured normal to the fracture wall

Real rock fracture

- Hard to estimate Q due mainly to complex geometry

-Analytical solution exist to calculate Q and velocity profile

Idealized rock fracture

Fractured rock fluid flow Cubic Law

SEOUL NATIONAL UNIVERSITY

Velocity (v) distribution between parallel plates

$$v = -\frac{1}{8\mu} \left(e^2 - 4y^2 \right) \frac{d}{dx} \left(p + \rho_w gz \right) = -\frac{1}{8\mu} \left(e^2 - 4y^2 \right) \frac{d(\rho_w gh)}{dx}$$

- Navier-Stokes' equation for laminar flow.
- most of geological application involves laminar flow (low Reynolds number, <2000, de Marsily, 1986)

$$\operatorname{Re} = \frac{\rho V d}{\mu}$$

ρ: density of fluidV: mean velocity of fluidD: diameter of the pipeμ: viscosity

Fractured rock fluid flow Cubic Law

SEOUL NATIONAL UNIVERSITY

 Cubic law: for a given gradient in head and unit width (w), flow rate through a fracture is proportional to the <u>cube</u> of the fracture aperture.

Fractured rock fluid flow Measurement of aperture

- Direct measurement
 - Insertion of feeler gauge (steel with different thickness)
 - Impression packer
 - Borehole camera
- Indirect measurement
 - Back calculation from the flow rates

$$Q = \frac{\rho_w ge^3}{12\mu} \frac{\partial h}{\partial x} \qquad e = \left(\frac{12\mu Q}{\rho_w g} / \frac{\partial h}{\partial x}\right)^{1/3}$$

Fractured rock fluid flow Equivalent permeability

Fractured rock fluid flow Equivalent permeability

SEOUL NATIONAL UNIVERSITY

A sandstone with K of 10^{-5} cm/s (which is 10^{-7} m/s ~ 10^{-14} m²~ 10^{-2} Darcy~10mD) correspond to aperture 50µm in 1 m interval.

Influence of fracture aperture e and spacing b on hydraulic conductivity K in the direction of a set of smooth parallel fractures in a rock mass (Hoek et al., 2004)

Fractured rock fluid flow Characterisation

SEOUL NATIONAL UNIVERSITY

- Geometrical properties of fractures
 - Orientation (dip and dip direction), size (trace length in 2D), density (spacing in parallel infinite fracture), location, aperture, roughness
- Characterization method
 - Exposed rock faces

ষ্কscanline sampling: line-based sample, use measuring tape (줄자) of 2-30 m.

ন্থWindow sampling: area-based sample, rectangle of measuring tapes

- Borehole sampling
- We then need to construct a geometric model of fractured rock deterministic or stochastic generation of fractures

Fractured rock fluid flow Discrete Fracture Network

SEOUL NATIONAL UNIVERSITY

• Geometrical models based on the characterisation

Idealized regular fracture model

Discrete Fracture Network (암반균열망)

Content of this week's lecture

- Fluid flow in porous media
- Darcy's law
- Permeability vs. Hydraulic Conductivity
- Diffusion Equation for fluid flow in porous media
- Fluid flow in fractured media
 - Cubic law
 - Permeability defined in fractured rock
 - Characterisation and Discrete Fracture Network (DFN)

Content of next week's lecture

- Monday
 - Some useful solutions for steady and transient state fluid flow
 - Convective heat transfer

- Wednesday
 - Exploration techniques
 By Tae Jong Lee from KIGAM (Korea Institute of Geosciences and Mineral Resources)
 - One question gives 2 points. (attendance of one lecture = 2 points)

- Domenico PA, Schwartz FW, 1998, Physical and Chemical Hydrogeology, 2nd Ed., John Wiley & Sons, Inc.
- de Marsily G, 1986, Quantitative Hydrogeology, Academic press, Inc.
- Duncan CW and M CW, 2004, Rock Slope Engineering, 4th Ed. (based on Hoek and Bray's 3rd edition), Spon Press
- Hiscock KM, 2005, Hydrogeology Principles and Practice, Blackwell publishing